JPH02117037A - Electrode material of vacuum interrupter - Google Patents

Electrode material of vacuum interrupter

Info

Publication number
JPH02117037A
JPH02117037A JP26935188A JP26935188A JPH02117037A JP H02117037 A JPH02117037 A JP H02117037A JP 26935188 A JP26935188 A JP 26935188A JP 26935188 A JP26935188 A JP 26935188A JP H02117037 A JPH02117037 A JP H02117037A
Authority
JP
Japan
Prior art keywords
weight
current
molybdenum
cobalt
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26935188A
Other languages
Japanese (ja)
Other versions
JP2661202B2 (en
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Nobuyuki Yoshioka
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63269351A priority Critical patent/JP2661202B2/en
Publication of JPH02117037A publication Critical patent/JPH02117037A/en
Application granted granted Critical
Publication of JP2661202B2 publication Critical patent/JP2661202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the properties such as the fusion-resisting property, the current cutoff property, and the current chopping value by using specific amounts of copper, cobalt, molybdenum, bismuth, and lead respectively to form the electrode material. CONSTITUTION:Electrodes 13 and 14 are formed of copper within the scope 20 to 70wt.%, chromium within the scope 2 to 75wt.%, cobalt within the scope 0.1 to 10wt.%, molybdenum within the scope 2 to 75wt.%, bismuth within the scope 1 to 20wt.%, and lead within the scope 0.5 to 10wt.%. In this case, the chromium powder, the cobalt powder, and the molybdenum powder are mixed evenly, the mixture is heated at the temperature lower than the melting points of the cobalt, the chromium, and the molybdenum, while degasing in the nonoxidizing ambiance to obtain a porous sintered body, and furthermore, the copper, the bismuth, and the lead are fused and spread in the clearances of the sintered body. Consequently, the properties such as the fusion-resisting property, the current cutoff property, and the current chopping value are improved.

Description

【発明の詳細な説明】 献 産業上の利用公費 本発明は、電流しゃ断性能や電流さい断値等の特性を向
上させた安価な溶浸形の複合金属からなる真空インタラ
プタの電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode material for a vacuum interrupter made of an inexpensive infiltrated composite metal with improved characteristics such as current interrupting performance and current interrupting value.

B、 発明の概要 銅とクロムとコバルトとモリブデンとビスマスと船とか
らなる真空インタラプタの電極材料であり、耐溶着性や
電流しゃ断性能及び電流さい断値等の特性を向上させた
ものである。
B. Summary of the Invention This is an electrode material for a vacuum interrupter made of copper, chromium, cobalt, molybdenum, bismuth, and ship, and has improved properties such as welding resistance, current interrupting performance, and current interrupting value.

C従来の技術 一般に、真空インタラプタの電極材料として要求される
主な性能としては、 (1)耐溶着性が良いこと (2)電流しゃ断性能が高いこと (3)電流さい断値が低いこと 等を挙げ−るごとができる。
C. Conventional technology In general, the main performances required for electrode materials for vacuum interrupters are (1) good welding resistance, (2) high current cutting performance, (3) low current cutting value, etc. Can list things.

しかし、電極材料の電流しゃ断性能を高くすることと電
流さい断値を低くすることとiよ、互いに矛盾する物理
的特性に起因するため、単一の電極材料で上述した全て
の特性を満たすことは難しく、真空インタラプタの仕様
に最も適合した電極材料を選択しているのが現状である
However, since increasing the current cutting performance of the electrode material and lowering the current cutting value are mutually contradictory physical properties, it is difficult to satisfy all of the above characteristics with a single electrode material. However, the current situation is to select the electrode material that best meets the specifications of the vacuum interrupter.

