JPS63132475A - Thin film and manufacture thereof - Google Patents

Thin film and manufacture thereof

Info

Publication number
JPS63132475A
JPS63132475A JP27872586A JP27872586A JPS63132475A JP S63132475 A JPS63132475 A JP S63132475A JP 27872586 A JP27872586 A JP 27872586A JP 27872586 A JP27872586 A JP 27872586A JP S63132475 A JPS63132475 A JP S63132475A
Authority
JP
Japan
Prior art keywords
layer
nitrogen
film thickness
nitrogen content
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27872586A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Asai
浅井 和義
Hirohiko Sugawara
裕彦 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP27872586A priority Critical patent/JPS63132475A/en
Publication of JPS63132475A publication Critical patent/JPS63132475A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce resistance while restraining the diffusion of volatile component, by stacking, in the direction of film thickness, a first layer wherein content of nitrogen is high and the film thickness is small, and a second layer wherein content of nitrogen is low and the film thickness is large. CONSTITUTION:A thin film constituted by stacking a first layer 8 and a second layer 9 in the direction of film thickness is formed on a compound semiconductor substrate 1. As to the first layer, the content of nitrogen is high and the film thickness is small. As to the second layer, the content of nitrogen is low and the film thickness is large. Material of a sputter target in this forming method is tungsten silicide or a mixture of tungusten and silicon. An input power supplied to this target is set in a first condition wherein the degree of sticking to the semiconductor substrate is low, and the first layer 8, whose content of nitrogen is high, is formed thin so as to have high accuracy. Next, the input power is set in a second condition wherein the degree of sticking is high, and the second layer 9 is formed thick at a fast speed. In each process, nitrogen gas and inactive gas are introduced with a constant partial pressure ratio into reactive sputtering equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs等の化合物半導体基板上の電極や配
線層等の薄膜の構成およびその製造方法に関し、特に、
タングステンとシリコンと窒素とを含み、半導体基板中
の揮発成分が上記電極等に混入する作用を抑止する機能
を有する薄膜の構成およびその製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the structure of thin films such as electrodes and wiring layers on a compound semiconductor substrate such as GaAs, and a method for manufacturing the same.
The present invention relates to a structure of a thin film containing tungsten, silicon, and nitrogen, and having a function of suppressing volatile components in a semiconductor substrate from being mixed into the electrodes, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

本願発明者等は、先に、タングステン(W)とシリコン
(S i)と窒素(N)とを含む材質をGaAs等の化
合物半導体基板上に形成した場合に高温処理を行なって
も、例えば主としてAs等の揮発成分が上記材質の薄膜
に移動することはなく、ゆえに組成変化を伴わないので
、砥抗率等のパラメータを精密に制御する必要のある電
極や配線材料として適していることを提案した。例えば
上記薄膜を電極として用いれば半導体基板と電極の接合
部の電気的特性が変化することもない。また更に、これ
らの材質の上に更に別の低抵抗金属層を設けた場合に、
この金属層と半導体基板成分の相互移動を抑止する領域
、いわゆる拡散バリアとして優れていることも提案した
。これらの提案内容については、特願昭61−4418
4号に記載されている。
The inventors of the present application have discovered that when a material containing tungsten (W), silicon (Si), and nitrogen (N) is first formed on a compound semiconductor substrate such as GaAs, even if high-temperature treatment is performed, for example, mainly Volatile components such as As do not migrate to the thin film of the above material, and therefore there is no change in composition, so we propose that it is suitable as an electrode or wiring material that requires precise control of parameters such as abrasiveness. did. For example, if the above thin film is used as an electrode, the electrical characteristics of the junction between the semiconductor substrate and the electrode will not change. Furthermore, when another low resistance metal layer is provided on top of these materials,
It was also proposed that this region is excellent as a so-called diffusion barrier, a region that inhibits mutual movement of components of the metal layer and semiconductor substrate. Regarding the contents of these proposals, please refer to the patent application No. 61-4418.
It is stated in No. 4.

