JPH02117028A - Electrode material of vacuum interrupter and its manufacture - Google Patents

Electrode material of vacuum interrupter and its manufacture

Info

Publication number
JPH02117028A
JPH02117028A JP26934288A JP26934288A JPH02117028A JP H02117028 A JPH02117028 A JP H02117028A JP 26934288 A JP26934288 A JP 26934288A JP 26934288 A JP26934288 A JP 26934288A JP H02117028 A JPH02117028 A JP H02117028A
Authority
JP
Japan
Prior art keywords
copper
bismuth
chromium
vacuum interrupter
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26934288A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Nobuyuki Yoshioka
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26934288A priority Critical patent/JPH02117028A/en
Publication of JPH02117028A publication Critical patent/JPH02117028A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To make it possible to maintain the current chopping value and the contact resistance value at a low value by fusing and spreading copper and bismuth at the clearances of chromium, and after that, quenching them to deposit the bismuth at the interfaces between the chromium and the copper. CONSTITUTION:The electrode material consists of chromium to compose the skeleton, copper filled in the skeleton of the chromium, and bismuth filled in the skeleton together with the copper and deposited at the interfaces between the chromium and the copper filled in the skeleton. When it is manufactured, by fusing and spreading the copper and the bismuth in the powder of chromium, and quenching them to deposit the bismuth at the interfaces between the chromium and the copper, the current chopping value and the contact resistance value can be maintained at a low value.

Description

【発明の詳細な説明】 紅 産業上の利用分舒 本発明は、電流さい断値や接触抵抗値全長期間に亙って
低く保つことが可能な真空インタラプタの′r4極材料
及びその製造方法に関する。
[Detailed Description of the Invention] Industrial Application The present invention relates to a four-pole material for a vacuum interrupter that can maintain low current cutoff value and contact resistance over a long period of time, and a method for manufacturing the same. .

B 発明の概要 クロムの粉末上に銅ビスマス合金を載置し、これらを加
熱してクロムの空隙部分に銅及びビスマスを溶浸させた
のち、急冷してクロムと銅との界面にビスマスを析出さ
せた真空インタラプタの電極材料であり、電流さい断値
や接触抵抗値を長期間に互って低い値に保持できろよう
にしたものである。
B. Summary of the invention A copper-bismuth alloy is placed on chromium powder, heated to infiltrate copper and bismuth into the voids of the chromium, and then rapidly cooled to precipitate bismuth at the interface between the chromium and copper. This is an electrode material for a vacuum interrupter that can maintain a low current cutoff value and contact resistance value for a long period of time.

C従来の技術 一般に、真空インクラブタの電極材料として要求されろ
主な性能としては、 (1)耐溶着性が良いこと (21jJ流しゃ断性能が高いこと (3)電流さい断値が低いこと 等を挙げることができる。
C. Conventional technology In general, the main performances required for electrode materials for vacuum incretors include (1) good welding resistance (high 21JJ flow cutoff performance), (3) low current cutoff value, etc. can be mentioned.

しかし、電極材料の11流しゃ断性能を高くすることと
電流さい断値を低くすることとは、互いに矛盾する物理
的特性に起因するため、単一の電極材料で上述した全て
の特性を満たすことは難しく、真空インタラプタの仕様
に最も適合した電極材料を選択しているのが現状である
However, since increasing the current cutting performance and lowering the current cutting value of an electrode material are due to mutually contradictory physical properties, it is not possible to satisfy all of the above characteristics with a single electrode material. However, the current situation is to select the electrode material that best meets the specifications of the vacuum interrupter.

例えば、特公昭41−12131号公報等に開示されな
銅ビスマス合金は、鋼(Cu)に蒸気圧の高い低融点の
ビスマス(Bi)を0.5重量%添加したものであり、
耐溶着性や電流しゃ断性能が良好であることは周知の通
りである。又、特公昭54−36121号公報等に開示
されたタングステン鋼焼結金属は、蒸気圧の低い高融点
のタングステン(W)に銅を20重量%添加したもので
あり、電流さい断値が低い利点を有する。この電流さい
断値が特に低い電極材料としては、特公昭35−149
74号公報等に開示された鋼ビスマス合金、つまり銅に
ビスマスを20重量%添加したもの等がある。
For example, the copper-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131 is made by adding 0.5% by weight of bismuth (Bi), which has a high vapor pressure and a low melting point, to steel (Cu).
It is well known that it has good welding resistance and current interrupting performance. In addition, the tungsten steel sintered metal disclosed in Japanese Patent Publication No. 54-36121 etc. is made by adding 20% by weight of copper to tungsten (W), which has a low vapor pressure and high melting point, and has a low current cutoff value. has advantages. As an electrode material with a particularly low current cut-off value,
There is a steel-bismuth alloy disclosed in Japanese Patent No. 74, that is, an alloy in which 20% by weight of bismuth is added to copper.