例えば、特公昭41−12131号公報等に開示された
銅ビスマス合金は、銅(Cu)に蒸気圧の高い低融点の
ビスマス(Bi)を0.5重量%添加したものであり、
耐溶着性や電流しゃ断性能が良好であることは周知の通
りである。又、特公昭54−36121号公報等に開示
されたタングステン鋼焼結金属は、蒸気圧の低い高融点
のタングステン(W)に胴を20重量%添加したもので
あり、電流さい断値が低い利点を有する。この電流さい
断値が特に低い電極材料としては、実開昭55−121
429号公報等に開示された炭化タングステン銀焼結金
属、つまり炭化タングステ:/ (WC) ニtii 
(A g) ヲ30重量%添加したもの等がある。
For example, the copper-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131 is made by adding 0.5% by weight of bismuth (Bi), which has a high vapor pressure and a low melting point, to copper (Cu).
It is well known that it has good welding resistance and current interrupting performance. In addition, the tungsten steel sintered metal disclosed in Japanese Patent Publication No. 54-36121 etc. is made by adding 20% by weight of a shell to tungsten (W), which has a low vapor pressure and high melting point, and has a low current cutoff value. has advantages. As an electrode material with a particularly low current cutoff value, Utility Model Application No. 55-121
Tungsten carbide silver sintered metal disclosed in Publication No. 429 etc., that is, tungsten carbide: / (WC) Nitii
(A g) There are also those containing 30% by weight.

D、 発明が解決しようとする課題 銅ビスマス合金は電流しゃ断性能が良好である反面、電
流さい断値が例えばIOAと高く、電流しゃ断時にさい
断サージを発生することがある。このため、遅れ小電流
を良好にしゃ断することが困難であり、負荷側の電気機
諾の絶縁破壊を引き起こす虞がある。
D. Problems to be Solved by the Invention Although copper-bismuth alloys have good current cutting performance, they have a high current cutting value of, for example, IOA, and may generate cutting surges when cutting current. For this reason, it is difficult to cut off the delayed small current in a good manner, and there is a possibility that dielectric breakdown of the electrical equipment on the load side may occur.

又、タングステン銅焼結金属や炭化タングステン銀焼結
金属は電流さい断値が低い反面、電流しゃ断性能が悪(
、短絡電流の如き大電流をしゃ断することができない。
In addition, although tungsten copper sintered metal and tungsten silver carbide sintered metal have a low current cutoff value, their current cutoff performance is poor (
, cannot cut off large currents such as short circuit currents.

更に、炭化タングステン銀焼結金属では銀を比較的多量
に含んでいることから、電極材料としては高価なもので
あり、真空インタラプタの製造単価を下げろ際の障害と
なる。
Furthermore, since tungsten silver carbide sintered metal contains a relatively large amount of silver, it is expensive as an electrode material, which is an obstacle to reducing the manufacturing cost of vacuum interrupters.

E、 課題を解決するための手段 本発明による真空インタラプタの電極材料は、耐溶着性
や電流しゃ断性能及び電流さい断値等の特性を向上させ
るため、20から70重量%の範囲の銅と、2から75
重量%の範囲のクロムと、0.1から10重量%の範囲
のコバルトと、2から75重量%の範囲のモリブデンと
、1から20重量%の範囲のビスマスと、0.5から1
0重量%の範囲の鉛とからなるものである。
E. Means for Solving the Problems The electrode material of the vacuum interrupter according to the present invention contains copper in a range of 20 to 70% by weight in order to improve properties such as welding resistance, current interrupting performance, and current interrupting value. 2 to 75
chromium in the range of % by weight, cobalt in the range of 0.1 to 10% by weight, molybdenum in the range of 2 to 75% by weight, bismuth in the range of 1 to 20% by weight, and 0.5 to 1% by weight.
0% by weight of lead.

この場合、クロムの粉末とコバルトの粉末とモリブデン
の粉末とを均一に混合し、これをコバルト(及びクロム
及びモリブデン)の融点以下の温度で加熱して多孔質の
焼結体を得、更にこの焼結体の空隙部分に銅及びビスマ
ス及び鉛を溶浸させて本発明の!極材料を得る。なお、
これら焼結や溶浸工程は、非酸化性雰囲気にて脱ガスし
つつ行うことが望ましい。
In this case, chromium powder, cobalt powder, and molybdenum powder are uniformly mixed and heated at a temperature below the melting point of cobalt (and chromium and molybdenum) to obtain a porous sintered body. According to the present invention, copper, bismuth, and lead are infiltrated into the voids of the sintered body! Obtain pole material. In addition,
These sintering and infiltration steps are desirably performed in a non-oxidizing atmosphere while degassing.