すなわち、第7図に示すように、GaAs基板1上に電
極、配線層としてタングステン、シリコン、窒素を含む
被膜2を反応性スパッタにより形成すれば、窒素化合物
がバリア作用を奏し、熱処理工程において主として基板
1中のAsが被膜2中に拡散により侵入することを抑止
する作用を有しくGaも多少拡散するが、この拡散も抑
止できる)、電極、配線層の組成および基板1の組成を
変化させないので、極めて安定で信鯨性に富む半導体装
置が実現できる。
That is, as shown in FIG. 7, if a film 2 containing tungsten, silicon, and nitrogen is formed as an electrode and wiring layer on a GaAs substrate 1 by reactive sputtering, the nitrogen compound acts as a barrier and is mainly used in the heat treatment process. It has the effect of inhibiting As in the substrate 1 from invading into the coating 2 by diffusion, and although Ga also diffuses to some extent, this diffusion can also be inhibited), and does not change the composition of the electrodes, the wiring layer, or the composition of the substrate 1. Therefore, an extremely stable and highly reliable semiconductor device can be realized.

更に、第8図に示すように、抵抗率の低い他の金属配線
層たとえば金(Au)3を用いた場合でも、金3とGa
As基板1との間に極めて薄いタングステンとシリコン
と窒素とを含むWi2を介在させれば、金のGaAs中
への拡散とGaAs中のAsの命中への拡散との相互の
拡散を抑制できる。
Furthermore, as shown in FIG. 8, even when using other metal wiring layers with low resistivity, such as gold (Au) 3, gold
By interposing extremely thin Wi2 containing tungsten, silicon, and nitrogen between the As substrate 1 and the As substrate 1, mutual diffusion of gold into GaAs and As into GaAs can be suppressed.

しかし、上記薄膜を窒素含有率が一定である単層膜とし
て用いると、次のような欠点が生じることがわかった。
However, it has been found that when the above thin film is used as a single layer film with a constant nitrogen content, the following drawbacks occur.

すなわち、窒素含有率が高い膜は拡散バリアとしての機
能が高い反面、抵抗が高くなり、窒素含有率が低い膜は
拡散バリアとしての機能は低いが、抵抗も低くなる。
That is, a film with a high nitrogen content has a high function as a diffusion barrier, but has a high resistance, and a film with a low nitrogen content has a low function as a diffusion barrier, but has a low resistance.

第9図は、被着膜(単層)中の窒素含有率と膜の抵抗値
との関係の一例を求めたグラフである。
FIG. 9 is a graph showing an example of the relationship between the nitrogen content in the deposited film (single layer) and the resistance value of the film.

同図において、窒素含有率が10%の場合は3×10−
’Ω・cmであり、窒素含有率が40%の場合はL X
 10−”Ω・cmであり、この間は同図に示すように
片対数グラフにおいてほぼ直線である伜とが分かった。
In the same figure, when the nitrogen content is 10%, 3 x 10-
'Ω・cm, and when the nitrogen content is 40%, L
10-''Ω·cm, and as shown in the same figure, it was found that the semi-logarithmic graph was almost a straight line.

また、窒素原子濃度は50%以上膜中に混在させること
ができないことも分かつた。
It was also found that nitrogen atoms cannot be mixed in the film at a concentration of 50% or more.

また上記材質の膜は、反応性スパッタリングにより基板
上に形成するのが常であるが、反応性スパッタリング条
件を規定する種々の実験条件、すなわち窒素ガスと不活
性ガスとの分圧比・入力電力等をどのように制御すれば
最も効率的に目的とする組成の多層膜を得るかについて
は、従来何ら指針が無かった。
Furthermore, films of the above materials are usually formed on substrates by reactive sputtering, but various experimental conditions that define the reactive sputtering conditions, such as the partial pressure ratio of nitrogen gas and inert gas, input power, etc. Until now, there have been no guidelines as to how to control this to most efficiently obtain a multilayer film with the desired composition.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このため、上記材質の膜を単層膜で構成すると、GaA
s基板1からの主としてAsの拡散を抑制せんとして窒
素含有率を高めれば、抵抗が増大し、半導体装置の高速
動作を制限したり、消費電力が大となるという欠点があ
った。また、第8図に示すように低抵抗金属層を別に設
ける場合には、別個の蒸着やエツチングの工程を要し、
工程の複雑化が歩留まりの低下を招来するという欠点が
あった。
Therefore, if the film of the above material is composed of a single layer film, GaA
If the nitrogen content is increased primarily to suppress the diffusion of As from the s-substrate 1, the resistance increases, which has the drawback of restricting high-speed operation of the semiconductor device and increasing power consumption. Furthermore, if a low resistance metal layer is separately provided as shown in FIG. 8, separate vapor deposition and etching processes are required.
The disadvantage is that the complication of the process leads to a decrease in yield.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、半導体基板からの拡散を抑制す
るバリア効果と抵抗を下げるという効果が両立する薄膜
およびその製造方法を得ることにある。
The present invention has been made in view of these points, and its purpose is to obtain a thin film that has both a barrier effect of suppressing diffusion from a semiconductor substrate and an effect of lowering resistance, and a method for manufacturing the same. It is in.

