JPH02117040A - Electrode material for vacuum interrupter - Google Patents

Electrode material for vacuum interrupter

Info

Publication number
JPH02117040A
JPH02117040A JP26935488A JP26935488A JPH02117040A JP H02117040 A JPH02117040 A JP H02117040A JP 26935488 A JP26935488 A JP 26935488A JP 26935488 A JP26935488 A JP 26935488A JP H02117040 A JPH02117040 A JP H02117040A
Authority
JP
Japan
Prior art keywords
weight
current
ranging
cobalt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26935488A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Nobuyuki Yoshioka
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26935488A priority Critical patent/JPH02117040A/en
Publication of JPH02117040A publication Critical patent/JPH02117040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive to improve characteristics such as fusion resistance, current breaking property and current chopping values by making an electrode consist of specified quantities of copper, chromium carbonate, nickel, cobalt, iron and bismuth respectively. CONSTITUTION:Each electrode 13 and 14 is composed of copper ranging from 20 to 70% by weight, chromium carbonate ranging from 5 to 75% by weight, nickel ranging from 0.1 to 10% by weight, cobalt ranging from 0.1 to 10% by weight, iron ranging from 0.1 to 10% by weight and of bismuth ranging from 1 to 20% by weight. In this case, each powder of chromium carbonate, nickel, cobalt and iron is mixed uniformly so as to be heated at temperature below the melting points of chromium carbonate, nickel, cobalt and iron so that a sintered porous body is obtained, and furthermore copper and bismuth are dissolved into the porous section of the sintered body. This constitution improves characteristics such as fusion resistance, current breaking property and current chopping values.

Description

【発明の詳細な説明】 人、 産業上の利用分野 本発明は、電流しゃ断性能や電流さい断値等の特性を向
上させた安価な溶浸形の複合金属からなる真空インタラ
プタの電極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrode material for a vacuum interrupter made of an inexpensive infiltrated composite metal with improved characteristics such as current interrupting performance and current interrupting value.

B、 発明の概要 銅と炭化クロムとニッケルとコバルトと鉄とビスマスと
からなる真空インタラプタの電極材料であす、iii溶
着性や電流しゃ断性能及び電流さい断値等の特性を向上
させたものである。
B. Summary of the Invention This is an electrode material for a vacuum interrupter made of copper, chromium carbide, nickel, cobalt, iron, and bismuth, which has improved properties such as weldability, current cutting performance, and current cutting value. .

C従来の技術 一般に、真空インタラプタの電極材料として要求されろ
主な性能としては、 (1)耐6着性が良いこと (2)電流しゃ断性能が高いこと (3)電流さい断値が低いこと 等を挙げる乙とができる。
C. Conventional technology In general, the main performances required for electrode materials for vacuum interrupters are: (1) good adhesion resistance, (2) high current cut-off performance, and (3) low current cut-off value. etc. can be mentioned.

しかし、電極材料の電流しゃ断性能を高くすることと電
流さい断値を低くすることとは、互いに矛盾する物理的
特性に起因するため、単一の電極材料で上述した全ての
特性を満たすことは難しく、真空インクラブタの仕種に
最も適合した電極材料を選択しているのが現状である。
However, since increasing the current cutting performance and lowering the current cutting value of an electrode material are due to mutually contradictory physical properties, it is impossible to satisfy all of the above characteristics with a single electrode material. Currently, it is difficult to select the electrode material that best suits the type of vacuum incretor.

