JPH02113531A - Metallic film of semiconductor device - Google Patents

Metallic film of semiconductor device

Info

Publication number
JPH02113531A
JPH02113531A JP26656388A JP26656388A JPH02113531A JP H02113531 A JPH02113531 A JP H02113531A JP 26656388 A JP26656388 A JP 26656388A JP 26656388 A JP26656388 A JP 26656388A JP H02113531 A JPH02113531 A JP H02113531A
Authority
JP
Japan
Prior art keywords
film
crystal grain
grain size
metal film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26656388A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sakuma
敏幸 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26656388A priority Critical patent/JPH02113531A/en
Publication of JPH02113531A publication Critical patent/JPH02113531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit migration of crystal grains due to stress and to improve resistance to stress migration by varying crystal grain sizes constituting a metallic film in stages in the direction of thickness of the film. CONSTITUTION:An aluminum film is deposited by sputtering on an interlayer insulating film 2 formed on a semiconductor substrate. As the deposition progresses, ratio of neon to argon in the used sputtering gas is varied from 0 to 75% continuously or by stages. Thereby, crystal grain size 1a near the boundary between a metallic film 1 and the insulating film 2 is 1.0 to 10.0mum similarly to a metallic film as obtained by an ordinary sputtering process, and crystal grain size 1e on the surface becomes as small as 0.1 to 1.0mum. In this manner, it is possible to prevent disconnection due to stress migration. Further, it is also possible to prevent hillocks caused by heat treatments.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の配線に使用される金属膜に関
し、特にストレスマイグレーション耐性を改善した金属
膜の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal film used for wiring of a semiconductor integrated circuit, and particularly to a structure of a metal film with improved stress migration resistance.

〔従来の技術] 従来、半導体装置の配線用に利用される金属膜は、スパ
ッタ法あるいは真空蒸着法などにより堆積した同一組成
の金属膜で構成されている。また、異なる物質を順に堆
積した積層構造の金属膜として構成されたものもある。
[Prior Art] Conventionally, metal films used for wiring in semiconductor devices are composed of metal films of the same composition deposited by sputtering, vacuum evaporation, or the like. There are also metal films with a laminated structure in which different materials are sequentially deposited.

いずれにしても、この種の金属膜の形成に際しては、集
積回路素子の表面の凹凸あるいは配線用開口部における
段差部のステップカバレッジを改善するために、通常は
真空蒸着法よりもステップカバレッジが良好なスパッタ
法により配線用金属膜を堆積するのが一般的である。
In any case, when forming this type of metal film, the step coverage is usually better than that of vacuum evaporation in order to improve the step coverage of uneven surfaces of integrated circuit elements or steps in wiring openings. Generally, a metal film for wiring is deposited by a sputtering method.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置の金属膜、特にスパッタ方で
形成された金属膜は、蒸着法で形成された金属膜に比べ
て堆積された金属膜の結晶粒径が大きく、しかも結晶粒
径は粒径のばらつきの範囲内で略一定になっている。こ
のため、結晶粒径が金属膜の厚さ方向2幅方向に相対移
動され易く、ストレスマイグレーションにより断線し易
いものとなっている。また、堆積後の焼なましなどの熱
処理によりヒロックが多く発生し保護膜や層間膜にピン
ホールおよびクランクなどを発生させるといった問題も
ある。
The metal films of the conventional semiconductor devices mentioned above, especially those formed by sputtering, have larger crystal grain sizes than metal films formed by vapor deposition; It is approximately constant within the range of diameter variation. For this reason, the crystal grain size tends to be relatively shifted in the thickness direction and the width direction of the metal film, making it easy to break the wire due to stress migration. Further, there is also the problem that many hillocks occur due to heat treatment such as annealing after deposition, causing pinholes and cranks in the protective film and interlayer film.

本発明の目的は、ストレスマイグレーションによる断線
を防止するとともに、熱処理によって生するヒロックを
防止する半導体装置の金属膜を提供することにある。
An object of the present invention is to provide a metal film for a semiconductor device that prevents wire breakage due to stress migration and also prevents hillocks caused by heat treatment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の金属膜は、金属膜を構成する結晶
粒径を膜厚方向に対して段階的に変化させ、かつ少なく
とも表面層の結晶粒径を最小にしている。
In the metal film of the semiconductor device of the present invention, the crystal grain size constituting the metal film is changed stepwise in the film thickness direction, and the crystal grain size in at least the surface layer is minimized.

