JP2661201B2 - Electrode materials for vacuum interrupters - Google Patents

Electrode materials for vacuum interrupters

Info

Publication number
JP2661201B2
JP2661201B2 JP63269350A JP26935088A JP2661201B2 JP 2661201 B2 JP2661201 B2 JP 2661201B2 JP 63269350 A JP63269350 A JP 63269350A JP 26935088 A JP26935088 A JP 26935088A JP 2661201 B2 JP2661201 B2 JP 2661201B2
Authority
JP
Japan
Prior art keywords
weight
range
current
copper
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63269350A
Other languages
Japanese (ja)
Other versions
JPH02117036A (en
Inventor
佳行 柏木
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP63269350A priority Critical patent/JP2661201B2/en
Publication of JPH02117036A publication Critical patent/JPH02117036A/en
Application granted granted Critical
Publication of JP2661201B2 publication Critical patent/JP2661201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 A. 産業上の利用分野 本発明は、電流しゃ断性能や電流さい断値等の特性を
向上させた安価な溶浸形の複合金属からなる真空インタ
ラプタの電極材料に関する。
Description: TECHNICAL FIELD The present invention relates to an electrode material for a vacuum interrupter made of an inexpensive infiltration type composite metal with improved characteristics such as current breaking performance and current breaking value.

B. 発明の概要 銅とクロムとコバルトとモリブデンとビスマスとから
なる真空インタラプタの電極材料であり、耐溶着性や電
流しゃ断性能及び電流さい断値等の特性を向上させたも
のである。
B. Summary of the Invention An electrode material for a vacuum interrupter made of copper, chromium, cobalt, molybdenum, and bismuth, and has improved characteristics such as welding resistance, current breaking performance, and current breaking value.

C. 従来の技術 一般に、真空インタラプタの電極材料として要求され
る主な性能としては、 (1) 耐溶着性が良いこと (2) 電流しゃ断性能が高いこと (3) 電流さい断値が低いこと 等を挙げることができる。
C. Conventional technology In general, the main performances required as electrode materials for vacuum interrupters are (1) good welding resistance (2) high current breaking performance (3) low current breaking value And the like.

しかし、電極材料の電流しゃ断性能を高くすることと
電流さい断値を低くすることとは、互いに矛盾する物理
的特性に起因するため、単一の電極材料で上述した全て
の特性を満たすことは難しく、真空インタラプタの仕様
に最も適合した電極材料を選択しているのが現状であ
る。
However, increasing the current breaking performance of the electrode material and lowering the current breaking value are caused by physical properties that contradict each other.Therefore, it is impossible for a single electrode material to satisfy all the properties described above. At present, it is difficult to select an electrode material that best meets the specifications of the vacuum interrupter.

例えば、特公昭41−12131号公報等に開示された銅ビ
スマス合金は、銅(Cu)に蒸気圧の高い低融点のビスマ
ス(Bi)を0.5重量%添加したものであり、耐溶着性や
電流しゃ断性能が良好であることは周知の通りである。
又、特公昭54−36121号公報等に開示されたタングステ
ン銅焼結金属は、蒸気圧の低い高融点のタングステン
(W)に銅を20重量%添加したものであり、電流さい断
値が低い利点を有する。この電流さい断値が特に低い電
極材料としては、実開昭55−121429号公報等に開示され
た炭化タングステン銀焼結金属、つまり炭化タングステ
ン(WC)に銀(Ag)を30重量%添加したもの等がある。
For example, a copper-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131 is obtained by adding 0.5% by weight of bismuth (Bi) having a high vapor pressure and a low melting point to copper (Cu), and has a high resistance to welding and electric current. It is well known that the breaking performance is good.
The tungsten copper sintered metal disclosed in Japanese Patent Publication No. 54-36121 is obtained by adding 20% by weight of copper to tungsten (W) having a low vapor pressure and a high melting point, and has a low current breaking value. Has advantages. As an electrode material having a particularly low current interruption value, a silver-silver tungsten sintered metal disclosed in Japanese Utility Model Application Laid-Open No. 55-121429, that is, tungsten carbide (WC) was added with 30% by weight of silver (Ag). There are things.