例えば、特公昭41−12131号公報等に開示された
鋼ビスマス合金は、!(Cu)に蒸気圧の高い低融点の
ビスマス(Bi)を0.5重量%添加したものであり、
耐溶着性や電流しゃ断性能が良好であることは周知の通
りである。又、特公昭54−36121号公櫂等に開示
されたタングステン鋼焼結金属は、蒸気圧の低い高融点
のタングステン(W)に綱を20重量%添加したもので
あ炒、電流さい断値が低い利点を有する。この電流さい
断値が特に低い電極材料としては、実開昭55−121
429号公報等に開示された炭化タングステン銀焼結金
属、つまり炭化タングステン(WC) に* (Ag)
830重量%添加したもの等がある。
For example, the steel-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131, etc. is! (Cu) with 0.5% by weight of bismuth (Bi), which has a high vapor pressure and a low melting point,
It is well known that it has good welding resistance and current interrupting performance. In addition, the sintered tungsten steel metal disclosed in Japanese Patent Publication No. 54-36121 Kokai et al. is made by adding 20% by weight of steel to tungsten (W), which has a low vapor pressure and a high melting point, and has a high current breaking value. has a low advantage. As an electrode material with a particularly low current cutoff value, Utility Model Application No. 55-121
Tungsten carbide silver sintered metal disclosed in Publication No. 429 etc., that is, tungsten carbide (WC)* (Ag)
There are those containing 830% by weight.

D、 発明が解決しようとする課題 銅ビスマス合金は電流しゃ断性能が良好である反面、電
流さい断値が例えばIOAと高く、電流しゃ断時にさい
断サージを発生することがある。このため、遅れ小電流
を良好にしゃ断することが困難であり、負荷側の電気機
器の絶縁破壊を引き起こす虞がある。
D. Problems to be Solved by the Invention Although copper-bismuth alloys have good current cutting performance, they have a high current cutting value of, for example, IOA, and may generate cutting surges when cutting current. For this reason, it is difficult to cut off the delayed small current in a good manner, which may cause dielectric breakdown of the electrical equipment on the load side.

又、タングステン銅焼結金属や炭化タングステン銀焼結
金属は電流さい断値が低い反面、電流しゃ断性能が悪く
、短絡電流のmき大電流をしゃ断することができない。
Furthermore, although tungsten copper sintered metal and tungsten silver carbide sintered metal have a low current cutting value, they have poor current cutting performance and cannot cut off a large current as large as the short circuit current.

更に、炭化タングステン銀焼結金属では銀を比較的多量
に含んでいることから、電極材料としては高価なもので
あり、真空インクラブタの製造単価を下げる際の障害と
なる。
Furthermore, since tungsten silver carbide sintered metal contains a relatively large amount of silver, it is expensive as an electrode material, which becomes an obstacle in reducing the manufacturing cost of vacuum incluctors.

E、 課題を解決するための手段 本発明による真空インタラプタの電極材料は、耐溶着性
や電流しゃ断性能及び電流さい断値等の特性を向上させ
るため、20から70重量%の範囲の鋼と、5から75
M量%の範囲の炭化クロムと、0.1から10重重量の
範囲のニッケルと、0.1から10重量%の範囲のコバ
ルトと、0.1から10重量%の範囲の鉄と、1から2
0重量%の範囲のビスマスとからなるものである。
E. Means for Solving the Problems The electrode material of the vacuum interrupter according to the present invention contains steel in a range of 20 to 70% by weight in order to improve properties such as welding resistance, current interrupting performance, and current interrupting value. 5 to 75
chromium carbide in the range of M%, nickel in the range of 0.1 to 10% by weight, cobalt in the range of 0.1 to 10% by weight, iron in the range of 0.1 to 10% by weight, 1 From 2
bismuth in the range of 0% by weight.

この場合、炭化クロム及びニッケル及びコバルト及び鉄
の各粉末を均一に混合し、これをニッケル(及び炭化ク
ロム及びコバルト及び鉄)の融点以下の温度で加熱して
多孔質の焼結体を得、更にこの焼結体の空隙部分に銅及
びビスマスを溶浸させて本発明のfIiffi材料を得
ろ。なお、これら焼結や溶浸工程は、非酸化性雰囲気に
て脱ガスしつつ行うことが望ましい。
In this case, chromium carbide, nickel, cobalt, and iron powders are uniformly mixed and heated at a temperature below the melting point of nickel (and chromium carbide, cobalt, and iron) to obtain a porous sintered body. Furthermore, copper and bismuth are infiltrated into the voids of this sintered body to obtain the fIiffi material of the present invention. Note that these sintering and infiltration steps are desirably performed in a non-oxidizing atmosphere while degassing.