c問題点を解決するための手段〕 このような目的を達成するために本発明は、タングステ
ンとシリコンと窒素とを構成元素とし化合物半導体基板
上に形成された薄膜において、窒素含有率が多く膜厚の
薄い第1の層と、窒素含有率が少なく膜厚の厚い第2の
層とを膜厚方向に積層して形成するようにしたものであ
る。
Means for Solving Problem c] To achieve such an object, the present invention provides a thin film formed on a compound semiconductor substrate containing tungsten, silicon, and nitrogen as constituent elements, which has a high nitrogen content. A thin first layer and a thick second layer with a low nitrogen content are laminated in the thickness direction.

また、タングステンとシリコンと窒素とを構成元素とし
、窒素含有率が多く膜厚の薄い第1の層と、窒素含有率
が少な(膜厚の厚い第2の層とを膜厚方向に積層して形
成した薄膜を化合物半導体基板上に形成する方法におい
て、材質がタングステンシリサイド又はタングステンと
シリコンとの混合物であるスパッタターゲットに供給す
る入力電力を半導体基板への被着率が低い第1の設定条
件に設定して窒素含有率の高い第1の層を薄く高精度に
形成する工程と、入力電力を被着率が高い第2の設定条
件に設定して窒素含有率の低い第2の層を厚く高速度で
形成する工程とを有し、各工程において窒素ガスと不活
性ガスを一定の分圧比で反応性スパッタ装置に導入する
ようにしたものである。
In addition, the constituent elements are tungsten, silicon, and nitrogen, and a thin first layer with a high nitrogen content and a thick second layer with a low nitrogen content are laminated in the thickness direction. In a method of forming a thin film formed by a method on a compound semiconductor substrate, a first setting condition is such that the input power supplied to a sputter target whose material is tungsten silicide or a mixture of tungsten and silicon has a low deposition rate on the semiconductor substrate. A process of forming a first layer with a high nitrogen content thinly and with high precision by setting the input power to a second setting condition with a high deposition rate, and forming a second layer with a low nitrogen content by setting the input power to a second setting condition with a high deposition rate. The method includes a step of forming a thick layer at a high speed, and in each step, nitrogen gas and inert gas are introduced into a reactive sputtering apparatus at a constant partial pressure ratio.

〔作用〕[Effect]

本発明の薄膜においては、半導体基板からの揮発成分の
侵入が防止され、抵抗値も十分に低(なる。
In the thin film of the present invention, the invasion of volatile components from the semiconductor substrate is prevented, and the resistance value is also sufficiently low.

〔実施例〕〔Example〕

まず、本発明の実施に適用される反応性スパッタ装置、
および本発明の基礎となる物理現象を説明するための種
々の実験パラメータと被着率の特性との関係について説
明する。
First, a reactive sputtering apparatus applied to the implementation of the present invention,
Also, the relationship between various experimental parameters and deposition rate characteristics to explain the physical phenomena that form the basis of the present invention will be explained.