D. 発明が解決しようとする課題 銅ビスマス合金は電流しゃ断性能が良好である反面、
電流さい断値が例えば10Aと高く、電流しゃ断時にさい
断サージを発生することがある。このため、遅れ小電流
を良好にしゃ断することが困難であり、負荷側の電気機
器の絶縁破壊を引き起こす虞がある。
D. Problems to be Solved by the Invention Copper-bismuth alloy has good current breaking performance,
The current interruption value is as high as 10 A, for example, and an interruption surge may occur when the current is interrupted. For this reason, it is difficult to satisfactorily cut off the small delay current, and there is a possibility that the electric equipment on the load side may be broken down.

又、タングステン銅焼結金属や炭化タングステン銀焼
結金属は電流さい断値が低い反面、電流しゃ断性能が悪
く、短絡電流の如き大電流をしゃ断することができな
い。更に、炭化タングステン銀焼結金属では銀を比較的
多量に含んでいることから、電極材料としては高価なも
のであり、真空インタラプタの製造単価を下げる際の障
害となる。
Further, although the sintered copper tungsten metal and the sintered silver silver tungsten metal have low current breaking values, they have poor current breaking performance and cannot break large currents such as short-circuit currents. Furthermore, since the tungsten silver carbide sintered metal contains a relatively large amount of silver, it is expensive as an electrode material, which is an obstacle to reducing the unit cost of manufacturing a vacuum interrupter.

E. 課題を解決するための手段 本発明による真空インタラプタの電極材料は、耐溶着
性や電流しゃ断性能及び電流さい断値等の特性を向上さ
せるため、20から70重量%の範囲の銅と、2から75重量
%の範囲のクロムと、0.1から10重量%の範囲のコバル
トと、2から75重量%の範囲のモリブデンと、1から20
重量%の範囲のビスマスとからなるものである。
E. Means for Solving the Problems The electrode material of the vacuum interrupter according to the present invention comprises copper in the range of 20 to 70% by weight to improve properties such as welding resistance, current breaking performance and current breaking value. Chromium in the range of 2 to 75% by weight; cobalt in the range of 0.1 to 10% by weight; molybdenum in the range of 2 to 75% by weight;
Of bismuth in the range of weight percent.

この場合、クロムの粉末とコバルトの粉末とモリブデ
ンの粉末とを均一に混合し、これをコバルト(及びクロ
ム及びモリブデン)の融点以下の温度で加熱して多孔質
の焼結体を得、更にこの焼結体の空隙部分に銅及びビス
マスを溶浸させて本発明の電極材料を得る。なお、これ
ら焼結や溶浸工程は、非酸化性雰囲気にて脱ガスしつつ
行うことが望ましい。
In this case, the chromium powder, the cobalt powder, and the molybdenum powder are uniformly mixed and heated at a temperature equal to or lower than the melting point of cobalt (and chromium and molybdenum) to obtain a porous sintered body. Copper and bismuth are infiltrated into the voids of the sintered body to obtain the electrode material of the present invention. The sintering and infiltration steps are desirably performed while degassing in a non-oxidizing atmosphere.

ここで、銅が20重量%未満の場合には、導電率が低下
して発熱量が多くなり、逆に銅が70重量%を越えると、
耐溶着性の低下や電流さい断値の増大をもたらす。クロ
ムが2重量%未満の場合やモリブデンが2重量%未満の
場合或いはビスマスが1重量%未満の場合には、電流さ
い断値がそれぞれ増大することとなる。更に、クロムが
75重量%を越えたり、モリブデンが75重量%を越える場
合には、電流しゃ断性能がそれぞれ低下してしまう。
又、コバルトが10重量%を越えた場合には、銅との反応
が進んで導電率の低下をもたらし、逆にコバルトが0.1
重量%未満の場合には、耐電圧特性が低下してしまう。
一方、ビスマスが20重量%を越えると電極及び真空イン
タラプタとしての耐久性が急激に低下する。
Here, when the copper content is less than 20% by weight, the electric conductivity decreases and the calorific value increases. Conversely, when the copper content exceeds 70% by weight,
This results in a decrease in welding resistance and an increase in current breaking value. When the chromium content is less than 2% by weight, the molybdenum content is less than 2% by weight, or the bismuth content is less than 1% by weight, the current breakage value increases. In addition, chrome
If the content exceeds 75% by weight or the content of molybdenum exceeds 75% by weight, the current interrupting performance decreases.
On the other hand, when the content of cobalt exceeds 10% by weight, the reaction with copper proceeds to bring about a decrease in electric conductivity.
When the amount is less than the weight%, the withstand voltage characteristics are deteriorated.
On the other hand, when bismuth exceeds 20% by weight, the durability as an electrode and a vacuum interrupter rapidly decreases.

