JP3686320B2 - Method for modifying the surface of concrete structures - Google Patents

Method for modifying the surface of concrete structures Download PDF

Info

Publication number
JP3686320B2
JP3686320B2 JP2000291439A JP2000291439A JP3686320B2 JP 3686320 B2 JP3686320 B2 JP 3686320B2 JP 2000291439 A JP2000291439 A JP 2000291439A JP 2000291439 A JP2000291439 A JP 2000291439A JP 3686320 B2 JP3686320 B2 JP 3686320B2
Authority
JP
Japan
Prior art keywords
hydroxide
concrete structure
modifying
structure according
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000291439A
Other languages
Japanese (ja)
Other versions
JP2002095377A (en
Inventor
哲緒 鈴木
Original Assignee
哲緒 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲緒 鈴木 filed Critical 哲緒 鈴木
Priority to JP2000291439A priority Critical patent/JP3686320B2/en
Publication of JP2002095377A publication Critical patent/JP2002095377A/en
Application granted granted Critical
Publication of JP3686320B2 publication Critical patent/JP3686320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Paints Or Removers (AREA)
  • Artificial Fish Reefs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水産資源保護育成用塗料に関する。
【0002】
更に詳しくは、河川、湖沼、海洋等の水域に設置されるコンクリート構造物の水中設置によって生じる水質弊害と底質への影響を制御するため、コンクリート構造物表面を水棲生物の生育環境に適した有益な基質に変換改質するために用いる水産資源保護育成用塗料に関する。
【0003】
【従来の技術】
コンクリート構造物の水中設置によって生じる水棲生物に与える影響は、淡水においては水産用水基準値pH6.5〜7.8に対しpH12〜13を溶出し、一方海洋の場合は水産用水基準値pH7.8〜8.4に対し、pH11〜pH12を長期に亘って溶出し、水棲生物の呼吸生活圏である水質環境に著しい弊害を及ぼしている。
【0004】
また、海岸においては水質弊害と併せて底質にも弊害化した影響が生じている。それらの原因は、水酸化カルシウムの溶出が水中に含まれている二酸化炭素との消費反応によって炭酸カルシウムを生成し、これらの物質は磯域にある礫や岩礁などの表面に付着して無生物領域を拡大し、基礎生産力を支える有用藻類の生育環境を失わしめていることが知られている。
【0005】
現在、コンクリートブロックを河川や海岸の水域に設置した場合、国の”水質汚染防止法”で定めた海洋排出物の許容限度(pH値5.0以上9.0以下)と浮遊物質排出限度200(日間平均150ppm)を大幅に超え、更には日本水産資源保護協会で定めている”水産用水基準”(pH値7.8〜8.4)に対しても、それ以上に悪影響を与えるものとなっている。
【0006】
また、日本コンクリート工学協会発刊のコンクリート便覧にある海洋コンクリート施工の解説では「海洋コンクリートの施工は公害基本法、海洋汚染防止法、水質汚濁防止法、廃棄物の処理及び清掃に関する法律、自然環境保全法の制定において、環境保全に関してこれらの法体系下にある」と明記している。
【0007】
このようにコンクリートブロックなどセメント製品を水中に設置した場合、環境に与える影響は既に明確化されている。
【0008】
一方、人類が生存するに必要な水産資源の保護育成環境の保全維持は極めて重要であるにも関わらず、我が国沿岸のように台風による高潮対策や海岸浸食を受ける海岸では、これらに対する防災優先の処置からコンクリート構造物はコンクリート魚礁を含めて年間約2000万m2相当量が投入されていて、全国の海岸の多くはコンクリートの水中設置による影響から、水棲動植物の正常な生育環境を失い、それによって漁業も年々衰退し、今日では水産資源の大半を海外からの輸入に依存していてその輸入金額も年間2兆円にも達し、その結果日本国の食糧自給率は先進国に例を見ない40%と極めて低いものとなっている。
【0009】