ここで、銅が20重量%未満の場合には、導電率が低下
して発熱量が多くなり、逆に銅が70重量%を越えると
、耐溶着性の低下や電流さい断値の増大をもたらす。炭
化クロムが5重量%未満の場合やビスマスが1重量%未
満の場合には、電流さい断値がそれぞれ増大することと
なる。更に、炭化クロムが75重量%を越えたり、ニッ
ケルやコバルトや鉄がそれぞれ10重量%を越えろ場合
には、それぞれ銅との反応が進んで導電率の低下をもた
らす。逆に、ニッケルやコバルトや鉄がそれぞれ0.1
重量%未満の場合には、炭化クロムの影響に基づく硬化
現象の抑制硬化が現れず、切削加工性が低下する。一方
、ビスマスが20重量%を越えろと電極及び真空インタ
ラプタとしての耐久性が急激に低下する。
If the copper content is less than 20% by weight, the electrical conductivity will decrease and the amount of heat generated will increase, while if the copper content exceeds 70% by weight, the welding resistance will decrease and the current cutoff value will increase. bring. If the chromium carbide content is less than 5% by weight or if the bismuth content is less than 1% by weight, the current cutoff value will increase. Furthermore, if chromium carbide exceeds 75% by weight, or if each of nickel, cobalt, or iron exceeds 10% by weight, each of them will react with copper, resulting in a decrease in electrical conductivity. Conversely, nickel, cobalt, and iron each have a concentration of 0.1
If it is less than % by weight, the hardening phenomenon due to the influence of chromium carbide will not be inhibited and hardening will not occur, resulting in a decrease in machinability. On the other hand, if bismuth exceeds 20% by weight, the durability as an electrode and a vacuum interrupter decreases rapidly.

F  作    用 銅と炭化クロムとニッケルとコバルトと鉄とビスマスと
のIk適な組成を見い出したので、全体として耐溶着性
や絶縁耐力及び電流しゃ断性能及び電流さい断値等の真
空インクラブタに要求される特性を向上させた電極材料
が得られろ。
Since we have found a suitable Ik composition of copper, chromium carbide, nickel, cobalt, iron, and bismuth, we can meet the overall requirements for vacuum incretors in terms of welding resistance, dielectric strength, current interrupting performance, and current interrupting value. It is possible to obtain electrode materials with improved properties.

G実施例 真空インタラプタは、その概略構造の一例を表す第2図
に示すようなものであり、相互に一直線状をなす一対の
リード棒11,12の対向端面には、それぞれTs% 
13 p 14が一体的に設けである。これら電313
.14を囲む筒状のシールド15の外周中央部は、この
シールド15を囲む一対の絶縁筒16゜17の間に挾ま
れた状態で保持されている。
Embodiment G The vacuum interrupter is as shown in FIG. 2, which shows an example of its schematic structure.
13 p 14 are integrally provided. These electric 313
.. A central portion of the outer periphery of a cylindrical shield 15 surrounding the shield 14 is held between a pair of insulating cylinders 16 and 17 surrounding the shield 15.

一方の前記リード棒11は一方の絶縁筒16の一端に接
合された金属端板18を気密に貫通した状態で、この金
属端板18に一体的に固定されている。図示しない駆動
装置に連結される他方のリード棒12は、他方の絶縁筒
17の他端に気密に接合された他方の金属端板19にベ
ローズ20を介して連結され、駆動装置の作動に伴って
電極13,140対向方向に往復動可能に可動側の電極
14が固定側の電極13に対して開閉動作するようにな
っている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating tube 17. The movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so that the electrodes 13 and 140 can reciprocate in opposing directions.