D、 発明が解決しようとする課題 銅ビスマス合金でビスマスを0.5重量%含むものは電
流しゃ断性能が良好である反面、電流さい断値が例えば
IOAと高く、電流しゃ断時にさい断サージを発生する
ことがある。
D. Problems to be Solved by the Invention Copper-bismuth alloys containing 0.5% by weight of bismuth have good current cutting performance, but on the other hand, the current cutting value is as high as, for example, IOA, and a cutting surge occurs when cutting the current. There are things to do.

このため、遅れ小電流を良好にしゃ断することが困難で
あり、負荷側の電気機器の絶縁破壊を引き起こす虞があ
る。
For this reason, it is difficult to cut off the delayed small current in a good manner, which may cause dielectric breakdown of the electrical equipment on the load side.

又、タングステン鋼焼結金属や銅ビスマス合金でビスマ
スを20重量%含むものは、電流さい断値が低い半面、
電流しゃ断性能が悪く、短絡電流の如き大電流をしゃ断
することができない。特にこの銅ビスマス合金はその金
属組織のX線マイクロアナライザによる二次電子像を表
す第9図、この試料における銅の分布状態のX線像を表
す第10図及びビスマスの分布状態のX線像を表す第1
1図に示すように、ビスマスは銅にほとんど固溶しない
ことから、銅の結晶粒が大きくなってビスマスは銅の結
晶粒間に析出した状態となる。
In addition, tungsten steel sintered metal and copper-bismuth alloy containing 20% by weight of bismuth have a low current cutoff value, but
It has poor current cutting performance and cannot cut off large currents such as short circuit current. In particular, this copper-bismuth alloy is shown in Figure 9, which shows a secondary electron image of its metal structure taken by an X-ray microanalyzer, Figure 10, which shows an X-ray image of the copper distribution state in this sample, and an X-ray image of the bismuth distribution state. The first representing
As shown in FIG. 1, since bismuth is hardly dissolved in copper, the copper crystal grains become large and bismuth precipitates between the copper crystal grains.

このため、真空インタラプタの電極を頻繁に開閉操作し
た場合、電極表面にビスマスが安定供給されず、電流さ
い断値が不安定となってしまう。しかも、真空インタラ
プタを製造する過程において真空インタラプタ内を真空
排気する場合、加熱操作によりビスマスが電極表面に球
状に溶融析出し、′la極材料の耐溶着性が悪化すると
共に接触抵抗値の増大を招来する虞があった。なお、第
10図及び第11図で白い部分が各金属元素の存在箇所
である。
For this reason, when the electrodes of the vacuum interrupter are frequently opened and closed, bismuth is not stably supplied to the electrode surface, and the current cutoff value becomes unstable. Moreover, when the inside of the vacuum interrupter is evacuated during the process of manufacturing the vacuum interrupter, bismuth melts and precipitates in a spherical shape on the electrode surface due to the heating operation, which deteriorates the welding resistance of the electrode material and increases the contact resistance value. There was a risk that he would be invited. Note that the white parts in FIGS. 10 and 11 are locations where each metal element exists.

