JPH02117145A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH02117145A
JPH02117145A JP27189688A JP27189688A JPH02117145A JP H02117145 A JPH02117145 A JP H02117145A JP 27189688 A JP27189688 A JP 27189688A JP 27189688 A JP27189688 A JP 27189688A JP H02117145 A JPH02117145 A JP H02117145A
Authority
JP
Japan
Prior art keywords
gate pad
insulating film
gate
insulating
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27189688A
Other languages
Japanese (ja)
Inventor
Tadaaki Inoue
忠昭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27189688A priority Critical patent/JPH02117145A/en
Publication of JPH02117145A publication Critical patent/JPH02117145A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make gate pad parts have a structure in which the gate pad parts are not peeled off and obtain a transistor that is superior in high-frequency amplification characteristics by forming an insulating film on a semi-insulating semiconductor substrate and forming the gate pad electrodes on the insulating film after forming recessed parts in the insulating film. CONSTITUTION:An insulating film 6 is formed on a semiinsulating semiconductor substrate 1 and recessed parts 7 are formed on the insulating film. Gate pad electrodes are formed on the insulating film including the recessed parts in order to connect gate electrodes 10a to outside terminals. As a transformation layer does not arise very much on the semi-insulating semiconductor substrate during the process of manufacturing and the capacitance of a gate pad electrode part decreases, high frequency amplification characteristics are drastically improved; besides, the gate pad electrodes are not peeled off because of the anchor effect caused by the recessed parts, even though wire bonding is performed. Products excellent in quality are thus manufactured at a high yielding rate.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規なゲートパッド部の形成手法を用いた高
周波用の電界効果トランジスタ(以下、FETと略す)
の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a high frequency field effect transistor (hereinafter abbreviated as FET) using a novel gate pad formation method.
Relating to a manufacturing method.

〈従来の技術〉 近年、高度なエピタキシャル技術および超微細加工技術
の発展に伴い、GaAsからなるMES(Metal 
S emiconductor)型FETの高性能化あ
るいはHEMT(High Electron Mob
ility Transistor)の実用化が進み、
これらFETの動作周波数帯も、30G)Iz以上のE
HF帯域へ拡大されつつある。そして、この種の高周波
用FETは、一般に第3図、第4図に示すような構造を
なし、線状のゲート電極10aの一側に外部端子との接
続のためのドレインパッド9bを有するドレイン電極9
aを延設し、他側に同様のソースパッド8bを有するE
字状のパターンで互いに接続された3つのソース電極8
aを設けるとともに、E字状のパターンの間に上記ゲー
ト電極10aを外部端子に接続するためのゲートパッド
10bを夫々設けている。FETのゲート電極10aと
パッケージングステムの外部端子(図示せず)間をリー
ドワイヤで接続するための上記ゲートパッドtabは、
FETの能動層21が第4図に示すようにMBE(MO
lecular BeaIIIEpitaxy)、MO
(Metal Org’anic)CV D 、V P
 E(Vapor PhaseEpitaxy)等のエ
ピタキシャル成長法で形成される場合、半絶縁性GaA
s基板22までメサエッチされてその上に形成される。
<Conventional technology> In recent years, with the development of advanced epitaxial technology and ultra-fine processing technology, MES (Metal
Improving the performance of Semiconductor type FETs or HEMT (High Electron Mob)
The practical application of utility transistors has progressed,
The operating frequency band of these FETs is also 30G)Iz or higher.
It is being expanded to the HF band. This type of high-frequency FET generally has a structure as shown in FIGS. 3 and 4, and has a drain pad 9b on one side of a linear gate electrode 10a for connection to an external terminal. Electrode 9
a and has a similar source pad 8b on the other side.
Three source electrodes 8 connected to each other in a letter-shaped pattern
a, and gate pads 10b for connecting the gate electrodes 10a to external terminals are provided between the E-shaped patterns. The gate pad tab is for connecting the gate electrode 10a of the FET and the external terminal (not shown) of the packaging stem with a lead wire.
The active layer 21 of the FET has MBE (MO
regular BeaIIIEpitaxy), MO
(Metal Org'anic) CV D, V P
When formed by an epitaxial growth method such as E (Vapor Phase Epitaxy), semi-insulating GaA
The mesa is etched up to the s-substrate 22 and formed thereon.

また、FETの能動層がイオン注入技術等で選択的に形
成される場合は、半絶縁性GaAs基板上に直接形成さ
れる。
Furthermore, when the active layer of the FET is selectively formed by ion implantation technology or the like, it is formed directly on the semi-insulating GaAs substrate.