この様な水産資源を取り巻く状況から、水産資源保護育成に関する対策は極めて重要であり、本発明者は、これらの問題解決のため、藻場増殖用溶剤を提案し(特公昭62−20162号公報、特公昭63−41527号公報、特公平1−58931号公報)、全国各地の海岸に沈設されるコンクリート構造物に対し、約50万m2の海藻増殖に繋がる塗装の実用化を行い、水域環境の保全維持と水産資源保護育成にその実益を上げてきた。
【0010】
【発明が解決しようとする課題】
しかし、上記藻場増殖用溶剤は、50%近くのアクリル系エマルジョン樹脂を併用するため、塗装工事を完了した後諸般の事情から数ヶ月に亘り水中設置が行われない場合には、冬季においては零度以下の条件下で凍結と風雪に長期間さらされ、一方、春から秋の期間においても、特に真夏の炎天下ではコンクリート構造物表面の蓄熱温度は80℃以上の過酷な条件下におかれ、エマルジョン樹脂が極度な物性劣化を招き、塗装機能としての持続的安全性を得るには至らない場合もあった。
【0011】
また、資源保護育成に関した環境保全への有益な関心と理解は得られたものの、製品単価の低いコンクリート構造物を対象にしていることから、費用コストの面で容易に普及するには及ばなかった。
【0012】
更に、上記藻場増殖用溶剤は、細菌類、海藻類或いは微生物の生育に必須な微量元素として、硫酸鉄、硫酸マンガン等を含有するが、エマルジョン系溶剤であるため、これらの含有量が十分ではない場合もあった。
【0013】
本発明はこれらの問題点を解決し、施工の容易性と資材コストの低減とを一挙に解決するとともに、コンクリート構造物表面を水棲生物の生育環境に適した表面に変換改質する、溶液状の水産資源保護育成用塗料を提供することを目的とする。
【0014】
【課題を解決するための手段】
即ち、本発明のコンクリート構造物表面の改質方法は、少なくとも硫酸鉄と、水酸化ナトリウムを含有し、更に、水酸化亜鉛、水酸化アンモニウム、水酸化カリウム、水酸化コバルト、水酸化ストロンチウム、水酸化銅、水酸化鉛、水酸化バリウム、水酸化マグネシウム、水酸化マンガンよりなる群から選ばれる少なくとも1種を含有する、pH6.5〜pH8.4の溶液である水産資源保護育成用塗料を塗布して、コンクリート構造物表面に非晶質酸化鉄皮膜層を形成することを特徴とする。
【0015】
【発明の実施の形態】
本発明に用いる硫酸鉄は、コンクリート構造物表面に非晶質酸化鉄皮膜層を形成し、水生動植物の生育環境に必要な鉄分の供与をし、生物の着生を促すものである。
【0016】
ここで、硫酸鉄としては、硫酸第一鉄、硫酸第二鉄を使用できるが、硫酸鉄総量の80wt%以上、より好ましくは、93wt%が7水和の硫酸第一鉄であることが好ましい。また、硫酸鉄の含有量は特に限定されないが、好ましくは35wt%〜40wt%、より好ましくは38wt%〜40wt%である。硫酸鉄の含有量が35wt%未満では、非晶質酸化鉄皮膜層がコンクリート構造物表面に十分に形成されにくい傾向にあり、40wt%を越えると、塗料のpH調整が困難となり、コンクリート構造物表面基質強度に影響する傾向にある。
【0017】
また、水酸化ナトリウムは、後述する水生植物が必要とする微量元素を供給すると共に、塗料のpHを調整し、塗料中の硫酸鉄の含有量を上記従来の藻場増殖用溶剤に比し増量化することを可能ならしめるものである。水酸化ナトリウムの含有量は特に限定されないが、好ましくは3wt%〜5wt%、より好ましくは3.5wt%〜4wt%である。水酸化ナトリウムの含有量が3wt%未満では、塗料のpH調整が困難となり、コンクリート構造物表面基質強度に影響する傾向にあり、5wt%を越えると、非晶質酸化鉄皮膜層がコンクリート構造物表面に十分に形成されにくい傾向にある。
【0018】
更に、前記水酸化亜鉛、水酸化アンモニウム、水酸化カリウム、水酸化コバルト、水酸化ストロンチウム、水酸化銅、水酸化鉛、水酸化バリウム、水酸化マグネシウム、水酸化マンガンよりなる群から選ばれる少なくとも1種は、水生植物が必要とする微量元素を供給するものであり、その含有量は、好ましくは1wt%〜3wt%、より好ましくは1.5wt%〜2.5wt%である。これらの含有量が1wt%未満では、水生植物への微量元素の供給が十分になされない傾向にあり、3wt%を越えても供給過剰であり、コスト面で不利となる傾向にある。
【0019】
本発明の塗料は、pH6.5〜pH8.4、好ましくはpH7.8〜pH8.2の溶液である。上記範囲外では水質弊害、底質弊害を起こし好ましくないし、pH6.5未満ではコンクリート構造物表面基質強度に影響するため好ましくない。
【0020】
溶液の形態としては特に限定されないが、施工の容易性、コスト面、環境面から水溶液であることが好ましく、特に水50〜60wt%を含有する水溶液であることが好ましい。
【0021】
本発明塗料は、上記各成分を溶剤に溶解して溶液とすることにより、容易に製造することができ、また、コンクリート構造物に直接塗工することにより、水生植物が必要とする微量元素を含有する非晶質酸化鉄皮膜層を、コンクリート構造物表面に容易に形成することができる。
【0022】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0023】
硫酸鉄としては硫酸第一鉄(FeSO47H2O)を用いた。その分析結果を表1に示す。
【0024】
【表1】