前記電1ii13,14は、20から70重量%の範囲
の銅(Cu)と、5から75重量%の範囲の炭化クロム
(例えばCr5C2)と、0.1から10重量%の範囲
のニッケル(N i )と、0.1から10重量%の範
囲のコバルト(Co)と、0.1から10重量%の範囲
の鉄(Fe)と、1から20重量%の範囲のビスマス(
Bi)とからなる複合金属で構成されろ。
The electrodes 1ii13,14 contain copper (Cu) in the range of 20 to 70% by weight, chromium carbide (e.g. Cr5C2) in the range of 5 to 75% by weight, and nickel (N) in the range of 0.1 to 10% by weight. i ), cobalt (Co) ranging from 0.1 to 10% by weight, iron (Fe) ranging from 0.1 to 10% by weight, and bismuth (ranging from 1 to 20% by weight).
It is composed of a composite metal consisting of Bi).

この電極材料の製造法の一例を以下に記すと、まず−1
00メツシユの粒径の炭化クロム及びニッケル及びコバ
ルト及び鉄の粉末を機械的に混合し、この混合粉末をア
ルミナセラミックス製の容器に所定量装入すると共に該
混合粉末上に銅ビスマス合金の塊を載置した状態で容器
に蓋を被せ、これらを真空炉内にて脱ガスしつつ加熱処
理し、まず炭化クロム粒子及びニッケル粒子及びコバル
ト粒子及び鉄粒子を相互に拡散結合させ、多孔質の溶浸
母材を得る。しかるのち、との溶浸母材の空隙部分に銅
及びビスマスを溶浸させるが、この際、容器内はビスマ
ス蒸気を多量に含んだ雰囲気となる。そして、得られる
電極材料な容器から出して所定の寸法形状に機械加工す
る。
An example of the manufacturing method of this electrode material is described below.
00 mesh particle size of chromium carbide, nickel, cobalt, and iron powders are mechanically mixed, and a predetermined amount of this mixed powder is charged into an alumina ceramic container, and a lump of copper-bismuth alloy is placed on top of the mixed powder. The lid is placed on the container while it is placed, and the container is heated in a vacuum furnace while being degassed. First, the chromium carbide particles, nickel particles, cobalt particles, and iron particles are diffused and bonded to each other, forming a porous molten metal. Obtain the soaked base material. Thereafter, copper and bismuth are infiltrated into the voids of the infiltrated base material, but at this time, the inside of the container becomes an atmosphere containing a large amount of bismuth vapor. Then, the obtained electrode material is taken out of the container and machined into a predetermined size and shape.

このようにして CrC:40重量% Ni:   1重量% Co:   3重量% Fs:   1重量% Bi:  15重量% Cu: 残り からなる電極材料を第一試料として作成し、この第一試
料の他に、 CrC:35重量% Ni:   5重量% Co:   2重最% Fe:  4重量% Bi:  12重量% Cu: 残り からなる第二試料及び CrC:45重量% Ni:   1重量% Co:   5重量% Fe:   1重量% Bi:  10重危% Cu: 残り からなる第三試料を用意し、それぞれ直径50鴫で厚さ
が6.5−の円盤状に加工すると共にその外周縁に4鴫
の曲率半径の丸味を付けたものを第2図に示す真空イン
タラプタの電極13.14として組込み、耐溶着性及び
電流しゃ断性能及び電流さい断値を調べた。
In this way, an electrode material consisting of CrC: 40% by weight, Ni: 1% by weight, Co: 3% by weight, Fs: 1% by weight, Bi: 15% by weight, Cu: the remainder was created as a first sample, and other than this first sample CrC: 35% by weight Ni: 5% by weight Co: 2% by weight Fe: 4% by weight Bi: 12% by weight Cu: The second sample consisting of the remainder and CrC: 45% by weight Ni: 1% by weight Co: 5 Weight% Fe: 1% by weight Bi: 10% Cu: A third sample consisting of the remainder was prepared and processed into a disc shape with a diameter of 50mm and a thickness of 6.5mm, and 4mm marks were placed on the outer periphery. A material with a rounded radius of curvature was incorporated as the electrodes 13 and 14 of a vacuum interrupter shown in FIG. 2, and the welding resistance, current interrupting performance, and current interrupting value were examined.