しかし、このゲートパッド10bを形成すべき半絶縁性
GaAs基板22の表面は、工程上必ず空気に晒された
り、熱を受けたりして変成層が生じやすい。変成層は、
基板の他の部分よりも不純物が多く、結果としてゲート
パッド10b下の不純物濃度を増大させる。また、ゲー
トパッドlobは、リードワイヤを有効にボンディング
するために比較的大きな面積を要し、その結果全ゲート
入力容量に占めるゲートパッド部の容量が増大する。
However, the surface of the semi-insulating GaAs substrate 22 on which the gate pad 10b is to be formed is always exposed to air or subjected to heat during the process, and thus a metamorphosed layer is likely to occur. The metamorphic layer is
There are more impurities than in other parts of the substrate, resulting in an increase in the impurity concentration under gate pad 10b. Further, the gate pad lob requires a relatively large area in order to effectively bond the lead wire, and as a result, the capacitance of the gate pad portion increases in the total gate input capacitance.

第5図は、全ゲート入力容量Cgt/ゲートパッド容量
CgP比とゲートパッド下の不純物濃度N、の関係を、
4種のゲートパッド面積Ap/ゲート面積Ag比につい
て示しており、ゲート下の不純物濃度N、をl 017
cm−”としている(1978年4月マイクロウェーブ
ジャーナル)。例えば、ゲート長が1/2μ属以下のゲ
ートパッドが比較的大きいPETではAp/Ag=20
〜30であるから、ゲートパッド下の基板の不純物濃度
N、が上記変成層によりN*= 1014cm−”とな
ったとすれば、Cgt/Cgp比は略2となり(第2図
中A点参照)、ゲートパッド部の容量CgPが全ゲート
入力容i1cgtの半分にも及ぶことが判る。
FIG. 5 shows the relationship between the total gate input capacitance Cgt/gate pad capacitance CgP ratio and the impurity concentration N under the gate pad.
Four types of gate pad area Ap/gate area Ag ratio are shown, and the impurity concentration N under the gate is l 017
cm-" (Microwave Journal, April 1978). For example, in PET with a gate length of 1/2μ or less and a relatively large gate pad, Ap/Ag = 20.
~30, so if the impurity concentration N of the substrate under the gate pad becomes N* = 1014 cm-'' due to the above metamorphic layer, the Cgt/Cgp ratio becomes approximately 2 (see point A in Figure 2). , it can be seen that the capacitance CgP of the gate pad portion is as much as half of the total gate input capacitance i1cgt.

上記ゲートパッド部の容量Cgl)は、第6図のFET
入力部の等価回路において23で示され、この容量値が
大きくなると、ソースSとゲートG。
The capacitance Cgl) of the gate pad section is the FET shown in Fig. 6.
It is shown as 23 in the equivalent circuit of the input section, and as this capacitance value increases, the source S and gate G.

間に印加される高周波入力信号に対してバイパス回路と
して作用し、高周波帯域特にEHF帯域において利得を
著しく低下させる。従って、EHF帯域で動作するFE
Tについては、ゲートパッド部の容量を極力低減させる
ことが強く要請されろ。
It acts as a bypass circuit for the high frequency input signal applied between them, and significantly reduces the gain in the high frequency band, particularly in the EHF band. Therefore, FE operating in the EHF band
Regarding T, it is strongly required to reduce the capacitance of the gate pad portion as much as possible.

〈発明が解決しようとする課題〉 上記従来のPETにおいてゲートパッド部の容量を低減
させるには、ゲートパッドtabの面積をできるだけ小
さくすること、あるいはゲートパッド10b下の半絶縁
性GaAs基板22の表面変成を少なくして、不純物濃
度を下げることが考えられる。前者にはリードワイヤボ
ンディングの都合上既述の如き限界があるので、半絶縁
性GaAs基板22上にS iNxやSiOxの絶縁膜
を堆積して表面変成を防止し、その上にゲートパッドを
形成する後者の手法が比較的簡便かつ有効である。
<Problems to be Solved by the Invention> In order to reduce the capacitance of the gate pad portion in the conventional PET described above, it is necessary to make the area of the gate pad tab as small as possible, or to reduce the surface area of the semi-insulating GaAs substrate 22 under the gate pad 10b. It is possible to reduce the impurity concentration by reducing metamorphosis. Since the former has the aforementioned limitations due to lead wire bonding, an insulating film of SiNx or SiOx is deposited on the semi-insulating GaAs substrate 22 to prevent surface deformation, and a gate pad is formed on it. The latter method is relatively simple and effective.