Figure 0003686320
【0025】
硫酸第一鉄(FeSO47H2O)40wt%、水酸化ナトリウム(NaOH)4wt%、水酸化カリウム(KOH)0.3wt%、水酸化銅(CuOH)0.2wt%、水酸化バリウム(Ba(OH)2)0.5wt%、水55wt%を混合して水溶液とし、pH7.9の水産資源保護育成用塗料を得た。
【0026】
10cm×10cm×5cmのコンクリートブロックを製造し、4週間後にその全面に上記塗料を3回塗布し、1週間乾燥した。塗膜の厚みは50μmであった(実施例)。また、比較のため、同様のコンクリートブロックに上記塗料を塗布しないものを用意した(比較例)。
【0027】
(表面分析)
実施例、比較例のブロック表面の一部を切り取り、理学電機工業(株)製、蛍光X線分析装置システム3270により定量分析モード(ターゲット Rh 50kV〜50mA)で定量分析した。結果を表2に示す。
【0028】
【表2】
Figure 0003686320
【0029】
また、実施例のブロック表面を直接あるいは間接に理学電機工業(株)製、X線回析装置(ターゲット Cu 50kV〜200mA)によりX線回析した。
【0030】
これにより、実施例のブロック表面には50μm〜250μmの塗料が含浸し、非晶質酸化鉄層を形成していることが明らかになった。
【0031】
(アルカリ成分溶出抑制の効果)
ぞれぞれ海水と水道水を入れた、20cm×14cm×7cmのステンレス製容器(1960cc、水温23℃)に、実施例と比較例のブロックを24時間浸漬後、海水と水道水のpHを測定した。この測定を7回行った結果の平均pHを表3に示す。
【0032】
【表3】
Figure 0003686320
【0033】
表3より、実施例のブロックは、比較例のブロックに比べ、アルカリ成分溶出抑制効果に優れることが分かる。
【0034】
(コンクリート表面強度の対比試験)
実施例と比較例のブロック表面の耐摩耗性を分銅式摩耗試験機にて測定したが、両者に差は認められなかった。
【0035】
(水産資源保護育成の効果)
干満の差の少ない日本海沿岸の海岸(水深5m、底質は素砂)において、海岸浸食防止のために設置され波消コンクリートブロックに、上記塗料を塗布した20kgのコンクリートブロック1個を固着し、約6ヶ月後に生物付着調査を行った。その結果、上記塗料を塗装したコンクリートブロック及びその周囲は、他の場所に比較して、短期間で海草が旺盛に着生し、きわめて良好な水性動植物付着効果を発揮した。
【0036】
【発明の効果】
以上説明のように、本発明によれば、施工の容易性と資材コストの低減とを一挙に解決するとともに、水酸化ナトリウムを含有することによって硫酸鉄の含有量が増量化されているため、コンクリート構造物表面に形成された非晶質酸化鉄皮膜層が、水生動植物の生育環境に必要な鉄分を十分に供与し、生物の着生量を増大させ、しかも、コンクリート構造物表面基質強度の低下させることなく、安定した水質環境の保全維持に役立つものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a paint for protecting and nurturing fishery resources.
[0002]
More specifically, the surface of the concrete structure is suitable for the aquatic organism growth environment in order to control the adverse effects on water quality and bottom sediment caused by the underwater installation of concrete structures installed in water areas such as rivers, lakes, and oceans. The present invention relates to a paint for protecting and cultivating marine resources used for conversion to a beneficial substrate.
[0003]
[Prior art]
The effects on aquatic organisms caused by the installation of concrete structures in water are as follows. In fresh water, pH 12-13 is eluted with respect to aquatic water standard value pH 6.5-7.8, while in the case of ocean, aquatic water standard value pH 7.8. In contrast to ˜8.4, pH 11 to pH 12 are eluted over a long period of time, which has a significant adverse effect on the water quality environment, which is the respiratory life zone of aquatic organisms.
[0004]
In addition to the water quality adverse effects on the coast, there are adverse effects on the bottom sediment. The cause of this is that calcium carbonate is produced by the consumption reaction of the calcium hydroxide elution with the carbon dioxide contained in the water, and these substances adhere to the surface of gravel and reef in the remote area and are inanimate. It is known that the environment for growing useful algae that support basic productivity is lost.
[0005]
Currently, when concrete blocks are installed in rivers and coastal waters, the allowable limit for marine emissions (pH value 5.0 to 9.0) and suspended matter discharge limit 200 specified by the National Water Pollution Control Law (Average 150ppm per day) significantly exceeds the “Water Standard for Fisheries” (pH value 7.8-8.4) established by the Japan Fisheries Resource Conservation Association. It has become.
[0006]
In addition, the description of marine concrete construction in the concrete handbook published by the Japan Concrete Institute states, “The construction of marine concrete is the Basic Pollution Law, the Marine Pollution Control Law, the Water Pollution Prevention Law, the Waste Management and Cleaning Law, the Natural Environment Conservation Law. Is under these legal systems for environmental conservation. "
[0007]
Thus, when cement products such as concrete blocks are installed in water, the impact on the environment has already been clarified.
[0008]
On the other hand, although it is extremely important to protect and maintain the marine resources necessary for the survival of humankind, on coasts that suffer from storm surges and coastal erosion due to typhoons, such as the coast of Japan, priority is given to disaster prevention. About 20 million m 2 of concrete structures including concrete fish reefs are introduced annually from the treatment, and many coasts across the country lose the normal growth environment of water plants and animals due to the effects of concrete underwater installation. As a result, the fishing industry has been declining year by year, and today most of the fishery resources depend on imports from overseas, and the amount of imports reaches 2 trillion yen per year. As a result, Japan's food self-sufficiency rate is the same as in developed countries. It is extremely low at 40%.
[0009]