ここで、網が20重重景未満の場合には、導電率が低下
して発熱量が多くなり、逆に銅が70重量%を越えろと
、耐溶着性の低下や電流さい断値の増大をもたらす。ク
ロムが2重量%未満の場合やモリブデンが21i量%未
満の場合或いはビスマスが1重量%未満の場合には、電
流さい断値がそれぞれ増大することとなる。更に、クロ
ムが75重量%を越えたり、モリブデンが75重量%を
越える場合には、電流しゃ断性能がそれぞれ低下してし
まう。一方、ビスマスが20重量%を越えたり、鉛が1
0.ii量%を越えるとN極及び真空インタラプタとし
ての耐久性が急激に低下し、逆に鉛が0.5重量%未満
の場合には、鉛を使用したことによる電極材料としての
物理的。
Here, if the mesh is less than 20% by weight, the conductivity will decrease and the amount of heat generated will increase.On the other hand, if the copper content exceeds 70% by weight, the welding resistance will decrease and the current cutoff value will increase. bring. If the amount of chromium is less than 2% by weight, if the amount of molybdenum is less than 21% by weight, or if the amount of bismuth is less than 1% by weight, the current cutoff value will increase. Furthermore, if the content of chromium exceeds 75% by weight or the content of molybdenum exceeds 75% by weight, the current interrupting performance will deteriorate. On the other hand, if bismuth exceeds 20% by weight or lead exceeds 1% by weight,
0. If the amount of lead exceeds 2% by weight, the durability as an N electrode and vacuum interrupter will decrease rapidly, and conversely, if the amount of lead is less than 0.5% by weight, the physical damage as an electrode material due to the use of lead will deteriorate.

電気的特性を長期に亙って安定化させる機能が充分に発
揮されなくなる。又、コバルトが10重量%を越える場
合には、鋼との反応が進んで導電率の低下をもたらし、
逆にコバルトが0.1重量%未膚の場合には、Fii[
正特性が低下する。
The function of stabilizing electrical characteristics over a long period of time will no longer be fully demonstrated. In addition, if cobalt exceeds 10% by weight, the reaction with steel progresses, resulting in a decrease in electrical conductivity.
Conversely, if 0.1% by weight of cobalt is present, Fii[
Positive characteristics decrease.

29作 用 銅とクロムとコバルトとモリブデンとビスマスと鉛との
最適な組成を見い出したので、全体として耐溶着性や絶
縁耐力及び電流しゃ断性能及び電流さい断値等の真空イ
ンタラプタに要求される特性を向上させた電極材料が得
られろ。
29 Effects Since we have found the optimal composition of copper, chromium, cobalt, molybdenum, bismuth, and lead, we can improve the overall properties required for vacuum interrupters, such as welding resistance, dielectric strength, current interrupting performance, and current interrupting value. An electrode material with improved properties can be obtained.

G、実施例 真空インタラプタは、その概略構造の一例を表す第2図
に示すようなものであり、相互に一直線状をなす一対の
リード棒11,12の対向端面には、それぞれ電極13
,14が一体的に設けである。これら電極13.14を
囲む筒状のシールド15の外周中央部は、このシールド
15を囲む一対の絶hjj?116゜17の間に挾まれ
た状態で保持されている。
G. Embodiment The vacuum interrupter is as shown in FIG. 2, which shows an example of its schematic structure, and electrodes 13 are provided on opposing end surfaces of a pair of lead rods 11 and 12 that are in a straight line with each other.
, 14 are integrally provided. A pair of absolute hjj? It is held between 116° and 17°.