〔作用〕[Effect]

上述した構成では、結晶粒径を膜厚方向に異ならせるこ
とでストレスに対する強度を向上させ、表面層の結晶粒
径を最小にすることでヒロックを抑制する。
In the above-described structure, strength against stress is improved by varying the crystal grain size in the film thickness direction, and hillocks are suppressed by minimizing the crystal grain size of the surface layer.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例を説明するための半導体装
置の金属膜の模式的な断面図である。この金属膜1は絶
縁膜2の上にアルミニウムで形成しており、金属膜を構
成するアルミニウムの結晶粒径を膜厚方向に変化させて
いる。ここでは結晶粒径を下側から上側に向けて徐々に
小さくなる結晶粒径1a乃至1eの5段階に変化させ、
かつ各結晶粒径を上方に向けて段階的に小さくなるよう
に構成している。
FIG. 1 is a schematic cross-sectional view of a metal film of a semiconductor device for explaining a first embodiment of the present invention. This metal film 1 is formed of aluminum on an insulating film 2, and the crystal grain size of the aluminum constituting the metal film is varied in the film thickness direction. Here, the crystal grain size is changed in five stages from 1a to 1e, which gradually decrease from the bottom to the top,
In addition, each crystal grain size is configured to become smaller stepwise upward.

この金属膜の製造方法としては、例えば半導体基板上に
形成された眉間膜2の上にアルミニウム膜をスパッタ法
により厚さ1.0μm堆積する。このときのアルミニウ
ム膜の堆積条件は、圧力が0.1〜1.3P a 、ス
パッタガスがアルゴンとネオンの混合気体を用いている
。そして、堆積の進行と共に、ネオンのアルゴンに対す
る比をOから75%まで連続又は段階的に変化させてい
る。このようにすると、金属膜1と絶縁膜2との境界付
近での結晶粒径1aは通常のスパッタ法による金属膜と
同様に1.0μm〜10.0μmであり、また表面の結
晶粒径1eは0.1μm−i、oμm程度に小さくする
ことができる。
As a method for manufacturing this metal film, for example, an aluminum film is deposited to a thickness of 1.0 μm on a glabellar film 2 formed on a semiconductor substrate by sputtering. The conditions for depositing the aluminum film at this time are that the pressure is 0.1 to 1.3 Pa, and the sputtering gas is a mixed gas of argon and neon. As the deposition progresses, the ratio of neon to argon is changed continuously or stepwise from O to 75%. In this way, the crystal grain size 1a near the boundary between the metal film 1 and the insulating film 2 is 1.0 μm to 10.0 μm, similar to a metal film formed by ordinary sputtering, and the crystal grain size 1e on the surface is can be made as small as about 0.1 μm-i, 0 μm.

この構成の金属膜においては、表面付近の結晶粒径1e
が小さいことで焼なましなどの熱処理によるヒロックの
発生が少なくなる。また、この表面部分の結晶粒径1e
(ld、lc等)が金属膜1で構成される配線幅に比較
して小さくされることで、金属膜1に密接して形成した
シリコン窒化膜等の眉間膜や保護膜から加えられる応力
が原因とされるストレスマイグレーションによる断線に
対しても非常に強くなる。
In the metal film with this configuration, the crystal grain size near the surface is 1e.
A small value reduces the occurrence of hillocks due to heat treatment such as annealing. In addition, the crystal grain size of this surface portion is 1e.
By making (ld, lc, etc.) smaller than the wiring width formed by the metal film 1, the stress applied from the glabellar film or protective film such as a silicon nitride film formed in close contact with the metal film 1 is reduced. It is also extremely resistant to disconnections caused by stress migration.