F. 作用 銅とクロムとコバルトとモリブデンとビスマスとの最
適な組成を見い出したので、全体として耐溶着性や絶縁
耐力及び電流しゃ断性能及び電流さい断値等の真空イン
タラプタに要求される特性を向上させた電極材料が得ら
れる。
F. Action Since the optimum composition of copper, chromium, cobalt, molybdenum, and bismuth was found, the characteristics required for vacuum interrupters such as welding resistance, dielectric strength, current breaking performance, and current breaking value were improved as a whole. The obtained electrode material is obtained.

G. 実施例 真空インタラプタは、その概略構造の一例を表す第2
図に示すようなものであり、相互に一直接状をなす一対
のリード棒11,12の対向端面には、それぞれ電極13,14が
一体的に設けてある。これら電極13,14を囲む筒状のシ
ールド15の外周中央部は、このシールド15を囲む一対の
絶縁筒16,17の間に挾まれた状態で保持されている。一
方の前記リード棒11は一方の絶縁筒16の一端に接合され
た金属端板18を気密に貫通した状態で、この金属端板18
に一体的に固定されている。図示しない駆動装置に連結
される他方のリード棒12は、他方の絶縁筒17の他端に気
密に接合された他方の金属端板19にベローズ20を介して
連結され、駆動装置の作動に伴って電極13,14の対向方
向に往復動可能に可動側の電極14が固定側の電極13に対
して開閉動作するようになっている。
G. Embodiment The vacuum interrupter has a second structure representing an example of its schematic structure.
As shown in the figure, electrodes 13 and 14 are integrally provided on opposing end surfaces of a pair of lead rods 11 and 12 which are directly formed with each other. The center of the outer periphery of the cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15. One of the lead rods 11 hermetically penetrates a metal end plate 18 joined to one end of one insulating cylinder 16, and
It is fixed integrally to. The other lead rod 12 connected to a driving device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is associated with the operation of the driving device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so that the movable electrode 14 can reciprocate in the direction opposite to the electrodes 13 and 14.

前記電極13,14は、20から70重量%の範囲の銅(Cu)
と、2から75重量%の範囲のクロム(Cr)と、0.1から1
0重量%の範囲のコバルト(Co)と、2から75重量%の
範囲のモリブデン(Mo)と、1から20重量%の範囲のビ
スマス(Bi)とからなる複合金属で構成される。
The electrodes 13, 14 are made of copper (Cu) in the range of 20 to 70% by weight.
Chromium (Cr) in the range of 2 to 75% by weight;
It is composed of a composite metal comprising cobalt (Co) in the range of 0% by weight, molybdenum (Mo) in the range of 2 to 75% by weight, and bismuth (Bi) in the range of 1 to 20% by weight.

この電極材料の製造法の一例を以下に記すと、まず−
100メッシュの粒径のクロム及びコバルト及びモリブデ
ンの粉末を機械的に混合し、この混合粉末をアルミナセ
ラミックス製の容器に所定量装入すると共に該混合粉末
上に銅ビスマス合金の塊を載置した状態で容器に蓋を被
せ、これらを真空炉内にて脱ガスしつつ加熱処理し、ま
ずクロム粒子とコバルト粒子とモリブデン粒子とを拡散
結合させ、多孔質の溶浸母材を得る。しかるのち、この
溶浸母材の空隙部分に銅及びビスマスを溶浸させるが、
この際、容器内はビスマス蒸気を多量に含んだ雰囲気と
なる。そして、得られる電極材料を容器から出して所定
の寸法形状に機械加工する。
An example of a method for producing this electrode material is described below.
Chromium, cobalt, and molybdenum powders having a particle size of 100 mesh were mechanically mixed, a predetermined amount of the mixed powder was charged into a container made of alumina ceramic, and a lump of copper-bismuth alloy was placed on the mixed powder. In this state, the vessel is covered with a lid, and these are heated in a vacuum furnace while being degassed. First, chromium particles, cobalt particles, and molybdenum particles are diffusion-bonded to obtain a porous infiltration base material. Thereafter, copper and bismuth are infiltrated into the voids of the infiltration base material,
At this time, the interior of the container becomes an atmosphere containing a large amount of bismuth vapor. Then, the obtained electrode material is taken out of the container and machined into a predetermined shape.