第2図に本発明の実施に適用される反応性スパッタ装置
を示す。第2図において、aはスパッタ用ガス、bは反
応性ガスである。スパッタ用ガスaとしてはAr、Xe
、Kr、Ne等の不活性ガスを用い、反応性ガスbとし
てはN2を用いている。それぞれのガスa、bはマスク
ローメータ4で一定流量に制御された後に混合され、ス
パッタ用真空槽5に導入される。スパッタ用真空槽5の
中では、スパッタターゲット5工が直流又は高周波電源
に接続されており、またスパッタ被膜が付着される基板
52がターゲット51に対向している。スパッタ真空槽
5は、コンダクタンスパルプ6を介して拡散ポンプ・タ
ライオボンブ等の排気装置7に接続されている。
FIG. 2 shows a reactive sputtering apparatus applied to the practice of the present invention. In FIG. 2, a represents a sputtering gas and b represents a reactive gas. Ar, Xe as sputtering gas a
, Kr, Ne, and the like are used, and N2 is used as the reactive gas b. Each of the gases a and b is mixed after being controlled to a constant flow rate by a mask flow meter 4 and introduced into a vacuum chamber 5 for sputtering. In the sputtering vacuum chamber 5, a sputtering target 5 is connected to a direct current or high frequency power source, and a substrate 52 to which a sputtered film is attached faces the target 51. The sputtering vacuum chamber 5 is connected via a conductance pulp 6 to an exhaust device 7 such as a diffusion pump or a talion bomb.

上記構成の反応性スパッタ装置においては、通常、スパ
ッタ真空槽内圧力を3〜30 X 10−’To−rr
程度に保ってスパッタを行なう。スパッタターゲット5
1への入力電力と基板52への被着率との関係を実測し
た結果を第3図に示す。第3図において、横軸は入力電
力(単位W)を示し、縦軸は被着率(デボシフジョンレ
ート、D、R,)を示す。被着率り、R,とは、単位時
間当たりに基板52上に形成される被着膜の膜厚すなわ
ち膜厚増加速度のことである。第3図に示すように、ス
パッタターゲット51へ供給する人力電力に比例して被
着率り、R,の値が高くなっているので、入力電力を大
きくすれば高速に膜を形成できることが分かる。入力電
力を太き(した場合に被着率が増加するのは、入力電力
に比例してスパッタするArのエネルギーが大きくなり
、スパッタ率が高くなるからである。なお、第3図は、
スパッタターゲットにタングステンシリサイドを用い、
不活性ガスとしてArを用いた場合のデータである。
In the reactive sputtering apparatus having the above configuration, the pressure inside the sputtering vacuum chamber is usually set at 3 to 30 x 10-'To-rr.
Perform sputtering while maintaining a certain level. Sputter target 5
FIG. 3 shows the results of actually measuring the relationship between the input power to the substrate 1 and the adhesion rate to the substrate 52. In FIG. 3, the horizontal axis shows the input power (unit: W), and the vertical axis shows the deposition rate (devosification rate, D, R,). The deposition rate, R, is the thickness of the deposited film formed on the substrate 52 per unit time, that is, the rate of increase in the thickness. As shown in FIG. 3, the deposition rate, R, increases in proportion to the amount of human power supplied to the sputter target 51, indicating that the film can be formed at high speed by increasing the input power. . The reason why the deposition rate increases when the input power is increased is because the energy of sputtering Ar increases in proportion to the input power, and the sputtering rate increases.
Using tungsten silicide as a sputter target,
This is data when Ar is used as an inert gas.

この場合、タングステンシリサイドの代わりにタングス
テンどシリコンとの混合物を用いても同様のデータとな
る。
In this case, similar data will be obtained even if a mixture of tungsten and silicon is used instead of tungsten silicide.