一方の前記リード棒11は一方の絶縁筒16の一端に接
合された金属端板18を気密に貫通した状態で、この金
属端板18に一体的に固定されている。図示しない駆動
装置に連結される他方のり−ド棒12は、他方の絶縁筒
17の他端に気密に接合された他方の金属端板19にベ
ローズ20を介して連結され、駆動装置の作動に伴って
電極13,14の対向方向に往復動可能に可動側の電極
14が固定側の電極13に対して開閉動作するようにな
っている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating cylinder 17, and is connected to the other end plate 19, which is connected to the other end of the insulating cylinder 17, through a bellows 20, and is connected to the drive device. Accordingly, the movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so as to be able to reciprocate in the opposing direction of the electrodes 13 and 14.

前記fifi13,141!、20から70重量%の範
囲の銅(Cu)と、2から75重量%の範囲のクロム(
Cr)と、0.1から10重量%の範囲のコバルト(C
o)と、2から75重量%の範囲のモリブデン(Mo)
と、1から20重量%の範囲のビスマス(Bi)と、0
.5から10重量%の範囲の鉛(pb)とからなる複合
金属で構成される。
Said fifi13,141! , copper (Cu) in the range of 20 to 70% by weight and chromium (in the range of 2 to 75% by weight).
Cr) and cobalt (C) ranging from 0.1 to 10% by weight.
o) and molybdenum (Mo) in the range of 2 to 75% by weight.
, bismuth (Bi) in the range of 1 to 20% by weight, and 0
.. It is composed of a composite metal consisting of lead (pb) in the range of 5 to 10% by weight.

この電極材料の製造法の一例を以下に記すと、まず−1
00メツシユの粒度のクロム及びコバルト及びモリブデ
ンの粉末を機械的に1混合し、−この混合粉末をアルミ
ナセラミックス製の容器に所定量装入すると共に該混合
粉末上に銅ビスマス鉛合金の塊を載置した状態で容器に
蓋を被せ、これらを真空炉内にて脱ガスしつつ加熱処理
し、まずクロム粒子とコバルト粒子とモリブデン粒子と
を拡散結合させ、多孔質のWI浸母材を得る。しかるの
ち、この溶浸母材の空隙部分に銅及びビスマス及び鉛を
溶浸させるが、この際、容器内はビスマス蒸気及び鉛蒸
気を多量に含んt!雰囲気となる。そして、得られる電
極材料を容器から出して所定の寸法形状に機械加工する
An example of the manufacturing method of this electrode material is described below.
Chromium, cobalt, and molybdenum powders with a particle size of 0.00 mesh are mechanically mixed together, and a predetermined amount of this mixed powder is charged into an alumina ceramic container, and an ingot of copper-bismuth-lead alloy is placed on top of the mixed powder. The container is covered with a lid and heated in a vacuum furnace while being degassed. First, chromium particles, cobalt particles, and molybdenum particles are diffusion-bonded to obtain a porous WI-immersed base material. After that, copper, bismuth, and lead are infiltrated into the voids of the infiltrated base material, but at this time, the inside of the container contains a large amount of bismuth vapor and lead vapor. It creates an atmosphere. Then, the obtained electrode material is taken out of the container and machined into a predetermined size and shape.

このようにして Cr  二  10  重31 % Co:   1重量% Mo:25重量% Bi:  15重重量 Pb:   4重量% Cu: 残り からなる電極材料を第一試料として作成し、この第一試
料の他に、 Cr:25重量% Co:   5重量% Mo:10重麓% Bi:  12重量% Pb:10重量% Cu; 残り からなる第二試料及び Cr:  30重量% Co:   3重量% Mo:5重量% Bi:  15重量% Pb:   6重量% Cu: 残り からなろ第三試料を用意し、それぞれ直径50鴫で厚さ
が6.5正の円盤状に加工すると共にその外周縁に4m
の曲率半径の丸味を付けたものを第2図に示す真空イン
タラプタの電極13.14として組込み、耐溶着性及び
電流しゃ断性能及び電流さい断値を調べた。
In this way, an electrode material consisting of Cr, 10% by weight, 31% by weight, Co: 1% by weight, Mo: 25% by weight, Bi: 15% by weight, Pb: 4% by weight, and Cu: the remainder was prepared as a first sample. In addition, Cr: 25% by weight Co: 5% by weight Mo: 10% by weight Bi: 12% by weight Pb: 10% by weight Cu; and the second sample consisting of the remainder Cr: 30% by weight Co: 3% by weight Mo: 5% by weight Bi: 15% by weight Pb: 6% by weight Cu: A third sample was prepared from the rest, and each was processed into a disk shape with a diameter of 50 mm and a thickness of 6.5 mm, and a 4 m thick layer was placed on its outer periphery.
A material with a rounded radius of curvature was incorporated as the electrodes 13 and 14 of a vacuum interrupter shown in FIG. 2, and the welding resistance, current interrupting performance, and current interrupting value were examined.