しかし、プラズマCVD法等で厚さ1000Å以上に堆
積された上記SiNxやSiOxの絶縁膜とこの上に蒸
着されたAu/TiやAu/Moからなるゲートパッド
の密着強度が弱く、リードワイヤボンディング時にゲー
トパッドが剥がれる等の不良が多発するという問題があ
る。
However, the adhesion strength between the SiNx or SiOx insulating film deposited to a thickness of 1000 Å or more by plasma CVD or the like and the gate pad made of Au/Ti or Au/Mo deposited thereon is weak, and when lead wire bonding There is a problem in that defects such as gate pad peeling occur frequently.

そこで、本発明の目的は、ゲートパッド部をリードワイ
ヤボンディング時に剥がれない構造とし、ゲートパッド
部の容量を低減して、良品質で高周波増幅特性の良い電
界効果トランジスタの製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a field effect transistor of high quality and good high frequency amplification characteristics by making the gate pad part a structure that does not peel off during lead wire bonding and reducing the capacitance of the gate pad part. be.

く課題を解決するための手段〉 上記目的を達成するため、本発明の電界効果トランジス
タの製造方法は、半絶縁性半導体基板上に絶縁膜を形成
し、この絶縁膜に凹部を形成した後、この凹部を含む上
記絶縁膜上に、ゲート電極と外部端子間を接続するため
のゲートパッド電極を形成する。また、上記ゲートパッ
ド電極を形成する前に、このゲートバット電極を形成す
べき半絶縁性半導体基板上を電子線またはイオンビーム
で照射して、上記半絶縁性半導体基板の表層の不純物濃
度を少なくすることもできる。
Means for Solving the Problems> In order to achieve the above object, the method for manufacturing a field effect transistor of the present invention includes forming an insulating film on a semi-insulating semiconductor substrate, forming a recess in the insulating film, and then forming a recess in the insulating film. A gate pad electrode for connecting the gate electrode and an external terminal is formed on the insulating film including the recessed portion. Furthermore, before forming the gate pad electrode, the semi-insulating semiconductor substrate on which the gate butt electrode is to be formed is irradiated with an electron beam or an ion beam to reduce the impurity concentration in the surface layer of the semi-insulating semiconductor substrate. You can also.

く作用〉 本発明による電界効果トランジスタは、半絶縁性半導体
基板上に絶縁膜が形成されているので、従来半絶縁性半
導体基板表面にあった変成層がないか、あってもその全
ゲート入力容量に及ぼす影響は小さく、ゲートパッド電
極部の容量が低減する。また1、E記絶縁膜に凹部が形
成されているので、この絶縁膜上に形成されたゲートパ
ッド電極は密着性がよくて剥がれにくく、良好なリード
ワイヤボンディングが行える。さらに、ゲートパッド電
極を形成する前に、例えば絶縁膜を介して上記半絶縁性
半導体基板上を電子線またはイオンビームで照射すれば
、半絶縁性半導体基板の表層の不純物濃度を少なくでき
、ゲートパッド電極部の容量は一層低減する。
Effect> Since the field effect transistor according to the present invention has an insulating film formed on a semi-insulating semiconductor substrate, it is possible to eliminate the metamorphic layer that has conventionally existed on the surface of a semi-insulating semiconductor substrate, or even if there is, the entire gate input The effect on capacitance is small, and the capacitance of the gate pad electrode portion is reduced. In addition, 1. Since the recess is formed in the insulating film E, the gate pad electrode formed on the insulating film has good adhesion and is difficult to peel off, allowing for good lead wire bonding. Furthermore, if the semi-insulating semiconductor substrate is irradiated with an electron beam or an ion beam through the insulating film before forming the gate pad electrode, the impurity concentration in the surface layer of the semi-insulating semiconductor substrate can be reduced, and the gate The capacitance of the pad electrode portion is further reduced.

〈実施例〉 以下、本発明を図示の実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図、第2図は本発明の製造方法によって製造された
電界効果トランジスタ(F’ET)の−例を示す平面図
、断面図であり、第1図に示す外観は第3図の従来例と
殆んど異ならないので、同じ部分には同一番号を付して
説明を省略する。
1 and 2 are a plan view and a sectional view showing an example of a field effect transistor (F'ET) manufactured by the manufacturing method of the present invention, and the appearance shown in FIG. Since there is almost no difference from the example, the same parts are given the same numbers and the explanation will be omitted.