第4図は、反応性ガスである窒素と不活性ガス(スパッ
タ用ガス)であるArとの組成比すなわち供給する混合
ガスの分圧比(横軸)に対する入力電力一定時の被着膜
中の窒素含有率(左縦軸)および被着率り、R,(右縦
軸)との関係を特性vALlおよびL2で示すグラフで
ある。特性線L1およびL2から、窒素分圧比を高めれ
ば被着率り、R,が下がり、窒素含有率が上がることが
分かる。これは次のように説明できる。まず、窒素分圧
比を高めたときに被着率り、R,が下がる理由は、次の
通りである。反応性ガス窒素の分圧比は、 反応性ガス分圧/(スパッタガス分圧+反応性ガス分圧
)X100% −N2 M / (N z量+Ar量)X100%と等
しい。ここで、スパッタターゲットに対するスパッタ効
率は、窒素とArでは大なる差を有し、不活性ガスであ
るA、 rに比べ、反応性ガス窒素のスパッタターゲッ
トをスパッタする効率が極めて低いことが知られている
。従って、窒素分圧比を高めることは、全ガス中のAr
の絶対量を低下させるに等しく、スパッタターゲットを
スパッタする能力を低下させるため、スパッタされた成
分が大部分である被着膜は、その形成速度が低下するの
である。また、窒素分圧比を高めることは、スパッタ効
率は低下するものの、全ガス中の窒素の組成比は高くな
っているので、形成される被着膜中の窒素含有率は高く
なるのである。
Figure 4 shows the composition ratio of nitrogen, which is a reactive gas, and Ar, which is an inert gas (sputtering gas), that is, the partial pressure ratio of the supplied mixed gas (horizontal axis) in the deposited film at a constant input power. It is a graph showing the relationship between nitrogen content (left vertical axis) and deposition rate, R, (right vertical axis) using characteristics vAL1 and L2. It can be seen from the characteristic lines L1 and L2 that as the nitrogen partial pressure ratio increases, the deposition rate, R, decreases and the nitrogen content increases. This can be explained as follows. First, the reason why the deposition rate, R, decreases when the nitrogen partial pressure ratio is increased is as follows. The partial pressure ratio of the reactive gas nitrogen is equal to: reactive gas partial pressure/(sputter gas partial pressure+reactive gas partial pressure)X100%-N2M/(Nz amount+Ar amount)X100%. Here, there is a large difference in sputtering efficiency for sputtering targets between nitrogen and Ar, and it is known that the sputtering efficiency of reactive gas nitrogen for sputtering targets is extremely low compared to inert gases A and R. ing. Therefore, increasing the nitrogen partial pressure ratio means that Ar in the total gas
This is equivalent to reducing the absolute amount of the sputtering target and reducing the sputtering ability of the sputter target, so that the formation rate of the deposited film, which is mainly composed of sputtered components, is reduced. Furthermore, although increasing the nitrogen partial pressure ratio lowers the sputtering efficiency, the composition ratio of nitrogen in the total gas increases, so the nitrogen content in the deposited film that is formed increases.

次に、第3図および第4図のデータを使用し、入力電力
を変えて被着率り、R,を変えた場合の被着率り、R,
をパラメータとして窒素分圧比に対する被着膜中の窒素
含有率を整理しなおすと、第5図に示す関係が得られる
。第5図において、特性線L3.L4およびL5は、そ
れぞれ、被着率り、R,が100人/分(入力電力80
W)。
Next, using the data in FIGS. 3 and 4, we will calculate the deposition rate, R, when the input power is changed to change the deposition rate, R,
When the nitrogen content in the deposited film is rearranged with respect to the nitrogen partial pressure ratio using as a parameter, the relationship shown in FIG. 5 is obtained. In FIG. 5, characteristic line L3. L4 and L5 each have a deposition rate, R, of 100 persons/min (input power 80
W).

400人/分(入力電力260W)および650人/分
(入力電力500W)に対応するものである。
It corresponds to 400 people/min (input power 260W) and 650 people/min (input power 500W).

第5図より、第1図に示す多層膜を得るには2通りの方
法が可能であることが分かる。すなわち、第1図におい
て、第1の層8は、窒素含有率が高くなければ基板1か
らの拡散抑止作用がないので、この部分を形成するには
、例えば第5図中の点A又はCのように、窒素含有率を
高くする必要がある。また、第1図の第2の層9は、窒
素含有率を低くして低抵抗化を図る必要がら点Bにする
必要がある。ここで、第1の方法は、点Cから点Bへの
工程をとる方法である。すなわち、被着率り。
From FIG. 5, it can be seen that there are two methods possible to obtain the multilayer film shown in FIG. That is, in FIG. 1, the first layer 8 has no effect of inhibiting diffusion from the substrate 1 unless the nitrogen content is high, so in order to form this portion, for example, point A or C in FIG. As such, it is necessary to increase the nitrogen content. Further, the second layer 9 in FIG. 1 needs to have a low nitrogen content to achieve a low resistance, so it is necessary to form the point B. Here, the first method is a method that takes a step from point C to point B. In other words, the adhesion rate.