耐溶着性に関しては、可動側の電極13を固定側のTi
1li14に対して130 kgfで加圧し、この状態
で25 kA (r、ms、 )の電流を3秒間通電し
た後、200 kgfの静的な引張りカを1313に加
えた所、三つの試料とも電極14から電極13を問題な
く引き離すことができた。又、その後の接触抵抗の増加
は三つの試料とも20%以内に収まった。
Regarding welding resistance, the electrode 13 on the movable side is made of Ti on the fixed side.
After applying a pressure of 130 kgf to 1li14 and applying a current of 25 kA (r, ms, ) for 3 seconds in this state, a static tensile force of 200 kgf was applied to 1313. The electrode 13 could be separated from the electrode 14 without any problem. Further, the subsequent increase in contact resistance was within 20% for all three samples.

又、電流しゃ断性能に関しては、7.2kVの電圧条件
にて第一試料では20 kA (r、ms、)の電流を
しゃ断でき、第二試料では22 kA(「、ms、)の
電流をしゃ断でき、第三試料では25 kA (r、m
s、 )の電流をしゃ断することができた。
Regarding current cutting performance, the first sample was able to cut off a current of 20 kA (r, ms,) under a voltage condition of 7.2 kV, and the second sample was able to cut off a current of 22 kA (r, ms,). and 25 kA (r, m
s, ) could be cut off.

一方、電流さい断値に関しては、200V。On the other hand, the current cutoff value is 200V.

120Aで真空インタラプタを負荷開閉し、百回後2千
回後、−万回後、十万回後の電流さい断値をそれぞれ求
めた結果、第1図に示すように十万回後でもIA以下に
収まる好結果が得られた。なお、この第1図に示すO印
The vacuum interrupter was loaded and closed at 120A, and the current cut-off values after 100, 2,000, -0,000, and 100,000 cycles were calculated, and as shown in Figure 1, even after 100,000 cycles, IA The following good results were obtained. Note that the O mark shown in FIG.

Δ印、X印はそれぞれ50回測定の平均値を表してお9
、ωつが第一試料、さ・仏が第二試料、 x−−−−x
が第三試料の各電流さい断値の推移を示す。
The Δ and X marks each represent the average value of 50 measurements.
, ω is the first sample, Sa Buddha is the second sample, x----x
shows the transition of each current cutoff value of the third sample.

10重量%の範囲のコバルトと、2から75重量%の範
囲のモリブデンと、1から20重量%の範囲のビスマス
と、0.5から10重量%の範囲の鈴とで構成している
なめ、従来の銅ビスマス合金よりも電流さい断値が低く
、しかもタングステン銅焼結金属や炭化タングステン銀
焼結金属よりも電流しゃ断性能が高く、耐溶着性や電流
しゃ断性能及び電流さい断値等の特性が全体的に向上し
た電極材料を得ることができる。具体的には、十万回の
開閉後でも電流さい断値をIA以下の低い値に保つこと
が可能な真空インタラプタを提供できる。更に、高価な
銀を全く使用していないことから電極材料自体のコスト
を下げることができる。
a lick consisting of cobalt in the range of 10% by weight, molybdenum in the range of 2 to 75% by weight, bismuth in the range of 1 to 20% by weight, and bells in the range of 0.5 to 10% by weight; It has a lower current cutoff value than conventional copper-bismuth alloys, and higher current cutoff performance than tungsten copper sintered metal and tungsten silver carbide sintered metal, with characteristics such as welding resistance, current cutoff performance, and current cutoff value. It is possible to obtain an electrode material with improved overall properties. Specifically, it is possible to provide a vacuum interrupter that can maintain a current cutoff value at a low value of IA or less even after opening and closing 100,000 times. Furthermore, since no expensive silver is used, the cost of the electrode material itself can be reduced.