E、 課題を解決するための手段 近年、耐電圧特性や電流しゃ断性能の優れた銅クロム合
金が真空インタラプタの*tiとして採用されつつある
が、電流さい断値については必ずしも満足できるもので
はない。そこで従来から良く知られている低融点材料の
ビスマスを銅クロム合金に添加し、耐電圧特性や電流し
ゃ断性能を損なうことなく電流さい断値を改善させるこ
とが考えられろ。この場合、調クロム合金が従来では溶
浸法で製造されていることから、単にビスマスを銅クロ
ム合金に添加しただけでは、ビスマスを痢クロム合金中
に微細に分散させることは難しいと考えられる。つまり
、本発明者らは従来の銅ビスマス合金が溶解法によって
作られていることに着目し、この溶解法にあっては高温
の熱負荷を長時間に互って受けることから、ビスマスが
銅の結晶粒間に析出してしまい、その均一分散は難しい
と考えた。
E. Means for solving the problem In recent years, copper chromium alloys with excellent withstand voltage characteristics and current interrupting performance are being adopted as *ti for vacuum interrupters, but the current interrupting value is not necessarily satisfactory. Therefore, it may be possible to add bismuth, a well-known low-melting point material, to a copper-chromium alloy to improve the current cutoff value without impairing the withstand voltage characteristics or current cutoff performance. In this case, since chromium alloys have conventionally been manufactured by an infiltration method, it is considered difficult to finely disperse bismuth into a copper chromium alloy by simply adding bismuth to a copper chromium alloy. In other words, the present inventors focused on the fact that conventional copper-bismuth alloys are made by a melting method, and in this melting method, bismuth is mutually exposed to high temperature heat loads for a long time. It was thought that it would precipitate between the crystal grains and that it would be difficult to uniformly disperse it.

そこで、銅クロムビスマスを製造するに際しては、従来
からの溶解法ではなく、高温の熱負荷が短時間で済む溶
浸法により試みた。
Therefore, when producing copper chromium bismuth, instead of using the conventional melting method, we tried an infiltration method that requires high-temperature heat load in a short time.

即ち、クロム粉末のスケルトンに銅ビスマス合金を溶浸
し、銅クロムビスマス複合金属を得るようにした。
That is, a copper-bismuth alloy was infiltrated into a skeleton of chromium powder to obtain a copper-chromium-bismuth composite metal.

その結果、クロム粉末が存在することから銅及びビスマ
スをクロムのスケルトン内に溶浸させた場合、ビスマス
がクロム粒子の周囲に分散状態で析出し、銅の結晶粒間
にほとんど存在しないことが判明した。
As a result, due to the presence of chromium powder, it was found that when copper and bismuth were infiltrated into the chromium skeleton, bismuth precipitated in a dispersed state around the chromium particles and was hardly present between the copper grains. did.

本発明は上述した知見に基づいてなされたものであり、
本発明による真空インタラプタの電極材料は、スケルト
ンを構成するクロムと、このクロムのスケルトン内に充
填される銅と、この銅と共に前記スケルトン内に充填さ
れ且つ前記クロムと当該銅との界面に分散するビスマス
とからなるものである。
The present invention has been made based on the above-mentioned findings,
The electrode material of the vacuum interrupter according to the present invention includes chromium constituting the skeleton, copper filled in the chromium skeleton, and the copper filled in the skeleton together with the copper and dispersed at the interface between the chromium and the copper. It consists of bismuth.

このように、ビスマスをクロムと銅との界面に分散状態
で析出させるため、本発明による真空インタラプタの電
極材料の製造方法は、クロムの粉末上に銅ビスマス合金
を載置し、これらをビスマス蒸気を含む非酸化性雰囲気
にて前記鋼ビスマス合金の融点以上に加熱保持し、銅及
びビスマスを前記クロムの空隙部分に溶浸させたのち、
急冷することを特徴とするものである。
In this way, in order to precipitate bismuth in a dispersed state at the interface between chromium and copper, the method for manufacturing the electrode material for a vacuum interrupter according to the present invention involves placing a copper-bismuth alloy on chromium powder and depositing bismuth vapor on top of the copper-bismuth alloy. After heating and holding above the melting point of the steel-bismuth alloy in a non-oxidizing atmosphere containing copper and bismuth to infiltrate into the voids of the chromium,
It is characterized by rapid cooling.

なお、溶浸後の冷却操作は毎分10度から20度程度の
降温速度で少なくとも800℃程度まで続けることが望
ましく、これによってビスマスをクロムと銅との界面に
効果的に分散状態で析出させることができる。
In addition, it is desirable that the cooling operation after infiltration be continued at a cooling rate of about 10 to 20 degrees per minute to at least about 800 degrees Celsius, so that bismuth is effectively precipitated in a dispersed state at the interface between chromium and copper. be able to.