なお、膜厚方向に結晶粒径を変化させる方法として次の
ようなものもある。すなわち、金属膜として銅やチタン
などの金属を少量含むアルミニウム膜を堆積するものと
し、スパッタ時にこれら金属の添加量を変化させること
により結晶粒径を変化させるものである。例えば、同一
真空装置内にアルミニウムと銅のターゲットを設け、ア
ルミニウムと銅を同時にスパッタすることにより結晶粒
径をコントロールする方法である。
Note that the following method is also available for changing the crystal grain size in the film thickness direction. That is, an aluminum film containing a small amount of metal such as copper or titanium is deposited as a metal film, and the crystal grain size is changed by changing the amount of these metals added during sputtering. For example, there is a method in which aluminum and copper targets are provided in the same vacuum apparatus and the crystal grain size is controlled by sputtering aluminum and copper simultaneously.

このときのアルミニウム膜の堆積条件はアルゴンガス圧
は0.1〜1.3P a 、基板温度は250°C〜3
50″C1堆積速度は1.0μm/分である。アルミニ
ウムと銅を同時にスパッタすることによって堆積する時
の銅の堆積条件はターゲットへの投入電力を0〜5KW
で連続的に変化すればよい。このようにすると、アルミ
ニウム膜中の銅濃度を0〜3重量パーセントに変化でき
、結晶粒径は0.1〜10.0μmまで銅濃度に逆比例
して結晶粒径を変化させたアルミニウム膜を製造できる
。この方法では、アルミニウム膜へ添加する物質を独立
に選択することができ、結晶粒径を自由にコントロール
することができる利点がある。
The conditions for depositing the aluminum film at this time were argon gas pressure of 0.1 to 1.3 Pa, and substrate temperature of 250°C to 3.
The deposition rate of 50"C1 is 1.0 μm/min. When depositing aluminum and copper by sputtering simultaneously, the copper deposition conditions are as follows: power input to the target is 0 to 5 KW.
It should change continuously. In this way, the copper concentration in the aluminum film can be varied from 0 to 3% by weight, and the crystal grain size can be varied inversely proportional to the copper concentration from 0.1 to 10.0 μm. Can be manufactured. This method has the advantage that the substances added to the aluminum film can be independently selected and the crystal grain size can be freely controlled.

第2図は本発明の第2実施例の金属膜の模式的な断面図
である。
FIG. 2 is a schematic cross-sectional view of a metal film according to a second embodiment of the present invention.

第2図に示すように絶縁膜12の上にスパッタ法により
金属膜11としてアルミニウム膜を1.0μmの厚さに
堆積する。そして、アルミニウムの結晶粒径は比較的大
径のものllaと小径のもの11bを厚さ方向に交互に
形成し、最も表面側に小径の結晶粒径11bを配設して
いる。
As shown in FIG. 2, an aluminum film is deposited as the metal film 11 to a thickness of 1.0 μm on the insulating film 12 by sputtering. The aluminum crystal grains are formed alternately in the thickness direction, such as relatively large crystal grains lla and small diameter crystal grains 11b, with the small crystal grains 11b disposed closest to the surface.