このようにして Cr:7重量% Co:3重量% Mo:30重量% Bi:15重量% Cu:残り からなる電極材料を第一試料として作成し、この第一試
料の他に、 Cr:20重量% Co:5重量% Mo:20重量% Bi:12重量% Cu:残り からなる第二試料及び Cr:30重量% Co:1重量% Mo:7重量% Bi:15重量% Cu:残り からなる第三試料を用意し、それぞれ直径50mmで厚さが
6.5mmの円盤状に加工すると共にその外周縁に4mmの曲率
半径の丸味を付けたものを第7図に示す真空インタラプ
タの電極13,14として組込み、耐溶着性及び電流しゃ断
性能及び電流さい断値を調べた。
In this way, an electrode material consisting of Cr: 7% by weight, Co: 3% by weight, Mo: 30% by weight, Bi: 15% by weight, and Cu: remainder was prepared as a first sample, and in addition to this first sample, Cr: 20% % By weight Co: 5% by weight Mo: 20% by weight Bi: 12% by weight Cu: remaining second sample and Cr: 30% by weight Co: 1% by weight Mo: 7% by weight Bi: 15% by weight Cu: remaining Prepare third samples, each having a diameter of 50 mm and a thickness of 50 mm.
Processed into a 6.5 mm disk shape and rounded with a radius of curvature of 4 mm on the outer periphery and incorporated as electrodes 13 and 14 of the vacuum interrupter shown in FIG. 7, welding resistance, current breaking performance and current breaking The value was checked.

耐溶着性に関しては、可動側の電極13を固定側の電極
14に対して130kgfで加圧し、この状態で25kA(r.m.s.)
の電流を3秒間通電した後、200kgfの静的な引張り力を
電極13に加えた所、三つの試料とも電極14から電極13を
問題なく引き離すことができた。又、その後の接触抵抗
の増加は三つの試料とも20%以内に収まった。
Regarding the welding resistance, the movable electrode 13 is fixed to the fixed electrode.
Pressurized at 130kgf against 14, 25kA (rms) in this state
After applying the current for 3 seconds, a static tensile force of 200 kgf was applied to the electrode 13, and the electrode 13 could be separated from the electrode 14 without any problem in all three samples. The subsequent increase in contact resistance was within 20% for all three samples.

又、電流しゃ断性能に関しては、7.2kVの電圧条件に
て第一試料では20kA(r.m.s.)の電流をしゃ断でき、第
二試料では23kA(r.m.s.)の電流をしゃ断でき、第三試
料では26kA(r.m.s.)の電流をしゃ断することができ
た。
Regarding the current breaking performance, a current of 20 kA (rms) can be cut off for the first sample, a current of 23 kA (rms) can be cut off for the second sample, and a current of 26 kA (rms) for the third sample under the voltage condition of 7.2 kV. ) Was able to cut off the current.

一方、電流さい断値に関しては、200V,120Aで真空イ
ンタラプタを負荷開閉し、百回後,千回後,一万回後,
十万回後の電流さい断値をそれぞれ求めた結果、第1図
に示すように十万回後でも1A程度に収まる好結果が得ら
れた。なお、この第1図に示す○印,△印,×印はそれ
ぞれ50回測定の平均値を表しており、 ×……×が第三試料の各電流さい断値の推移を示す。
On the other hand, regarding the current interruption value, the vacuum interrupter was switched on and off at 200 V and 120 A, and after 100 times, 1000 times, 10,000 times,
As a result of calculating the current break values after 100,000 times, as shown in FIG. 1, good results were obtained, which were within about 1 A even after 100,000 times. The circles, triangles, and crosses shown in FIG. 1 represent the average values of 50 measurements, respectively. ... × indicate the transition of each current break value of the third sample.