第2図において、1は半絶縁性のGaAs基板、2.3
.4はMBE(分子線成長)法によって順次堆積された
後、ソース、ゲート、ドレインとなるべき領域5(第1
図参照)を除いて図示の如くメサエッチングして形成さ
れたバッファ層、n型GaAs能動層、n“−GaAs
層、6はメサエッチング部分を埋めるようにプラズマC
VD法で厚さ略3000人に堆積された絶縁膜としての
SiNx膜、7はソース、ゲート ドレインの各電極パ
ッドを形成すべきSiNx膜6上の電極パッドの四隅に
対応する部分等にプラズマエツチング法で深さ略250
0人に形成された円柱状の凹部、8,9jOa、10b
はSiNx膜6上に電極金属を蒸着、アロイングしてオ
ーミックコンタクトを作った後、リセスエッチングで第
1.2図の如く互いに分離形成されたソース電極(電極
パッドを含む)、ドレイン電極(電極パッドを含む)、
ゲート電極、ゲート電極パッド、!lはこれらの電極上
にSiNxを堆積し、電極パッド部の堆積膜を除去して
形成されたパッジベージシン膜である。
In Figure 2, 1 is a semi-insulating GaAs substrate, 2.3
.. 4 is sequentially deposited by the MBE (molecular beam epitaxy) method, and then a region 5 (the first
As shown in the figure, the buffer layer, n-type GaAs active layer, n"-GaAs
Layer 6 is plasma C so as to fill the mesa etched area.
A SiNx film 7 is deposited as an insulating film to a thickness of approximately 3000 mm using the VD method, and plasma etching is performed on the SiNx film 6 on which the source, gate, and drain electrode pads are to be formed. Depth approximately 250 mm
Cylindrical recess formed in 0 person, 8,9jOa, 10b
After forming an ohmic contact by vapor depositing and alloying an electrode metal on the SiNx film 6, recess etching is performed to form a source electrode (including an electrode pad) and a drain electrode (including an electrode pad) separated from each other as shown in Figure 1.2. including),
Gate electrode, gate electrode pad,! 1 is a padded thin film formed by depositing SiNx on these electrodes and removing the deposited film at the electrode pad portion.

なお、上記凹部7は、その穴径がソース、ドレイン電極
バット部8 b、 9 bで50μス、ゲートパッド部
tabで20μlであり、この四部7は、製造後のF”
ETの各電極パッドに第1.2図に示す円形のくぼみと
してその痕跡が認められる。また、面積の広いソース電
極バット部8bには、第1図に示すように四隅のほか中
央にも上記凹部7を設けている。
The recessed portion 7 has a hole diameter of 50 μl at the source and drain electrode butt portions 8 b and 9 b, and 20 μl at the gate pad portion tab, and these four portions 7 have a diameter of F” after manufacturing.
Traces of this can be seen on each electrode pad of the ET as circular depressions shown in Figure 1.2. Further, in the source electrode butt portion 8b having a large area, the recess 7 is provided not only at the four corners but also at the center, as shown in FIG.

上記構成のPETにおいて、半絶縁性のGaAs基板l
基板子ファ層2上に厚い絶縁性のSiNx膜6が形成さ
れているので、製造工程でGaAs基板l基板子や熱に
晒されることが殆んどなく、従来のように基板表面に変
成層が殆んど生じない。従って、第3図の横軸に示す不
純物濃度N、が減少し、全ゲート入力容fficgtに
占めるゲートパッド容量Cgl)の割合が激減する。ま
た、厚い絶縁膜6によってGaAs基板l基板子リアが
ゲートパッド容量に及ぼす影響が低減され、結果的にゲ
ートパッド容量が低減する。こうして、全ゲート入力容
量が従来例の略60〜70%に減少し、20GHz以上
のEHF’帯域でのFETの利得が大幅に改善された。
In PET with the above structure, a semi-insulating GaAs substrate l
Since the thick insulating SiNx film 6 is formed on the substrate layer 2, the GaAs substrate is hardly exposed to heat during the manufacturing process, and a metamorphic layer is not formed on the substrate surface as in the conventional method. rarely occurs. Therefore, the impurity concentration N shown on the horizontal axis in FIG. 3 decreases, and the ratio of the gate pad capacitance Cgl) to the total gate input capacitance fficgt decreases sharply. Furthermore, the thick insulating film 6 reduces the influence of the GaAs substrate on the gate pad capacitance, resulting in a reduction in gate pad capacitance. In this way, the total gate input capacitance was reduced to about 60 to 70% of the conventional example, and the gain of the FET in the EHF' band of 20 GHz or higher was significantly improved.