In view of the situation surrounding such fishery resources, measures relating to the protection and cultivation of fishery resources are extremely important, and the present inventor proposed a solvent for growing seaweed beds in order to solve these problems (Japanese Patent Publication No. Sho 62-20162). No. 63-41527, No. 1-58931), and practical application of coating that leads to the growth of about 500,000 m 2 of seaweed for concrete structures set on coasts throughout the country. It has gained its benefits in maintaining and protecting the environment and protecting fishery resources.
[0010]
[Problems to be solved by the invention]
However, since the above-mentioned solvent for algae growth is used in combination with an acrylic emulsion resin of nearly 50%, if underwater installation is not performed for several months after completing the painting work, While exposed to freezing and wind and snow for a long time under sub-zero conditions, on the other hand, even during the spring to autumn period, especially under midsummer hot weather, the heat storage temperature of the concrete structure surface is under severe conditions of 80 ° C or higher, In some cases, the emulsion resin causes extreme physical property deterioration and does not provide continuous safety as a coating function.
[0011]
In addition, although useful interest and understanding of environmental conservation related to resource conservation and fostering was obtained, because it targets concrete structures with low product unit price, it cannot be easily spread in terms of cost and cost. It was.
[0012]
Furthermore, the above-mentioned algae field solvent contains iron sulfate, manganese sulfate, etc. as trace elements essential for the growth of bacteria, seaweeds or microorganisms. Sometimes it was not.
[0013]
The present invention solves these problems, solves ease of construction and reduction of material costs at once, and converts and reforms the surface of a concrete structure into a surface suitable for the aquatic life environment. The purpose is to provide paints for the protection and cultivation of fishery resources.
[0014]
[Means for Solving the Problems]
That is, the method for modifying the surface of a concrete structure of the present invention contains at least iron sulfate and sodium hydroxide, and further contains zinc hydroxide, ammonium hydroxide, potassium hydroxide, cobalt hydroxide, strontium hydroxide, water Applying paint for protecting marine resources, which is a pH 6.5-pH 8.4 solution containing at least one selected from the group consisting of copper oxide, lead hydroxide, barium hydroxide, magnesium hydroxide and manganese hydroxide Then, an amorphous iron oxide film layer is formed on the surface of the concrete structure .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The iron sulfate used in the present invention forms an amorphous iron oxide film layer on the surface of a concrete structure, provides iron necessary for the aquatic animal and plant growth environment, and promotes the growth of organisms.
[0016]
Here, as the iron sulfate, ferrous sulfate and ferric sulfate can be used, but 80 wt% or more, more preferably 93 wt% of the total iron sulfate is preferably 7-hydrated ferrous sulfate. . Moreover, although content of iron sulfate is not specifically limited, Preferably it is 35 wt%-40 wt%, More preferably, it is 38 wt%-40 wt%. If the content of iron sulfate is less than 35 wt%, the amorphous iron oxide coating layer tends to be difficult to form on the surface of the concrete structure. If the content exceeds 40 wt%, it is difficult to adjust the pH of the paint, and the concrete structure It tends to affect the surface substrate strength.
[0017]
In addition, sodium hydroxide supplies trace elements required by aquatic plants, which will be described later, and adjusts the pH of the paint to increase the content of iron sulfate in the paint as compared to the conventional algae growth solvent. It is possible to make it possible. The content of sodium hydroxide is not particularly limited, but is preferably 3 wt% to 5 wt%, more preferably 3.5 wt% to 4 wt%. If the content of sodium hydroxide is less than 3 wt%, it is difficult to adjust the pH of the paint, which tends to affect the surface strength of the concrete structure surface. If the content exceeds 5 wt%, the amorphous iron oxide film layer becomes a concrete structure. It tends to be difficult to be sufficiently formed on the surface.
[0018]
Further, at least one selected from the group consisting of zinc hydroxide, ammonium hydroxide, potassium hydroxide, cobalt hydroxide, strontium hydroxide, copper hydroxide, lead hydroxide, barium hydroxide, magnesium hydroxide, and manganese hydroxide. The seeds supply trace elements required by aquatic plants, and the content thereof is preferably 1 wt% to 3 wt%, more preferably 1.5 wt% to 2.5 wt%. If these contents are less than 1 wt%, there is a tendency that trace elements are not sufficiently supplied to aquatic plants, and even if it exceeds 3 wt%, the supply is excessive and tends to be disadvantageous in terms of cost.