R,=650人/分となる入力電力(500W)を一定
としたままで、窒素分圧比を約14%がら2.5%に変
える方法である。この方法により製造すると、一般に真
空槽の容積が大きいため、ガス分圧比変化の応答性は極
めて悪く、約5分程度の時間を経過しなければ分圧比が
収束しないという欠点がある。このため、第1の方法で
製造すれば、第6図に示すように、窒素含有率が被着膜
10の上面と下面で異なったものを作ることはできても
、中間の含有率の部分が多く存在し、結果として、第1
図の構造に比し、全体の抵抗も高く且つ基板1からのA
s等の拡散抑制作用も不十分な薄膜が形成された。
This is a method in which the nitrogen partial pressure ratio is changed from about 14% to 2.5% while keeping the input power (500 W) constant, which gives R, = 650 people/min. When manufactured by this method, since the volume of the vacuum chamber is generally large, the responsiveness to changes in the gas partial pressure ratio is extremely poor, and there is a drawback that the partial pressure ratio does not converge until about 5 minutes have elapsed. For this reason, if the first method is used to manufacture the deposited film 10, as shown in FIG. As a result, the first
Compared to the structure shown in the figure, the overall resistance is higher and the A
A thin film was formed which also had an insufficient effect of suppressing the diffusion of s and the like.

本発明に係わる薄膜の製造方法の一実施例は、上記の点
を考慮してなされた第2の方法であり、第5図において
点A(第1の設定条件)から点B(第2の設定条件)へ
の工程をとるものである。
An embodiment of the thin film manufacturing method according to the present invention is a second method made in consideration of the above points, and in FIG. setting conditions).

すなわち、窒素の組成比を変えた多層の膜を形成するの
に、容易に推考される窒素分圧比を変えるという常識的
手段をとるのではな(、窒素分圧比を一定に保持したま
ま入力電力を変えて被着率DR9を変えるものである。
In other words, in order to form a multilayer film with a different nitrogen composition ratio, instead of taking the common-sense measure of changing the nitrogen partial pressure ratio, which can be easily estimated, do not change the input power while keeping the nitrogen partial pressure ratio constant. The adhesion rate DR9 is changed by changing the .

この手段により、入力電力は極めて応答速度が速いので
、容易に急峻な窒素含有率を達成でき、第1図に示すよ
うに、第1の層8と第2の層9のように区分することが
可能となる。
By this means, input power has an extremely fast response speed, so a steep nitrogen content can be easily achieved, and the first layer 8 and the second layer 9 can be divided as shown in FIG. becomes possible.

さらに、本方法(第2の方法)の付随的長所として、膜
厚の薄い第1の層8は、点Aで示すように被着率り、R
,を低くして形成される、すなわち、ゆっくり膜が形成
されていくので、膜厚の制御性に冨む。また、厚い第2
の層9は、点Bで示すように被着率り、Roの高い条件
で作るので、高速に形成され、短時間で必要とする膜厚
が実現される。ゆえに、総合的にみると、最も効率的か
つ高精度に所望の性質の各層を実現する優れた製造方法
であると言える。
Furthermore, as an additional advantage of this method (second method), the first layer 8 having a thin film thickness has a high deposition rate and R as shown at point A.
, that is, the film is formed slowly, so the film thickness can be easily controlled. Also, thick second
Since the layer 9 is formed under the conditions of high deposition rate and high Ro as shown by point B, it can be formed at high speed and the required film thickness can be achieved in a short time. Therefore, overall, it can be said that this is an excellent manufacturing method that realizes each layer with desired properties most efficiently and with high precision.