H. 発明の効果 本発明の真空インタラプタの電極材料によると、20か
ら70重量%の範囲の銅と、2から75重量%の範囲のクロ
ムと、0.1から10重量%の範囲のコバルトと、2から75
重量%の範囲のモリブデンと、1から20重量%の範囲の
ビスマスとで構成しているため、従来の銅ビスマス合金
よりも電流さい断値が低く、しかもタングステン銅焼結
金属や炭化タングステン銀焼結金属よりも電流しゃ断性
能が高く、耐溶着性や電流しゃ断性能及び電流さい断値
等の特性が全体的に向上した電極材料を得ることができ
る。具体的には、十万回の開閉後でも電流さい断値を1A
程度の低い値に保つことが可能な真空インタラプタを提
供できる。更に、高価な銀を全く使用していないことか
ら電極材料自体のコストを下げることができる。
H. Effect of the Invention According to the electrode material of the vacuum interrupter of the present invention, copper in the range of 20 to 70% by weight, chromium in the range of 2 to 75% by weight, cobalt in the range of 0.1 to 10% by weight, From75
It is composed of molybdenum in the range of 1% by weight and bismuth in the range of 1 to 20% by weight. It is possible to obtain an electrode material having a higher current breaking performance than a binding metal, and having generally improved properties such as welding resistance, current breaking performance, and a current breaking value. Specifically, even after 100,000 switching operations,
It is possible to provide a vacuum interrupter which can be maintained at a low value. Further, since no expensive silver is used, the cost of the electrode material itself can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を真空インタラプタに応用した場合の電
流さい断値の特性を表すグラフ、第2図はその真空イン
タラプタの一例を表す断面図である。 図中の符号で11,12はリード棒、13,14は電極である。
FIG. 1 is a graph showing the characteristics of a current interruption value when the present invention is applied to a vacuum interrupter, and FIG. 2 is a sectional view showing an example of the vacuum interrupter. In the figure, reference numerals 11 and 12 are lead rods, and 13 and 14 are electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】20から70重量%の範囲の銅と、2から75重
量%の範囲のクロムと、0.1から10重量%の範囲のコバ
ルトと、2から75重量%の範囲のモリブデンと、1から
20重量%の範囲のビスマスとからなり、クロムの粉末と
コバルトの粉末とモリブデンの粉末とを混合し、それを
コバルト及びクロム及びモリブデンの融点以下の温度で
加熱して多孔質の焼結体を得、この焼結体の空隙部分に
銅及びビスマスを溶浸させて得られることを特徴とする
真空インタラプタの電極材料。
1. A copper alloy in the range of 20 to 70% by weight, chromium in the range of 2 to 75% by weight, cobalt in the range of 0.1 to 10% by weight, molybdenum in the range of 2 to 75% by weight, From
Bismuth in the range of 20% by weight is mixed with chromium powder, cobalt powder and molybdenum powder, and heated at a temperature lower than the melting point of cobalt, chromium and molybdenum to form a porous sintered body. An electrode material for a vacuum interrupter, which is obtained by infiltrating copper and bismuth into voids of the sintered body.
JP63269350A 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters Expired - Lifetime JP2661201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269350A JP2661201B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269350A JP2661201B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Publications (2)

Publication Number Publication Date
JPH02117036A JPH02117036A (en) 1990-05-01
JP2661201B2 true JP2661201B2 (en) 1997-10-08

Family

ID=17471154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269350A Expired - Lifetime JP2661201B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Country Status (1)

Country Link
JP (1) JP2661201B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211717A (en) * 1984-04-04 1985-10-24 株式会社日立製作所 Method of producing electrode for vacuum breaker

Also Published As

Publication number Publication date
JPH02117036A (en) 1990-05-01

Similar Documents

Publication Publication Date Title
EP0227973B1 (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
EP2586882A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP4759987B2 (en) Electrode and electrical contact and its manufacturing method
US3821505A (en) Vacuum type electric circuit interrupting devices
JP2661201B2 (en) Electrode materials for vacuum interrupters
JP2661202B2 (en) Electrode materials for vacuum interrupters
JP2661199B2 (en) Electrode materials for vacuum interrupters
JP2661203B2 (en) Electrode materials for vacuum interrupters
JP2661200B2 (en) Electrode materials for vacuum interrupters
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP4621336B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JPH02117032A (en) Electrode material of vacuum interrupter
JPH02117033A (en) Electrode material of vacuum interrupter
JPH0510782B2 (en)
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JPH02117040A (en) Electrode material for vacuum interrupter
JPH02117041A (en) Electrode material for vacuum interrupter
JPH02117038A (en) Electrode material for vacuum interrupter
JPH02117030A (en) Electrode material of vacuum interrupter
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP2853308B2 (en) Manufacturing method of electrode material
JPH02117034A (en) Electrode material of vacuum interrupter
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH02117029A (en) Electrode material of vacuum interrupter and its manufacture