■、 発明の効果 本発明の真空インタラプタの電極材料によると、20か
ら70重量%の範囲の銅と、2から75重量%の範囲の
クロムと、0.1から
■ Effects of the invention According to the electrode material of the vacuum interrupter of the present invention, copper in the range of 20 to 70% by weight, chromium in the range of 2 to 75% by weight, and 0.1 to 75% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図2よ本発明を真空インタラプタに応用した場合の
電流さい断値の特性を表すグラフ、第2図はその真空イ
ンタラプタの一例を表す断面図である。 図中の符号で11,12はリード棒、13゜14は電極
である。 特許用 株式会社 代    理
FIG. 1 is a graph showing the characteristics of the current cutoff value when the present invention is applied to a vacuum interrupter, and FIG. 2 is a sectional view showing an example of the vacuum interrupter. In the figure, 11 and 12 are lead rods, and 13 and 14 are electrodes. Patent Corporation Agent

Claims (1)

【特許請求の範囲】[Claims] 20から70重量%の範囲の銅と、2から75重量%の
範囲のクロムと、0.1から10重量%の範囲のコバル
トと、2から75重量%の範囲のモリブデンと、1から
20重量%の範囲のビスマスと、0.5から10重量%
の範囲の鉛とからなる真空インタラプタの電極材料。
Copper in the range of 20 to 70% by weight, Chromium in the range of 2 to 75% by weight, Cobalt in the range of 0.1 to 10% by weight, Molybdenum in the range of 2 to 75% by weight, and 1 to 20% by weight. % bismuth and 0.5 to 10% by weight
Vacuum interrupter electrode material consisting of lead in the range of.
JP63269351A 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters Expired - Lifetime JP2661202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269351A JP2661202B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269351A JP2661202B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Publications (2)

Publication Number Publication Date
JPH02117037A true JPH02117037A (en) 1990-05-01
JP2661202B2 JP2661202B2 (en) 1997-10-08

Family

ID=17471170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269351A Expired - Lifetime JP2661202B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Country Status (1)

Country Link
JP (1) JP2661202B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211717A (en) * 1984-04-04 1985-10-24 株式会社日立製作所 Method of producing electrode for vacuum breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211717A (en) * 1984-04-04 1985-10-24 株式会社日立製作所 Method of producing electrode for vacuum breaker

Also Published As

Publication number Publication date
JP2661202B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JPH02117037A (en) Electrode material of vacuum interrupter
JPH02117032A (en) Electrode material of vacuum interrupter
JPH02117033A (en) Electrode material of vacuum interrupter
JPH02117036A (en) Electrode material of vacuum interrupter
JPH02117034A (en) Electrode material of vacuum interrupter
JPH02117031A (en) Electrode material of vacuum interrupter
JPH02117035A (en) Electrode material of vacuum interrupter
JP2006233298A (en) Contact material for vacuum valve and its production method
JPH02117039A (en) Electrode material for vacuum interrupter
JPH0510782B2 (en)
JPH02117030A (en) Electrode material of vacuum interrupter
JPH02117041A (en) Electrode material for vacuum interrupter
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JPH02117029A (en) Electrode material of vacuum interrupter and its manufacture
JP2006032036A (en) Contact material for vacuum valve
JPH02117040A (en) Electrode material for vacuum interrupter
JPH0435545B2 (en)
JPH02117027A (en) Electrode material of vacuum interrupter and its manufacture
JPH0193018A (en) Contact material for vacuum bulb
JPH02117038A (en) Electrode material for vacuum interrupter
JPH02117028A (en) Electrode material of vacuum interrupter and its manufacture
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JP2853308B2 (en) Manufacturing method of electrode material