[0019]
The coating material of the present invention is a solution of pH 6.5 to pH 8.4, preferably pH 7.8 to pH 8.2. Outside of the above range, it is not preferable because it causes water quality problems and bottom quality problems, and less than pH 6.5 is not preferable because it affects the strength of the substrate surface of the concrete structure.
[0020]
Although it does not specifically limit as a form of a solution, It is preferable that it is aqueous solution from the ease of construction, cost, and an environmental surface, and it is especially preferable that it is aqueous solution containing 50-60 wt% of water.
[0021]
The paint of the present invention can be easily produced by dissolving the above components in a solvent to form a solution, and by applying directly to a concrete structure, trace elements required by aquatic plants can be obtained. The contained amorphous iron oxide film layer can be easily formed on the surface of the concrete structure.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0023]
Ferrous sulfate (FeSO 4 7H 2 O) was used as the iron sulfate. The analysis results are shown in Table 1.
[0024]
[Table 1]
Figure 0003686320
[0025]
Ferrous sulfate (FeSO 4 7H 2 O) 40 wt%, sodium hydroxide (NaOH) 4 wt%, potassium hydroxide (KOH) 0.3 wt%, copper hydroxide (CuOH) 0.2 wt%, barium hydroxide (Ba (OH) 2 ) 0.5 wt% and water 55 wt% were mixed to obtain an aqueous solution, and a paint for protecting and cultivating fishery resources having a pH of 7.9 was obtained.
[0026]
A concrete block of 10 cm × 10 cm × 5 cm was produced, and after 4 weeks, the coating was applied three times to the entire surface and dried for 1 week. The thickness of the coating film was 50 μm (Example). Moreover, what did not apply | coat the said coating material to the same concrete block was prepared for the comparison (comparative example).
[0027]
(Surface analysis)
A part of the block surface of Examples and Comparative Examples was cut out and quantitatively analyzed in a quantitative analysis mode (target Rh 50 kV to 50 mA) using a fluorescent X-ray analyzer system 3270 manufactured by Rigaku Corporation. The results are shown in Table 2.
[0028]
[Table 2]
Figure 0003686320
[0029]
Moreover, the block surface of the Example was directly or indirectly subjected to X-ray diffraction using an X-ray diffraction apparatus (target Cu 50 kV to 200 mA) manufactured by Rigaku Denki Kogyo Co., Ltd.
[0030]
This revealed that the block surface of the example was impregnated with 50 μm to 250 μm of paint to form an amorphous iron oxide layer.
[0031]
(Effects of suppressing elution of alkali components)
After immersing the block of Example and Comparative Example for 24 hours in a 20 cm x 14 cm x 7 cm stainless steel container (1960 cc, water temperature 23 ° C) containing seawater and tap water, respectively, It was measured. Table 3 shows the average pH as a result of performing this measurement seven times.
[0032]
[Table 3]
Figure 0003686320
[0033]
Table 3 shows that the block of an Example is excellent in the alkaline-component elution suppression effect compared with the block of a comparative example.
[0034]
(Concrete surface strength comparison test)
Although the abrasion resistance of the block surface of an Example and a comparative example was measured with the weight type abrasion tester, the difference was not recognized by both.
[0035]
(Effects of fisheries resource protection and development)
On the coast of the Sea of Japan (5m depth, bottom sediment is bare sand) with little difference in tidal range, a 20kg concrete block coated with the above paint is fixed to a wave-dissipating concrete block installed to prevent coastal erosion. The biofouling investigation was conducted about 6 months later. As a result, the concrete block coated with the paint and its surroundings showed vigorous growth of seaweeds in a short period of time compared to other places, and exhibited a very good water and animal adhesion effect.
[0036]
【The invention's effect】
As described above, according to the present invention, the ease of construction and the reduction of material costs are solved at once, and the content of iron sulfate is increased by containing sodium hydroxide, The amorphous iron oxide coating layer formed on the surface of the concrete structure provides sufficient iron for the aquatic animal and plant growth environment, increases the amount of living organisms, and increases the substrate strength of the concrete structure surface. It helps to maintain and maintain a stable water quality environment without deteriorating.