ここで、鋼が20重量%未満の場合には、導電率が低下
して発熱量が多くなり、逆に銅が70重量%を越えると
、耐溶着性の低下や電流さい断値の増大をもたらす。又
、クロムが2重量%未満の場合やビスマスが1重量%未
満の場合には、電流さい断値がそれぞれ増大することと
なる。更に、クロムが75重量%を越え−る場合には、
電流しゃ断性能が低下してしまう。一方、ビスマスが2
0重量%を越えるとBi極及び真空インタラプタとして
の耐久性が急激に低下する。従って、銅は20から70
重量%の範囲、クロムは2から75重量%の範囲、ビス
マスは1から20重量%の範囲であることが望ましい。
Here, if the steel content is less than 20% by weight, the electrical conductivity will decrease and the amount of heat generated will increase, while if the copper content exceeds 70% by weight, the welding resistance will decrease and the current cutoff value will increase. bring. Furthermore, if the chromium content is less than 2% by weight or if the bismuth content is less than 1% by weight, the current cutoff value will increase. Furthermore, if chromium exceeds 75% by weight,
Current interrupting performance deteriorates. On the other hand, bismuth is 2
If it exceeds 0% by weight, the durability as a Bi electrode and a vacuum interrupter will decrease rapidly. Therefore, copper is 20 to 70
Desirably, the weight percent range is 2 to 75 weight percent for chromium and 1 to 20 weight percent for bismuth.

F  作     用 加熱により、まずクロムの粉末が相互に拡散結合して多
孔質化し、これによって形成されるクロムの空隙部分に
銅及びビスマスが溶浸して行(。溶浸後の急冷操作によ
り、ビスマスは鋼の結晶粒間にではなく、クロムと銅と
の界面に析出するため、ビスマスの分布状態は全体とし
て微細に分散することとなる。
F action By heating, the chromium powder first diffuses and bonds with each other to become porous, and copper and bismuth infiltrate into the voids of the chromium (by rapid cooling after infiltration, bismuth Since bismuth precipitates not between the crystal grains of steel but at the interface between chromium and copper, the distribution state of bismuth is finely dispersed as a whole.

G  実  施  例 真空インタラプタは、その概略構造の一例を表す第8図
に示すようなものであり、相互に一直線状をなす一対の
り一ド棒11,12の対向端面には、それぞれ電l’l
13,14が一体的に設けである。これら電極13.1
4を囲む筒状のシールド15の外周中央部は、このシー
ルド15を囲む一対の絶fi[16。
G Embodiment The vacuum interrupter is as shown in FIG. 8, which shows an example of its schematic structure.A pair of glue rods 11 and 12, which are in a straight line, are provided with electric current l' on their opposite end surfaces, respectively. l
13 and 14 are integrally provided. These electrodes 13.1
The central part of the outer periphery of the cylindrical shield 15 surrounding the shield 15 has a pair of absolute fi[16] surrounding the shield 15.

17の間に挾まれた状態で保持されている。It is held between 17.

一方の前記リード棒11は一方の絶縁筒16の一端に接
合された金属端板18を気密に貫通した状態で、この金
属端板18に一体的に固定されている。図示しない駆動
装置に連結される他方のリード棒12は、他方の絶縁筒
17の他端に気密に接合された他方の金属端板19にベ
ローズ20を介して連結され、駆動装置の作動に伴って
電極13.14の対向方向に往復動可能に可動側の電極
14が固定側の電極13に対して開閉動作するようにな
っている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating tube 17. The movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so as to be able to reciprocate in the opposite direction of the electrodes 13 and 14.

前記電極13,14は、クロム(Cr)と、銅(Cu)
 と、これらクロムと銅との界面に分散ずろビスマス(
Bi)とからなる複合金属で構成される。
The electrodes 13 and 14 are made of chromium (Cr) and copper (Cu).
And, at the interface between these chromium and copper, bismuth (
It is composed of a composite metal consisting of Bi).

この電極材料の製造法の一例を息下に記すと、まず−1
00メツシユの粒度のクロムの粉末を内径68!111
1のアルミナセラミックス製の容器に約1608入れる
と共に該クロムの粉末の上に銅ビスマス合金を約400
g載置した状態で容器に蓋を被せ、これらを真空炉内に
て脱ガスしつつ第7図に示す如き加熱処理を施し、まず
クロム粒子を拡散結合させ、多孔質の溶浸母材を得る。
An example of the manufacturing method of this electrode material is as follows: -1
00 mesh chromium powder with an inner diameter of 68!111
Approximately 40% of copper-bismuth alloy was placed on top of the chromium powder in a container made of alumina ceramics.
The lid is placed on the container with the chromium particles placed on it, and heat treatment is performed as shown in Fig. 7 while degassing in a vacuum furnace. obtain.