上述の構造および製造方法の効果を確認するための実験
を次に説明する。実験は、GaAs基板上にスパッタタ
ーゲットへの入力電力を80Wの条件で反応性スパッタ
した。なお、スパッタターゲットはタングステンシリサ
イドを用い、ガスはArと窒素の混合ガスを用い、窒素
分圧比を2.5%とした。そして、第1の層を窒素含有
率20%で約500人形成し、次に窒素分圧比をそのま
まで入力電力を500Wに変えて第2の層を窒素含有率
2%で約3500人形成した。この結果、全層の抵抗は
約2X10−’Ω・cmと良好であり、かつ、加熱工程
を変えても、・基板からAs等の拡散が生じたことによ
る特性劣化は全く認められず、本構造および本方法の正
当性が立証できた。
Next, an experiment to confirm the effects of the above-described structure and manufacturing method will be described. In the experiment, reactive sputtering was performed on a GaAs substrate under the condition that the input power to the sputter target was 80 W. Note that tungsten silicide was used as the sputtering target, a mixed gas of Ar and nitrogen was used, and the nitrogen partial pressure ratio was 2.5%. Then, the first layer was formed by about 500 people with a nitrogen content of 20%, and then the input power was changed to 500 W with the nitrogen partial pressure ratio unchanged, and the second layer was formed by about 3,500 people with a nitrogen content of 2%. . As a result, the resistance of the entire layer was good at approximately 2 x 10-' Ωcm, and even if the heating process was changed, no deterioration of characteristics due to diffusion of As, etc. from the substrate was observed. The structure and the validity of this method were verified.

なお、上述の実施例においては、不活性ガスとしてAr
を用いたが、Xe、Kr、Neでも同様の効果が期待で
きる。また反応性ガスとして窒素以外に02を用いても
効果が期待できる。
In the above embodiment, Ar is used as the inert gas.
was used, but similar effects can be expected with Xe, Kr, and Ne. Further, effects can be expected even if 02 is used as the reactive gas other than nitrogen.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、窒素含有率が多く膜厚の
薄い第1の層と、窒素含有率が少なく膜厚の厚い第2の
層とを膜厚方向に積層して形成したことにより、半導体
基板からの揮発性成分(主としてAs)の拡散を抑制し
つつ且つ抵抗を下げ・ることができるので、半導体装置
の高速動作が制限されることを防止でき、また消費電力
が大となることを防止できる効果がある。
As explained above, the present invention is achieved by forming a thin first layer with a high nitrogen content and a thick second layer with a low nitrogen content by laminating them in the thickness direction. Since it is possible to suppress the diffusion of volatile components (mainly As) from the semiconductor substrate and to lower the resistance, it is possible to prevent the high-speed operation of the semiconductor device from being restricted and to prevent the power consumption from increasing. It has the effect of preventing this.

また、入力電力を変えて窒素含有率の高い第1の層と窒
素含有率の低い第2の層とを形成することにより、第1
の層はゆっくりと形成され、第2の層は高速に形成され
、かつ第1の層の形成から第2の層の形成への変化の応
答が速いので、高精度かつ効率的に薄膜が形成されると
いう効果がある。
In addition, by changing the input power and forming a first layer with a high nitrogen content and a second layer with a low nitrogen content, the first
The first layer is formed slowly, the second layer is formed quickly, and the response from the formation of the first layer to the formation of the second layer is fast, so thin films can be formed with high precision and efficiency. It has the effect of being

さらに、入力電力を変えることにより電極や配線層等の
薄膜が形成されるので、Au等の他の金属膜の形成・加
工工程を伴わずに反応性スパッタリング工程のみで形成
できるという効果もある。
Furthermore, since thin films such as electrodes and wiring layers can be formed by changing the input power, there is also the advantage that they can be formed only by a reactive sputtering process without involving the process of forming and processing other metal films such as Au.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる薄膜の一実施例を示す構成図、
第2図は本発明の実施に適用される反応性スパッタ装置
を示す系統図、第3図は入力電力に対する被着率り、R
,を示すグラフ、第4図は窒素分圧比に対する窒素含有
率と被着率り、R。 を示すグラフ、第5図は被着率り、R,をパラメータと
して窒素分圧比に対する窒素含有率を示すグラフ、第6
図は窒素分圧比を変化させて形成した薄膜を示す構成図
、第7図および第8図は従来の薄膜を示す構成図、第9
図は被着膜中の窒素含有率に対する抵抗値を示すグラフ
である。 1・・・Qa、As基板、8・・・第1の層、9・・・
第2の層。
FIG. 1 is a block diagram showing an embodiment of a thin film according to the present invention;
Fig. 2 is a system diagram showing a reactive sputtering apparatus applied to the implementation of the present invention, and Fig. 3 shows the deposition rate versus input power, R
, Figure 4 is a graph showing the nitrogen content rate and deposition rate, R, with respect to the nitrogen partial pressure ratio. Fig. 5 is a graph showing the nitrogen content against the nitrogen partial pressure ratio using the adhesion rate, R, as a parameter.
The figure is a block diagram showing a thin film formed by changing the nitrogen partial pressure ratio, Figures 7 and 8 are block diagrams showing a conventional thin film, and Figure 9 is a block diagram showing a thin film formed by changing the nitrogen partial pressure ratio.
The figure is a graph showing the resistance value versus the nitrogen content in the deposited film. DESCRIPTION OF SYMBOLS 1... Qa, As substrate, 8... 1st layer, 9...
Second layer.