一方、各電極パッド8b、9b、10bは、その四隅等
で下層のSiNx膜6に設けられた凹部7に深く嵌り込
んでいるので、密着性が強くて剥がれにくく、セラミッ
クステム等の外部端子にリードワイヤボンディングして
も、従来のように電極パッドが剥離して不良品となるこ
とがない。つまり、高性能のFETを高歩留で製造する
ことができるのである。
On the other hand, each electrode pad 8b, 9b, 10b is deeply fitted into the recess 7 provided in the underlying SiNx film 6 at its four corners, so it has strong adhesion and is difficult to peel off, making it suitable for external terminals such as ceramic stems. Even with lead wire bonding, the electrode pads do not peel off and result in defective products as in the conventional case. In other words, high performance FETs can be manufactured with high yield.

さらに、変形例としてゲート電極バットtabを蒸着す
る前に、この部分のGaAs基板l基板子300人のS
iNx膜6を通して150 KeVのXeイオンビーム
で照射した。すると、GaAs基板l基板子のキャリア
濃度が低減し、上述と同様ゲートベツド容量が低減し、
EI(F帯でのF’ETの利得が大幅に改善された。
Furthermore, as a modified example, before depositing the gate electrode butt tab, 300 S
The iNx film 6 was irradiated with a 150 KeV Xe ion beam. Then, the carrier concentration of the GaAs substrate decreases, and the gate bed capacitance decreases as described above.
EI (The gain of F'ET in the F band has been significantly improved.

なお、上記実施例では、バッファ層2をメサエッチング
で一部除去した上に絶縁膜たるSiNx膜6を形成した
が、バッファ層2を全部除去してGa八へ基板1上に直
接絶縁膜を形成してもよい。
In the above embodiment, the SiNx film 6 as an insulating film was formed after partially removing the buffer layer 2 by mesa etching, but the buffer layer 2 was completely removed and an insulating film was formed directly on the Ga substrate 1. may be formed.

なお、本発明が図示の実施例に限られないのはいうまで
もない。
It goes without saying that the present invention is not limited to the illustrated embodiment.

〈発明の効果〉 以上の説明で明らかなように、本発明の電界効果トラン
ジスタの製造方法は、半絶縁性半導体基板上に絶縁膜を
形成し、この絶縁膜に凹部を形成した後、この凹部を含
む上記絶縁膜上に、ゲート電極と外部端子間を接続する
ためのゲートパッド電極を形成するので、従来のように
製造工程中に半絶縁性半導体基板上に変成層が殆んど生
じず、生じてもその全ゲート入力容量に及ぼす影響が小
さく、ゲートパッド電極部の容量が低減するから、高周
波増幅特性が大幅に向上するとともに、上記凹部による
アンカー効果でゲートパッド電極がリードワイヤボンデ
ィング時にも剥離せず、良品質の製品を高歩留りで製造
することができる。また、ゲートパッド電極を形成する
前に、半絶縁性半導体基板上を電子線等で照射すれば、
上記半絶縁性半導体基板の表層の不純物濃度を少なくし
て、高周波増幅特性を一層向上させることができる。
<Effects of the Invention> As is clear from the above description, the method for manufacturing a field effect transistor of the present invention includes forming an insulating film on a semi-insulating semiconductor substrate, forming a recess in the insulating film, and then forming a recess in the recess. Since a gate pad electrode for connecting the gate electrode and an external terminal is formed on the above insulating film containing , even if it occurs, its effect on the total gate input capacitance is small, and the capacitance of the gate pad electrode portion is reduced, so high frequency amplification characteristics are greatly improved, and the anchoring effect of the above recess allows the gate pad electrode to be easily used during lead wire bonding. There is no peeling, and high-quality products can be manufactured at high yields. In addition, if the semi-insulating semiconductor substrate is irradiated with an electron beam or the like before forming the gate pad electrode,
By reducing the impurity concentration in the surface layer of the semi-insulating semiconductor substrate, high frequency amplification characteristics can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の製造方法によって作られたP
ETの一例を示す平面図、断面図、第3図、第4図は従
来のFETを示す平面図、斜視図、第5図は全ゲート入
力容量/ゲートパッド容量とゲートパッド下の不純物濃
度との関係を示す図、第6図はF’ET入力部の等価回
路である。 !・・・半絶縁性のGaAs基板、2・・・バッファ層
、3−n型GaAs能動層、4−n”−GaAs層、6
・・・S iNx膜、7・・・凹部、8b・・・ソース
電極パッド、 9b・・・ドレイン電極パッド、 10b・・・ゲート電極パッド、 11・・・パッシベーション膜。 特 許 出 願 人  シャープ株式会社代 理 人 
弁理士  前出 葆 ほか1名第1図 ■ 第3図 第2図 74図
Figures 1 and 2 show P manufactured by the manufacturing method of the present invention.
3 and 4 are plan views and perspective views showing conventional FETs, and FIG. 5 shows total gate input capacitance/gate pad capacitance and impurity concentration under the gate pad. FIG. 6 is an equivalent circuit of the F'ET input section. ! ... Semi-insulating GaAs substrate, 2... Buffer layer, 3-n-type GaAs active layer, 4-n''-GaAs layer, 6
... SiNx film, 7 ... recess, 8b ... source electrode pad, 9b ... drain electrode pad, 10b ... gate electrode pad, 11 ... passivation film. Patent applicant: Sharp Corporation Agent
Patent attorney: Mr. Hajime and 1 other person Figure 1 ■ Figure 3 Figure 2 Figure 74