しかるのち、この溶浸母材の空隙部分に銅及びビスマス
を溶浸させろが、この際、容器内はビスマス蒸気を多量
に含んだ雰囲気となる。そして、得られる電極材料を容
器から出して所定の寸法形状に機械加工する。
Thereafter, copper and bismuth are infiltrated into the voids of the infiltrated base material, but at this time, the inside of the container becomes an atmosphere containing a large amount of bismuth vapor. Then, the obtained electrode material is taken out of the container and machined into a predetermined size and shape.

このようにして Cr:  38重量% Bi:  12重量% Cu: 残り からなる電極材料を第一試料として作成し、その金属組
織の状態をX線マイクロアナライザにて調べた。金属組
織の二次を予検は第1図に示す通りであり、この試料に
おける銅の分布状態を表すX線像が第2図、クロムの分
布状態を表すXg像が第3図、ビスマスの分布状態を表
すX線像が第4図にそれぞれ示されている。第2図〜第
4図で白い部分が各金属元素の存在箇所であり、クロム
からなる多孔質の溶浸母材の空隙部分に銅及びビスマス
が溶浸すると共にビスマスがクロムと銅との界面に、つ
まり第1図からも明らかなように、クロム粒子の周囲微
細に分散析出していることが判る。
In this way, an electrode material consisting of Cr: 38% by weight, Bi: 12% by weight, Cu: the remainder was prepared as a first sample, and the state of its metallographic structure was examined using an X-ray microanalyzer. A preliminary examination of the secondary metallographic structure is shown in Figure 1, an X-ray image showing the distribution of copper in this sample is shown in Figure 2, an Xg image showing the distribution of chromium is shown in Figure 3, and an X-ray image showing the distribution of bismuth in this sample is shown in Figure 1. X-ray images representing the distribution state are shown in FIG. In Figures 2 to 4, the white areas are the locations where each metal element exists, and copper and bismuth infiltrate into the voids of the porous infiltration base material made of chromium, and bismuth forms the interface between chromium and copper. In other words, as is clear from FIG. 1, it can be seen that the chromium particles are finely dispersed and precipitated around the chromium particles.

以上の第一試料の他に、 Cr:  35重量% Bi:  15重量% Cu: 残り からなる第二試料及び Cr:  32重量% Bi:  18重量% Cu: 残り からなる第三試料を用意し、それぞれ直径50胴で厚さ
が6.5+mの円盤状に加工すると共にその外周縁に4
1m1Ilの曲率半径の丸味を付けたものを第7図に示
す真空インタラプタの電極13.14として組込み、耐
溶着性及び電流しゃ断性能及び電流さい断値を調べた。
In addition to the above first sample, a second sample consisting of Cr: 35% by weight, Bi: 15% by weight, Cu: remainder, and a third sample consisting of Cr: 32% by weight, Bi: 18% by weight, Cu: remainder, were prepared, Each is processed into a disk shape with a diameter of 50 mm and a thickness of 6.5 m, and 4
A rounded material with a radius of curvature of 1 ml was incorporated as the electrodes 13 and 14 of a vacuum interrupter shown in FIG. 7, and the welding resistance, current interrupting performance, and current interrupting value were examined.

接触抵抗に関t、 T 1.?、200V、120Aで
真空インタラプタを負荷開閉し、この時の加圧力を15
0kgfとした場合の百回後、千回後、−万回後、十万
回後の接触抵抗値をそれぞれ求めた結果、第5図に示す
ように十万回後でも初期値とほとんど変わらず、15μ
Ω程度の低い値に収まった。なお、ωツは第一試料、カ
噛が第二試料、トへが第三試料の各接触抵抗値の推移を
表す。又、比較として銅にクロムを50重量%添加した
銅クロム合金の場合を]モで示した。
Regarding contact resistance, t, T 1. ? , the vacuum interrupter is loaded and closed at 200V and 120A, and the applied force at this time is 15
As a result of calculating the contact resistance values after 100, 1,000, -0,000, and 100,000 cycles under the condition of 0 kgf, as shown in Figure 5, there is almost no difference from the initial value even after 100,000 cycles. , 15μ
The value was as low as Ω. Note that ω represents the change in the contact resistance values of the first sample, Kagami the second sample, and Tohe the third sample. For comparison, the case of a copper-chromium alloy in which 50% by weight of chromium is added to copper is shown in [Mo].