Claims (6)

少なくとも硫酸鉄と、水酸化ナトリウムを含有し、更に、水酸化亜鉛、水酸化アンモニウム、水酸化カリウム、水酸化コバルト、水酸化ストロンチウム、水酸化銅、水酸化鉛、水酸化バリウム、水酸化マグネシウム、水酸化マンガンよりなる群から選ばれる少なくとも1種を含有する、pH6.5〜pH8.4の溶液である水産資源保護育成用塗料を塗布して、コンクリート構造物表面に非晶質酸化鉄皮膜層を形成することを特徴とするコンクリート構造物表面の改質方法Contains at least iron sulfate and sodium hydroxide, and further includes zinc hydroxide, ammonium hydroxide, potassium hydroxide, cobalt hydroxide, strontium hydroxide, copper hydroxide, lead hydroxide, barium hydroxide, magnesium hydroxide, An amorphous iron oxide film layer is applied to the surface of a concrete structure by applying a coating for aquatic resources protection and growth, which is a solution of pH 6.5 to pH 8.4, containing at least one selected from the group consisting of manganese hydroxide A method for modifying the surface of a concrete structure , characterized by forming a surface . 前記水産資源保護育成用塗料が、水50〜60wt%を含有する水溶液であることを特徴とする請求項1に記載のコンクリート構造物表面の改質方法 The method for modifying a surface of a concrete structure according to claim 1, wherein the fishery resource protection and growth paint is an aqueous solution containing 50 to 60 wt% of water. 前記硫酸鉄の含有量が35〜45wt%であることを特徴とする請求項1又は2に記載のコンクリート構造物表面の改質方法The method for modifying the surface of a concrete structure according to claim 1 or 2, wherein the iron sulfate content is 35 to 45 wt%. 前記硫酸鉄総量の80wt%以上が7水和の硫酸第一鉄であることを特徴とする請求項1〜3のいずれかに記載のコンクリート構造物表面の改質方法The method for modifying the surface of a concrete structure according to any one of claims 1 to 3, wherein 80 wt% or more of the total iron sulfate is ferrous sulfate heptahydrate. 前記水酸化ナトリウムの含有量が3〜5wt%であることを特徴とする請求項1〜4のいずれかに記載のコンクリート構造物表面の改質方法The method for modifying the surface of a concrete structure according to any one of claims 1 to 4, wherein the content of the sodium hydroxide is 3 to 5 wt%. 前記水酸化亜鉛、水酸化アンモニウム、水酸化カリウム、水酸化コバルト、水酸化ストロンチウム、水酸化銅、水酸化鉛、水酸化バリウム、水酸化マグネシウム、水酸化マンガンよりなる群から選ばれる少なくとも1種の含有量の合計が1〜3wt%であることを特徴とする請求項1〜5のいずれかに記載のコンクリート構造物表面の改質方法At least one selected from the group consisting of zinc hydroxide, ammonium hydroxide, potassium hydroxide, cobalt hydroxide, strontium hydroxide, copper hydroxide, lead hydroxide, barium hydroxide, magnesium hydroxide, manganese hydroxide The method for modifying the surface of a concrete structure according to any one of claims 1 to 5, wherein the total content is 1 to 3 wt%.
JP2000291439A 2000-09-26 2000-09-26 Method for modifying the surface of concrete structures Expired - Fee Related JP3686320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000291439A JP3686320B2 (en) 2000-09-26 2000-09-26 Method for modifying the surface of concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000291439A JP3686320B2 (en) 2000-09-26 2000-09-26 Method for modifying the surface of concrete structures