この金属膜11をスパッタ法で形成する方法としては、
スパッタガスにはアルゴンのみを用いている。そして、
堆積時の圧力は0.1〜1゜OPaの場合と1.3〜3
゜OPaの場合の二条性として交互に堆積を行う。これ
により、大、小の各結晶粒径11a、llbをおのおの
1.0〜10.0 a m 、  0.5〜3.0μm
程度に相違させることができる。この実施例では、アル
ゴンとネオンの混合気体を使用する必要がなく、製造が
容易になるという利点がある。
The method for forming this metal film 11 by sputtering is as follows:
Only argon is used as the sputtering gas. and,
The pressure during deposition is 0.1~1゜OPa and 1.3~3゜OPa.
In the case of ゜OPa, the deposits are alternately deposited in two rows. As a result, the large and small crystal grain sizes 11a and llb are respectively 1.0 to 10.0 am and 0.5 to 3.0 μm.
It can be made to differ in degree. This embodiment has the advantage that it is not necessary to use a mixed gas of argon and neon, making it easier to manufacture.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、金属膜を構成する結晶粒
径を膜厚方向に対して段階的に変化させているので、ス
トレスに対する結晶粒径の移動を抑制してストレスマイ
グレーション耐性を向上させることができる。また、少
なくとも表面層の結晶粒径を最小にしているので、焼な
ましなどの熱処理で発生するヒロックを抑えることがで
き、金属膜表面に密着させる保護膜1層間膜におけるク
ランクやピンホールの発生をも防止して半導体装置の耐
湿性を向上させる効果もある。
As explained above, the present invention changes the crystal grain size constituting the metal film in stages in the film thickness direction, thereby suppressing movement of the crystal grain size in response to stress and improving stress migration resistance. be able to. In addition, since the crystal grain size of at least the surface layer is minimized, hillocks that occur during heat treatment such as annealing can be suppressed, and the occurrence of cranks and pinholes in the interlayer film of the protective film that adheres to the metal film surface. It also has the effect of improving the moisture resistance of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の金属膜の模式的な断面図
、第2図は本発明の第2実施例の金属膜の模式的な断面
図である。 1・・・金属膜、1a〜1e・・・結晶粒径、2・・・
絶縁性層間膜、11・・・金属膜、lla、llb・・
・結晶粒径。12・・・絶縁膜。
FIG. 1 is a schematic cross-sectional view of a metal film according to a first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a metal film according to a second embodiment of the present invention. 1... Metal film, 1a to 1e... Crystal grain size, 2...
Insulating interlayer film, 11...metal film, lla, llb...
・Crystal grain size. 12...Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体装置の配線として構成される金属膜において
、該金属膜を構成する結晶粒径を膜厚方向に対して段階
的に変化させ、かつ少なくとも表面層の結晶粒径を最小
にしたことを特徴とする半導体装置の金属膜。
1. In a metal film configured as wiring of a semiconductor device, the crystal grain size constituting the metal film is changed stepwise in the film thickness direction, and the crystal grain size in at least the surface layer is minimized. Characteristics of metal films for semiconductor devices.
JP26656388A 1988-10-22 1988-10-22 Metallic film of semiconductor device Pending JPH02113531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26656388A JPH02113531A (en) 1988-10-22 1988-10-22 Metallic film of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26656388A JPH02113531A (en) 1988-10-22 1988-10-22 Metallic film of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02113531A true JPH02113531A (en) 1990-04-25

Family

ID=17432573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26656388A Pending JPH02113531A (en) 1988-10-22 1988-10-22 Metallic film of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02113531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116751U (en) * 1989-03-06 1990-09-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116751U (en) * 1989-03-06 1990-09-19

Similar Documents

Publication Publication Date Title
EP0480409B1 (en) Method of fabricating a Ti/TiN/Al contact, with a reactive sputtering step
KR102478822B1 (en) Semiconductor device with anti-warp layer
JPS63301548A (en) Manufacture of semiconductor device
US5597458A (en) Method for producing alloy films using cold sputter deposition process
KR970018001A (en) Fabrication process of chemical vapor deposition aluminum layer in semiconductor device
JPH02113531A (en) Metallic film of semiconductor device
JPS63136547A (en) Method of forming wiring for semiconductor device
KR930001311A (en) Metal wiring layer formation method of a semiconductor device
JPH01191442A (en) Manufacture of semiconductor integrated circuit device
JPH05175157A (en) Method for forming titanium compound film
US5888899A (en) Method for copper doping of aluminum films
JPS6266628A (en) Forming method for interconnection of semiconductor element
JPH10106972A (en) Manufacture of electrode wiring structure
JPS63132475A (en) Thin film and manufacture thereof
JP3559290B2 (en) Metal thin film and method for producing the same
JPH04315427A (en) Manufacture of semiconductor device
KR100454629B1 (en) Method for forming conductive interconnection of semiconductor device to improve diffusion preventing ability
JP3214024B2 (en) Thin film transistor and manufacturing method thereof
JPH0338832A (en) Wiring structure of semiconductor device
JPH07130849A (en) Semiconductor device and its manufacture
JPH04199716A (en) Semiconductor device and production
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture
JPS62165328A (en) Method of alloying metal after oxidization
JPS63169044A (en) Manufacture of semiconductor device
JPH0513751A (en) Semiconductor device and manufacture thereof