又、電流しゃ断性能に関しては、7.2kVの電圧条件
にて第一試料では26 kA (r、ms、)の電流を
しゃ断でき、第二試料では24 kA(r、ILs、)
の電流をしゃ断でき、第三試料では22 kA (r、
ts、 )の電流をしゃ断することができた。
Regarding current cutting performance, the first sample can cut off a current of 26 kA (r, ms,) under a voltage condition of 7.2 kV, and the second sample can cut off a current of 24 kA (r, ILs,).
In the third sample, the current was 22 kA (r,
ts, ) could be cut off.

一方、電流さい断値に関しては、200V。On the other hand, the current cutoff value is 200V.

120Aで真空インタラプタを負荷開閉し、百回後、千
回後、−万回後、十万回後の電流さい断値をそれぞれ求
めた結果、第6図に示すように十万回後でもIA以下に
収まる好結果が得られた。なお、この第6図に示すO印
The vacuum interrupter was loaded and closed at 120A, and the current cutoff values after 100, 1,000, -0,000, and 100,000 cycles were calculated, and as shown in Figure 6, even after 100,000 cycles, IA The following good results were obtained. Note that the O mark shown in FIG.

Δ印、X印はそれぞれ50回測定の平均値を表しており
、σ(が第一試料、キシが第二試料、トイが第三試料の
各電流さい断値の推移を示す。
The Δ mark and the X mark each represent the average value of 50 measurements, and σ( indicates the change in the current cutoff value for the first sample, xi indicates the second sample, and toi indicates the change in the current cutoff value for the third sample.

H発明の効果 本発明の真空インタラプタの電極材料及びその製造方法
によると、クロムの粉末に銅及びビスマスを溶浸させ、
これらを急冷してクロムと銅−との界面にビスマスを分
散析出させたため、十万回の開閉後でも電流さい断値を
IA以下並びに接触抵抗を15μΩ程度の低い値にそれ
ぞれ保つことのできる真空インタラプタを提供できる。
H Effects of the Invention According to the electrode material for a vacuum interrupter and the manufacturing method thereof of the present invention, copper and bismuth are infiltrated into chromium powder,
By rapidly cooling these to disperse and precipitate bismuth at the interface between chromium and copper, the vacuum can maintain the current cutoff value below IA and the contact resistance at a low value of about 15 μΩ even after 100,000 times of opening and closing. Can provide an interrupter.

又、多数回の開閉操作後でも接触抵抗値が低く安定して
いるため、開閉のための操作装置を小形化できろと共に
発熱が少ないことと相俟ってキユービクルを小形化でき
る等の効果がある。
In addition, the contact resistance value is low and stable even after multiple opening/closing operations, so the operating device for opening/closing can be made smaller, and combined with the fact that it generates less heat, the cubicle can be made smaller. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による真空インタラプタの電極材料の一
実施例において、X線マイクロアナライザによる金属組
織の二次電子像を表す顕微鏡写真、第2図はその銅の分
布状態を表す顕微鏡写真、第3図はクロムの分布状態を
表す顕微鏡写真、第4図はビスマスの分布状態を表す顕
m鏡写真、第5図は本発明を真空インタラプタに応用し
た場合の銅クロム合金及び本実施例の接触抵抗値を比較
したグラフ、第6図は本発明を真空インタラプタに応用
した場合の電流さい断値の特性を表すグラフ、第7図は
本実施例による熱処理操作の過程を表すグラフ、第8図
はその真空インタラプタの一例を表す断面図、第9図は
X線マイクロアナライザによる従来の銅ビスマス合金の
金属組織の二次電子像を表す顕微鏡写真、第10図はそ
の銅の分布状態を表す!i徹鏡写真、第11図はビスマ
スの分布状態を表す顕微鏡写真である。 図中の符号で11,121より−ド棒、13゜14は電
極である。 特  許  出  願 人 株式会社  明   電   舎 代    理    人
FIG. 1 is a micrograph showing a secondary electron image of the metal structure taken with an X-ray microanalyzer in one embodiment of the electrode material for a vacuum interrupter according to the present invention, FIG. 2 is a micrograph showing the distribution state of copper, Figure 3 is a microscopic photograph showing the distribution of chromium, Figure 4 is a microscope photograph showing the distribution of bismuth, and Figure 5 is a contact between the copper chromium alloy and this example when the present invention is applied to a vacuum interrupter. A graph comparing the resistance values, Fig. 6 is a graph showing the characteristics of the current cutoff value when the present invention is applied to a vacuum interrupter, Fig. 7 is a graph showing the process of heat treatment according to this embodiment, Fig. 8 is a cross-sectional view showing an example of the vacuum interrupter, Fig. 9 is a micrograph showing a secondary electron image of the metal structure of a conventional copper-bismuth alloy taken with an X-ray microanalyzer, and Fig. 10 shows the distribution state of copper! 11 is a micrograph showing the distribution state of bismuth. In the figure, the reference numbers 11 and 121 represent electrodes, and 13° and 14 represent electrodes. Patent applicant Meidensha Co., Ltd. Agent