耐溶着性に関しては、可動側の電極13を固定側の電極
14に対して130 kgfで加圧し、この状態で25
 kA (r、us、 )の電流を3秒間通電した後、
200 kgfの静的な引張り力を電8ii1−3に加
えた所、三つの試料とも電極14から電極13を問題な
く引き離すことができな。又、その後の接触抵抗の増加
は三つの試料とも20%7以内に収まった。
Regarding the welding resistance, the movable side electrode 13 is pressurized against the fixed side electrode 14 at 130 kgf, and in this state 25 kgf is applied.
After applying a current of kA (r, us, ) for 3 seconds,
When a static tensile force of 200 kgf was applied to the electrode 8ii1-3, the electrode 13 could not be separated from the electrode 14 without any problem in all three samples. Further, the subsequent increase in contact resistance was within 20%7 for all three samples.

又、電流しゃ断性能に関しては、7.2kVの電圧条件
にて第一試料では19 kA (r、ms、)の電流を
しゃ断でき、第二試料では21 kA(r、ms、)の
電流をしゃ断でき、第三試料では23kA(口1.)の
電流をしゃ断することができた。
Regarding current cutting performance, the first sample was able to cut off a current of 19 kA (r, ms,) under a voltage condition of 7.2 kV, and the second sample was able to cut off a current of 21 kA (r, ms,). The third sample was able to cut off a current of 23 kA (gate 1.).

一方、電流さい断値に関しては、200V。On the other hand, the current cutoff value is 200V.

120Aで真空インタラプタを・負荷開閉し、百回後、
千回後、−万回後、十万回後の電流さい断値をそれぞれ
求めた結果、第1図に示すように十万回後でもIA以下
に収まる好結果が得られた。なお、この第1図に示すO
印。
After opening and closing the vacuum interrupter/load at 120A 100 times,
As a result of determining the current cutoff value after 1,000 cycles, -10,000 cycles, and 100,000 cycles, good results were obtained that remained below IA even after 100,000 cycles, as shown in Fig. 1. In addition, O shown in this Figure 1
mark.

Δ印、x印はそれぞれ50回測定の平均値を表しており
、ωつが第一試料、さ・仏が第二試料、 X−−−−X
が第三試料の各電流さい断値の推移を示す。
The Δ and x marks each represent the average value of 50 measurements, ω is the first sample, Sa and Buddha is the second sample, X----X
shows the transition of each current cutoff value of the third sample.

来の銅ビスマス合金よりも電流さい断値が低く、シかも
タングステン銅焼結金属や炭化タングステン銀焼結金属
よりも電流しゃ断性能が高く、耐溶着性や電流しゃ断性
能及び電流さい断値等の特性が全体的に向上した電極材
料を得ることができる。具体的には、十万回の開閉後で
も電流さい断値をIA以下の低い値に保つことが可能な
真空インタラプタを提供できる。更に、高価な銀を全く
使用していないことから電極材料自体のコストを下げる
ことができる。
It has a lower current cutoff value than conventional copper-bismuth alloys, and has higher current cutoff performance than sintered tungsten copper metal or sintered tungsten silver carbide metal, and has excellent welding resistance, current cutoff performance, and current cutoff value. An electrode material with overall improved properties can be obtained. Specifically, it is possible to provide a vacuum interrupter that can maintain a current cutoff value at a low value of IA or less even after opening and closing 100,000 times. Furthermore, since no expensive silver is used, the cost of the electrode material itself can be reduced.