Publications (2)

Publication Number Publication Date
JP2002095377A JP2002095377A (en) 2002-04-02
JP3686320B2 true JP3686320B2 (en) 2005-08-24

Family

ID=18774510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000291439A Expired - Fee Related JP3686320B2 (en) 2000-09-26 2000-09-26 Method for modifying the surface of concrete structures

Country Status (1)

Country Link
JP (1) JP3686320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231437A (en) * 2011-09-22 2014-12-11 三基ブロック株式会社 Fertilization agent composition, flask for block mat, and block mat

Also Published As

Publication number Publication date
JP2002095377A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
ATE223644T1 (en) METHOD FOR PROMOTING MARINE ANIMALS GROWTH IN A CLOSED ENVIRONMENT BY APPLYING A CONTROLLED RELEASE FERTILIZER
JP2002537470A (en) Marine structure antifouling method and composition
JPS5925843A (en) Seawater-resistant antifouling coating composition
CN104693970A (en) Contact type inshore fishing boat anti-fouling paint and preparation method thereof
CN107286775A (en) A kind of aqueous antifouling and antibiosis electrically-conducting paint
Callow A review of fouling in freshwaters
Terlizzi et al. Fouling on artificial substrata
JP3686320B2 (en) Method for modifying the surface of concrete structures
KR100882829B1 (en) Biocide-free antifouling coating agent of a fabric based on basalt fibres
CN1618893A (en) Water moistening type non-toxic antifouling paint and its preparation method
Phillip Modern trends in marine antifouling paints research
CN110484139A (en) A kind of capsaicine anti-fouling paint
KR100389954B1 (en) Paints for growing a seaweed
CN110713604B (en) Preparation method of PAMAM composite antifouling material
WO2005080512A1 (en) Antifouling ship-bottom paint and method of preventing organism attachment to submerged structure, etc. with use thereof
KR200235846Y1 (en) An artificial fish house
CN1772828A (en) Antifouling Coating for marine nesh cage cover
JPH07252110A (en) Antifouling composition for ship and underwater structure
CN102643367A (en) Polymer metal salt, preparation method thereof and application of polymer metal salt in preparing anti-fouling paint
JPS6357503A (en) Antifouling agent for aquatic life
Swain et al. The use of controlled copper dissolution as an anti-fouling system
JPH11323213A (en) Seaweedproofing/seashellproofing composition and machine component for submarine use coated therewith
JPH0761903A (en) Marine adhesive organism-repelling agent and antifouling coating containing the same
KR100946568B1 (en) Composition for promoting attachment and growth of marine organisms to be applied to marine artificial structure containing lactate salt
KR830000966B1 (en) Aquatic repellent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees