JPH0211658B2 - - Google Patents

Info

Publication number
JPH0211658B2
JPH0211658B2 JP19052384A JP19052384A JPH0211658B2 JP H0211658 B2 JPH0211658 B2 JP H0211658B2 JP 19052384 A JP19052384 A JP 19052384A JP 19052384 A JP19052384 A JP 19052384A JP H0211658 B2 JPH0211658 B2 JP H0211658B2
Authority
JP
Japan
Prior art keywords
phase
amount
superplastic
alloy
specific strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19052384A
Other languages
Japanese (ja)
Other versions
JPS6169936A (en
Inventor
Hidehiro Onodera
Toshihiro Yamagata
Michio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP19052384A priority Critical patent/JPS6169936A/en
Publication of JPS6169936A publication Critical patent/JPS6169936A/en
Publication of JPH0211658B2 publication Critical patent/JPH0211658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高温比強度の高い超塑性加工用チタン
合金に関する。更に詳しくは850℃でα相を30〜
70%含み、残部はβ相からなり、高温比強度及び
延性に優れた超塑性加工用チタン合金に関する。 従来技術 従来、Ti合金部品は鍛造及び切削加工により
製造されてきたが、コンプレツサーローターの製
造の場合には、切削くずが約90%程度にもなり、
極めて歩留りが悪いばかりでなく、作業性も極め
て悪かつた。これは改善するためにはTi合金の
超塑性加工が有効な手段である。超塑性加工は加
工温度でα相とβ相の体積比が1:1に近いTi
合金が優れている。また超塑性加工温度は900℃
附近の温度が適している。900℃より高い高温で
は結晶粒の粗大化及び酸化が生じ易くなるため超
塑性特性が劣化する。また900℃より低い温度で
は、粒界辷りが起きにくくなるため、超塑性特性
が劣化し、また変形応力が高くなり、超塑性加工
が困難となる。従来の超塑性加工用チタン合金と
しては、Ti−6Al−4V合金、Ti−6Al−2Sn−
4Zr−2Mo合金、Ti−6Al−2Sn−4Zr−6Mo合金
が知られている。しかし、これらのTi合金はい
ずれもβ型Ti合金と比べて強度が低い欠点があ
つた。 発明の目的 本発明は前記従来の超塑性加工用チタン合金の
欠点を改善せんとするものであり、その目的は超
塑性特性が優れ、かつ高温比強度及び延性の優れ
た超塑性加工用チタン合金を提供するにある。 発明の構成 本発明者らは前記目的を達成すべく研究の結
果、850℃でα相を約30〜70%含み、残部がβ相
からなり、超塑性特性が優れ、かつ高温比強度及
び延性の優れた超塑性加工用チタン合金を究明し
得た。この知見に基いて本発明を完成した。 本発明のチタン合金は、 重量%で、Al5.3〜6.1%、V1.6〜2.2%、Sn1.2
〜1.6%、Zr5.0〜7.5%、Mo1.3〜1.8%、Cr0.8〜
1.6%、Fe0.8〜1.7%、O0.10〜0.15%を含み、残
部は実質的にTiよりなる高温比強度の高い超塑
性加工用チタン合金にある。 本発明の合金における組成成分の作用ならびに
組成割合の限定理由は次の通りである。 Alは主としてα相に固溶してα相を強化する
作用をする。Al量が5.3%(%は重量%を示す。
以下同じ)より少ないとα相強化の効果が十分得
られなく、その量が6.1%を超えるとα相量が増
加して十分な超塑性特性が得られなくなるので、
Al量は5.3〜6.1%であることが必要である。 Vはα相及びβ相に固溶してこれらの相を強化
する作用をする。V量が1.6%より少いとα相及
びB相の強化効果が十分得られなく、その量が
2.2%を超えるとα相が減少して十分な超塑性特
性が得られなくなるので、V量は1.6〜2.2%であ
ることが必要である。 Sn及びZrはα相及びβ相にほぼ同じ比率で固
溶してこれらの相を強化する作用をする。Sn量
が1.2%より少いとα相及びβ相の強化効果が十
分得られなく、その量が1.6%を超えると、比重
が大きくなり比強度が低下するので、Sn量は1.2
〜1.6%であることが必要である。またZr量が5.0
%より少いとα相及びβ相の強化効果が十分得ら
れなく、その量が7.5%を超えるとα相量が減少
して十分な超塑性特性が得られなくなるのでZr
量は5.0〜7.5%であることが必要である。 Mo、Cr及びFeは主としてβ相に固溶してβ相
を強化する作用をする。Mo量が1.3%より少いと
β相強化の効果が十分得られなく、その量が1.8
%を超えると比重が大きくなり比強度が低下する
のでMo量は1.3〜1.8%であることが必要である。
Cr量が0.8%より少いとβ相強化の効果が十分得
られなく、その量が1.6%を超えるとα相量が減
少して十分な超塑性特性が得られなくなるので、
Cr量は0.8〜1.6%であることが必要である。ま
た、Fe量が0.8%より少いとβ相強化の効果が十
分得られなく、その量が1.7%を超えるとα相量
が減少して十分な超塑性特性が得られなくなるの
でFe量は0.8〜1.7%であることが必要である。 Oは主としてα相に固溶してα相を強化する作
用をする。O量が0.10%より少いとα相強化の効
果が十分得られなく、その量が0.15%を超えると
α相量が増加して十分な超塑性特性が得られなく
なるのでO量が0.10〜0.15%であることが必要で
ある。 以上のような各元素を前記割合で含ませたチタ
ン合金は、850℃においてα相が30〜70%で残部
がβ相となる。α相とβ相は互に結晶粒の成長を
妨げ超塑性特性を向上させる。α相が30%より少
くなるとβ相の結晶粒が粗大化し易くなり超塑性
特性が劣化する。またα相が70%を超えるとα相
の結晶粒が粗大化し易くなり超塑性特性が劣化す
る。α相及びβ相の強化に必要な各元素の最低の
含有量は他の元素の含有量とのかね合いで決ま
る。 本発明のチタン合金は、前記の各元素の含有量
の範囲において、超塑性加工を行うのに十分な特
性を有し、かつ優れた高温比強度と延性を有す
る。 発明の効果 本発明の合金は、以下の実施例における比較例
からも明らかなように、従来の超塑性加工用チタ
ン合金に比べて超塑性特性が優れ、超塑性加工が
容易で、かつ高温比強度及び延性も優れたもので
ある。従つて切削加工なしにコンプレツサーロー
ター等の部品を安価に製造することができる。ま
たこれを使用することによりジエツトエンジンや
発電設備などの各種ガスタービンの軽量化及び高
効率化が可能になる等の優れた効果を有する。 実施例 本発明の下記表1に示す組成の合金と比較のた
めの既存合金をアーク容解、鍛造後、850℃で約
85%の熱間圧延し、6mmφ引張試験片及び5mmφ
超塑性試験片を作つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a titanium alloy for superplastic working with high high temperature specific strength. For more details, the α phase is 30 ~ 850℃.
It relates to a titanium alloy for superplastic working, which contains 70% of the titanium alloy, with the remainder consisting of β phase, and has excellent high-temperature specific strength and ductility. Conventional technology Traditionally, Ti alloy parts have been manufactured by forging and cutting, but in the case of manufacturing compressor rotors, approximately 90% of the cutting waste is produced.
Not only was the yield extremely low, but the workability was also extremely poor. Superplastic processing of Ti alloys is an effective means to improve this. Superplastic processing is performed on Ti where the volume ratio of α phase and β phase is close to 1:1 at the processing temperature.
The alloy is excellent. Also, the superplastic processing temperature is 900℃
The nearby temperature is suitable. At high temperatures higher than 900°C, coarsening and oxidation of crystal grains tend to occur, resulting in deterioration of superplastic properties. Furthermore, at temperatures lower than 900°C, grain boundary sliding becomes difficult to occur, resulting in deterioration of superplastic properties and increased deformation stress, making superplastic processing difficult. Conventional titanium alloys for superplastic processing include Ti-6Al-4V alloy and Ti-6Al-2Sn-
4Zr-2Mo alloy and Ti-6Al-2Sn-4Zr-6Mo alloy are known. However, all of these Ti alloys had the drawback of lower strength than β-type Ti alloys. Purpose of the Invention The present invention aims to improve the drawbacks of the conventional titanium alloys for superplastic working, and its purpose is to provide a titanium alloy for superplastic working that has excellent superplastic properties, high-temperature specific strength, and ductility. is to provide. Composition of the Invention As a result of research to achieve the above object, the present inventors have found that at 850°C, it contains approximately 30 to 70% α phase and the remainder is β phase, has excellent superplastic properties, and has excellent high-temperature specific strength and ductility. We have discovered a titanium alloy with excellent superplastic working properties. The present invention was completed based on this knowledge. The titanium alloy of the present invention has, in weight%, Al5.3~6.1%, V1.6~2.2%, Sn1.2
~1.6%, Zr5.0~7.5%, Mo1.3~1.8%, Cr0.8~
1.6%, Fe 0.8~1.7%, O 0.10~0.15%, and the remainder is essentially Ti, which is a titanium alloy for superplastic working with high high temperature specific strength. The effects of the compositional components and the reasons for limiting the composition ratios in the alloy of the present invention are as follows. Al mainly acts as a solid solution in the α phase to strengthen the α phase. Al content is 5.3% (% indicates weight%).
If the amount is less than 6.1%, the alpha phase strengthening effect will not be obtained sufficiently, and if the amount exceeds 6.1%, the amount of alpha phase will increase and sufficient superplastic properties will not be obtained.
The amount of Al needs to be 5.3 to 6.1%. V acts as a solid solution in the α phase and β phase to strengthen these phases. If the amount of V is less than 1.6%, the strengthening effect of α phase and B phase cannot be obtained sufficiently, and the amount is less than 1.6%.
If it exceeds 2.2%, the α phase decreases and sufficient superplastic properties cannot be obtained, so the V content needs to be 1.6 to 2.2%. Sn and Zr form a solid solution in the α phase and the β phase at approximately the same ratio and act to strengthen these phases. If the amount of Sn is less than 1.2%, the strengthening effect of α and β phases cannot be sufficiently obtained, and if the amount exceeds 1.6%, the specific gravity increases and the specific strength decreases, so the amount of Sn is 1.2%.
~1.6% is required. Also, the amount of Zr is 5.0
If the amount is less than 7.5%, the strengthening effect of α and β phases will not be sufficiently obtained, and if the amount exceeds 7.5%, the amount of α phase will decrease and sufficient superplastic properties will not be obtained.
The amount should be 5.0-7.5%. Mo, Cr, and Fe mainly act as solid solutions in the β phase to strengthen the β phase. If the amount of Mo is less than 1.3%, the effect of β phase strengthening cannot be obtained sufficiently, and the amount is less than 1.8%.
%, the specific gravity increases and the specific strength decreases, so the amount of Mo needs to be 1.3 to 1.8%.
If the amount of Cr is less than 0.8%, the effect of β phase strengthening will not be obtained sufficiently, and if the amount exceeds 1.6%, the amount of α phase will decrease and sufficient superplastic properties will not be obtained.
The amount of Cr needs to be 0.8 to 1.6%. In addition, if the amount of Fe is less than 0.8%, the β phase strengthening effect will not be sufficiently obtained, and if the amount exceeds 1.7%, the amount of α phase will decrease and sufficient superplastic properties will not be obtained, so the amount of Fe should be 0.8%. ~1.7% is required. O mainly acts as a solid solution in the α phase to strengthen the α phase. If the amount of O is less than 0.10%, the effect of α phase strengthening cannot be obtained sufficiently, and if the amount exceeds 0.15%, the amount of α phase increases and sufficient superplastic properties cannot be obtained, so the amount of O is 0.10 to 0.15. %. A titanium alloy containing each of the above elements in the proportions described above has 30 to 70% α phase and the remainder β phase at 850°C. The α and β phases mutually inhibit grain growth and improve superplastic properties. If the α-phase content is less than 30%, the β-phase crystal grains tend to become coarser and the superplastic properties deteriorate. Moreover, if the α phase exceeds 70%, the crystal grains of the α phase tend to become coarser, and the superplastic properties deteriorate. The minimum content of each element necessary for strengthening the α and β phases is determined by the balance with the content of other elements. The titanium alloy of the present invention has sufficient properties for superplastic working within the content ranges of each of the above-mentioned elements, and has excellent high-temperature specific strength and ductility. Effects of the Invention As is clear from the comparative examples in the Examples below, the alloy of the present invention has superior superplastic properties compared to conventional titanium alloys for superplastic working, is easy to superplastically work, and has a high temperature ratio. It also has excellent strength and ductility. Therefore, components such as compressor rotors can be manufactured at low cost without cutting. Further, by using this, it has excellent effects such as making it possible to reduce the weight and increase the efficiency of various gas turbines such as jet engines and power generation equipment. Example An alloy of the present invention having the composition shown in Table 1 below and an existing alloy for comparison were arc melted and forged at 850°C.
85% hot rolled, 6mmφ tensile test piece and 5mmφ
A superplastic specimen was made.

【表】【table】

【表】 高温引張試験片は、850〜900℃で1時間熱処理
した後水冷し、再び500〜600℃で4時間熱処理、
空冷して試験に供した。高温引張試験は300℃で、
3×10-4S-1の歪速度で行つた。超塑性試験片は
熱間圧延のままの状態で試験に供した。超塑性試
験は850℃で、アルゴン雰囲気中で、1.7×
10-3S-1の速度で行つた。 その結果は下記の表2及び表3に示す通りであ
つた。
[Table] High-temperature tensile test pieces were heat-treated at 850-900℃ for 1 hour, cooled with water, heat-treated again at 500-600℃ for 4 hours,
It was air cooled and used for testing. High temperature tensile test is 300℃,
The strain rate was 3×10 -4 S -1 . The superplastic specimen was subjected to the test in the hot-rolled state. Superplasticity test was carried out at 850℃ in argon atmosphere, 1.7×
It moved at a speed of 10 -3 S -1 . The results were as shown in Tables 2 and 3 below.

【表】 表2の結果が示すように、本発明のTi合金は
既存のTi−6Al−4V、Ti−6Al−2Sn−4Zr−
2Mo及びTi−6Al−2Sn−4Zr−6Mo合金に比べ
て、延性及び比強度において著しく優れているこ
とがわかる。すなわち、本発明のTi合金では、
比強度が29.1〜29.8Kgf/mm2/g/cm3の値を示す
条件で7.3〜9.4%の伸びが確保されるのに対し、
Ti−6Al−4V及びTi−6Al−2Sn−4Zr−2Mo合
金では、そのような高比強度が得られない。 また、Ti−6Al−2Sn−4Zr−6Mo合金の場合
は、比強度が29.9Kgf/mm2/g/cm3まで増大する
と伸びは5.2%まで低下する。
[Table] As the results in Table 2 show, the Ti alloy of the present invention
It can be seen that it is significantly superior in ductility and specific strength compared to 2Mo and Ti-6Al-2Sn-4Zr-6Mo alloys. That is, in the Ti alloy of the present invention,
While an elongation of 7.3 to 9.4% is secured under conditions where the specific strength shows a value of 29.1 to 29.8 Kgf/mm 2 /g/cm 3 ,
Such high specific strength cannot be obtained with Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo alloys. Further, in the case of Ti-6Al-2Sn-4Zr-6Mo alloy, when the specific strength increases to 29.9 Kgf/ mm2 /g/ cm3 , the elongation decreases to 5.2%.

【表】 この結果が示すように、本発明チタン合金は、
584〜600%の超塑性伸びを有し、最大変形応力も
1.7〜1.8Kgf/mm2と十分に低く、既存のTi−6Al
−2Sn−4Zr−6Mo合金に比べて著しく優れてい
る。
[Table] As shown by this result, the titanium alloy of the present invention has
It has a superplastic elongation of 584-600%, and the maximum deformation stress is also
1.7~1.8Kgf/ mm2 , which is sufficiently low compared to existing Ti-6Al
- Significantly superior to the -2Sn-4Zr-6Mo alloy.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、Al5.3〜6.1%、V1.6〜2.2%、
Sn1.2〜1.6%、Zr5.0〜7.5%、Mo1.3〜1.8%、
Cr0.8〜1.6%、Fe0.8〜1.7%、O0.10〜0.15%を含
み、残部は実質的にTiよりなる高温比強度の高
い超塑性加工用チタン合金。
1% by weight, Al5.3~6.1%, V1.6~2.2%,
Sn1.2~1.6%, Zr5.0~7.5%, Mo1.3~1.8%,
A titanium alloy for superplastic working with high high temperature specific strength, containing 0.8 to 1.6% Cr, 0.8 to 1.7% Fe, and 0.10 to 0.15% O, with the remainder essentially consisting of Ti.
JP19052384A 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature Granted JPS6169936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19052384A JPS6169936A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19052384A JPS6169936A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Publications (2)

Publication Number Publication Date
JPS6169936A JPS6169936A (en) 1986-04-10
JPH0211658B2 true JPH0211658B2 (en) 1990-03-15

Family

ID=16259501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19052384A Granted JPS6169936A (en) 1984-09-13 1984-09-13 Titanium alloy for superplastic working having high specific strength at high temperature

Country Status (1)

Country Link
JP (1) JPS6169936A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222486B (en) * 2016-10-08 2018-06-08 燕山大学 A kind of high intensity zirconium titanium ferro-aluminum vanadium alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS6169936A (en) 1986-04-10

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JP2001316743A (en) TiAl ALLOY, ITS MANUFACTURING METHOD, AND MOVING BLADE USING IT
Tabie et al. Mechanical properties of near alpha titanium alloys for high-temperature applications-a review
CN110983104A (en) High-strength high-plasticity heat-strength titanium alloy wire and processing and manufacturing method and application thereof
GB2060694A (en) Titanium alloys of the tial type
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
CA2014908C (en) Gamma titanium aluminum alloys modified by carbon, chromium and niobium
CA3109173C (en) Creep resistant titanium alloys
WO1989001052A1 (en) Titanium alloys
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JPS6158544B2 (en)
CA2009598C (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JPH0211658B2 (en)
JPH0211659B2 (en)
JP2608688B2 (en) High strength and high ductility Ti alloy
JP2608689B2 (en) High strength and high ductility Ti alloy
JPS6310216B2 (en)
JPH0317885B2 (en)
JPH0317886B2 (en)
JPH0621305B2 (en) Heat resistant titanium alloy
JP2737500B2 (en) Heat resistant titanium alloy
JPH05163543A (en) Heat-resistant titanium alloy

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term