Hl 発明の効果 本発明の真空インタラプタの電極材料によると、20か
ら70重量%の範囲の銅と、5から75重量%の範囲の
炭化クロムと、0.1から10重量%の範囲のニッケル
と、0.1から10重量%の範囲のコバルトと、0.1
から10重量%の範囲の鉄と、1から20重量%の範囲
のビスマスとで構成しているため、従
According to the electrode material of the vacuum interrupter of the present invention, copper in the range of 20 to 70% by weight, chromium carbide in the range of 5 to 75% by weight, and nickel in the range of 0.1 to 10% by weight. , cobalt in the range of 0.1 to 10% by weight, and 0.1
It is composed of iron in the range of 1 to 10% by weight and bismuth in the range of 1 to 20% by weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を真空インタラプタに応用した場合の電
流さい断値の特性を表すグラフ、第2図はその真空イン
タラプタの一例を表す断面図である。 図中の符号で11,12はリード棒、13゜14は電極
である。 第2図 真空インタラプタの断面図 第1図 本芙施例の電流ぎり断値を表すグラフ 負荷開閉回数(回)
FIG. 1 is a graph showing the characteristics of the current cutoff value when the present invention is applied to a vacuum interrupter, and FIG. 2 is a sectional view showing an example of the vacuum interrupter. In the figure, 11 and 12 are lead rods, and 13 and 14 are electrodes. Figure 2: Cross-sectional view of the vacuum interrupter Figure 1: Graph showing the current cut-off value of this example The number of load switching times (times)

Claims (1)

【特許請求の範囲】[Claims] 20から70重量%の範囲の銅と、5から75重量%の
範囲の炭化クロムと、0.1から10重量%の範囲のニ
ッケルと、0.1から10重量%の範囲のコバルトと、
0.1から10重量%の範囲の鉄と、1から20重量%
の範囲のビスマスとからなる真空インタラプタの電極材
料。
copper in the range of 20 to 70% by weight, chromium carbide in the range of 5 to 75% by weight, nickel in the range of 0.1 to 10% by weight, and cobalt in the range of 0.1 to 10% by weight;
Iron in the range 0.1 to 10% by weight and 1 to 20% by weight
Vacuum interrupter electrode material consisting of bismuth and in the range of.
JP26935488A 1988-10-27 1988-10-27 Electrode material for vacuum interrupter Pending JPH02117040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26935488A JPH02117040A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26935488A JPH02117040A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Publications (1)

Publication Number Publication Date
JPH02117040A true JPH02117040A (en) 1990-05-01

Family

ID=17471211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26935488A Pending JPH02117040A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPH02117040A (en)

Similar Documents

Publication Publication Date Title
JP2874522B2 (en) Vacuum circuit breaker, vacuum valve used therefor, electrode for vacuum valve, and method of manufacturing the same
EP2081200B1 (en) Electrical contact for vacuum interrupter
EP2586882B1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
EP0153635B1 (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
US4546222A (en) Vacuum switch and method of manufacturing the same
JPH02117040A (en) Electrode material for vacuum interrupter
JP2661203B2 (en) Electrode materials for vacuum interrupters
JP2661201B2 (en) Electrode materials for vacuum interrupters
JPH02117041A (en) Electrode material for vacuum interrupter
JPH02117032A (en) Electrode material of vacuum interrupter
JPH02117033A (en) Electrode material of vacuum interrupter
JP2661202B2 (en) Electrode materials for vacuum interrupters
JP2661199B2 (en) Electrode materials for vacuum interrupters
JP2661200B2 (en) Electrode materials for vacuum interrupters
JPH02117038A (en) Electrode material for vacuum interrupter
JPH0510782B2 (en)
JPH02117034A (en) Electrode material of vacuum interrupter
JP2003223834A (en) Electrical contact member and manufacturing method therefor
EP0178796A2 (en) Manufacture of vacuum interrupter contacts
JPH02117030A (en) Electrode material of vacuum interrupter
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JP2002015644A (en) Contact material for vacuum circuit breaker, its manufacturing method and vacuum circuit breaker
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH0193018A (en) Contact material for vacuum bulb