Claims (2)

【特許請求の範囲】[Claims] (1)スケルトンを構成するクロムと、このクロムのス
ケルトン内に充填される銅と、この銅と共に前記スケル
トン内に充填され且つ前記クロムと当該銅との界面に分
散するビスマスとからなる真空インタラプタの電極材料
(1) A vacuum interrupter consisting of chromium constituting a skeleton, copper filled in the chromium skeleton, and bismuth filled in the skeleton together with the copper and dispersed at the interface between the chromium and the copper. electrode material.
(2)クロムの粉末上に銅ビスマス合金を載置し、これ
らをビスマス蒸気を含む非酸化性雰囲気にて前記銅ビス
マス合金の融点以上に加熱保持し、銅及びビスマスを前
記クロムの空隙部分に溶浸させたのち、急冷することを
特徴とする真空インタラプタの電極材料の製造方法。
(2) Place the copper-bismuth alloy on the chromium powder, heat and maintain the alloy above the melting point of the copper-bismuth alloy in a non-oxidizing atmosphere containing bismuth vapor, and place copper and bismuth into the voids of the chromium. A method for producing an electrode material for a vacuum interrupter, which comprises infiltrating and then rapidly cooling.
JP26934288A 1988-10-27 1988-10-27 Electrode material of vacuum interrupter and its manufacture Pending JPH02117028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26934288A JPH02117028A (en) 1988-10-27 1988-10-27 Electrode material of vacuum interrupter and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26934288A JPH02117028A (en) 1988-10-27 1988-10-27 Electrode material of vacuum interrupter and its manufacture

Publications (1)

Publication Number Publication Date
JPH02117028A true JPH02117028A (en) 1990-05-01

Family

ID=17471042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26934288A Pending JPH02117028A (en) 1988-10-27 1988-10-27 Electrode material of vacuum interrupter and its manufacture

Country Status (1)

Country Link
JP (1) JPH02117028A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572122A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Analog-to-digital converter
JPS63150822A (en) * 1986-12-16 1988-06-23 株式会社東芝 Manufacture of contact alloy for vacuum valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572122A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Analog-to-digital converter
JPS63150822A (en) * 1986-12-16 1988-06-23 株式会社東芝 Manufacture of contact alloy for vacuum valve

Similar Documents

Publication Publication Date Title
US4686338A (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JPH02117028A (en) Electrode material of vacuum interrupter and its manufacture
JPH02117027A (en) Electrode material of vacuum interrupter and its manufacture
JPH02117029A (en) Electrode material of vacuum interrupter and its manufacture
JP2006032036A (en) Contact material for vacuum valve
JP3909804B2 (en) Contact material for vacuum valves
JPH0510782B2 (en)
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JPH02117033A (en) Electrode material of vacuum interrupter
JPH02117037A (en) Electrode material of vacuum interrupter
JP2661199B2 (en) Electrode materials for vacuum interrupters
JPH02117032A (en) Electrode material of vacuum interrupter
JPH0193018A (en) Contact material for vacuum bulb
JPH0443521A (en) Contact or vacuum valve
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH02117036A (en) Electrode material of vacuum interrupter
JP2661200B2 (en) Electrode materials for vacuum interrupters
JPH02117039A (en) Electrode material for vacuum interrupter
JP2001023482A (en) Contact material for vacuum valve
JPH02117034A (en) Electrode material of vacuum interrupter
JPH11260209A (en) Component for breaker
JPH04141924A (en) Manufacture of electrode material
JP2001222934A (en) Contact material for vacuum valve