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性半導体基板上に絶縁膜を形成し、この絶
縁膜に凹部を形成した後、この凹部を含む上記絶縁膜上
に、ゲート電極と外部端子間を接続するためのゲートパ
ッド電極を形成する電界効果トランジスタの製造方法。
(1) After forming an insulating film on a semi-insulating semiconductor substrate and forming a recess in this insulating film, a gate pad electrode is placed on the insulating film including the recess for connecting the gate electrode and an external terminal. A method for manufacturing a field effect transistor.
(2)上記特許請求の範囲第1項に記載の電界効果トラ
ンジスタの製造方法において、上記ゲートパッド電極を
形成する前に、このゲートパッド電極を形成すべき半絶
縁性半導体基板上に電子線またはイオンビームで照射し
て、上記半絶縁性半導体基板の表層の不純物濃度を少な
くする電界効果トランジスタの製造方法。
(2) In the method for manufacturing a field effect transistor according to claim 1, before forming the gate pad electrode, an electron beam or A method for manufacturing a field effect transistor, which reduces the impurity concentration in the surface layer of the semi-insulating semiconductor substrate by irradiating with an ion beam.
JP27189688A 1988-10-27 1988-10-27 Manufacture of field-effect transistor Pending JPH02117145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27189688A JPH02117145A (en) 1988-10-27 1988-10-27 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27189688A JPH02117145A (en) 1988-10-27 1988-10-27 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02117145A true JPH02117145A (en) 1990-05-01

Family

ID=17506405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27189688A Pending JPH02117145A (en) 1988-10-27 1988-10-27 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02117145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149248A1 (en) * 2021-01-07 2022-07-14 富士通株式会社 Semiconductor device, amplifier and method for producing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149248A1 (en) * 2021-01-07 2022-07-14 富士通株式会社 Semiconductor device, amplifier and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
JP2002270822A (en) Semiconductor device
JPH02117145A (en) Manufacture of field-effect transistor
JPH0472381B2 (en)
JP3365380B2 (en) High frequency semiconductor device and manufacturing method thereof
JPS63174374A (en) Manufacture of field-effect semiconductor device
JPH01260861A (en) Field-effect transistor
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JP2003059949A (en) Field effect transistor and production method therefor
JPS5961073A (en) Manufacture of semiconductor device
JPS609173A (en) Manufacture of field-effect type semiconductor device
JP3074807B2 (en) Method for manufacturing field effect transistor
JPH07201887A (en) Field effect transistor
JP2557432B2 (en) Field effect transistor
JP2861086B2 (en) Field effect transistor and method of manufacturing the same
JPS6394678A (en) Hetero junction bipolar transistor and its manufacture
JPS6167274A (en) Manufacture of semiconductor device
JPH02307230A (en) Manufacture of semiconductor transistor
JPS58199567A (en) Schottky barrier field effect transistor and manufacture thereof
JPH03225861A (en) Manufacture of semiconductor integrated circuit
JPH06338519A (en) Semiconductor device
JPH01143272A (en) Manufacture of field-effect transistor
JP2000195873A (en) Compound semiconductor device and its manufacture
JP2000243759A (en) Manufacture for semiconductor device
KR20010008657A (en) Hetero junction bipolar transistor processing method
JPH05335296A (en) Fabrication of semiconductor device