Claims (2)

【特許請求の範囲】[Claims] (1)タングステンとシリコンと窒素とを構成元素とし
化合物半導体基板上に形成された薄膜において、窒素含
有率が多く膜厚の薄い第1の層と、窒素含有率が少なく
膜厚の厚い第2の層とを膜厚方向に積層して形成したこ
とを特徴とする薄膜。
(1) In a thin film made of tungsten, silicon, and nitrogen as constituent elements and formed on a compound semiconductor substrate, a first layer with a high nitrogen content and a thin film thickness, and a second layer with a low nitrogen content and a thick film thickness. A thin film characterized by being formed by laminating the layers in the film thickness direction.
(2)タングステンとシリコンと窒素とを構成元素とし
、窒素含有率が多く膜厚の薄い第1の層と、窒素含有率
が少なく膜厚の厚い第2の層とを膜厚方向に積層して形
成した薄膜を化合物半導体基板上に形成する方法におい
て、材質がタングステンシリサイド又はタングステンと
シリコンとの混合物であるスパッタターゲットに供給す
る入力電力を前記半導体基板への被着率が低い第1の設
定条件に設定して窒素含有率の高い第1の層を薄く高精
度に形成する工程と、前記入力電力を前記被着率が高い
第2の設定条件に設定して窒素含有率の低い第2の層を
厚く高速度で形成する工程とを有し、前記各工程におい
て窒素ガスと不活性ガスを一定の分圧比で反応性スパッ
タ装置に導入することを特徴とする薄膜の製造方法。
(2) The constituent elements are tungsten, silicon, and nitrogen, and a thin first layer with a high nitrogen content and a thick second layer with a low nitrogen content are laminated in the thickness direction. In the method of forming a thin film on a compound semiconductor substrate on a compound semiconductor substrate, input power supplied to a sputter target whose material is tungsten silicide or a mixture of tungsten and silicon is set such that the deposition rate on the semiconductor substrate is low. a step of forming a first layer with a high nitrogen content thinly and with high precision by setting the input power to a second setting condition with a high deposition rate; forming a thick layer at high speed, and in each of the steps, nitrogen gas and inert gas are introduced into a reactive sputtering apparatus at a constant partial pressure ratio.
JP27872586A 1986-11-25 1986-11-25 Thin film and manufacture thereof Pending JPS63132475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27872586A JPS63132475A (en) 1986-11-25 1986-11-25 Thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27872586A JPS63132475A (en) 1986-11-25 1986-11-25 Thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63132475A true JPS63132475A (en) 1988-06-04

Family

ID=17601328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27872586A Pending JPS63132475A (en) 1986-11-25 1986-11-25 Thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63132475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233719A (en) * 1990-08-06 1992-08-21 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
JP2006302999A (en) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP2009076889A (en) * 2007-08-24 2009-04-09 Hitachi Metals Ltd Method of forming cu wiring film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233719A (en) * 1990-08-06 1992-08-21 American Teleph & Telegr Co <Att> Manufacture of semiconductor integrated circuit
JPH0775221B2 (en) * 1990-08-06 1995-08-09 エイ・ティ・アンド・ティ・コーポレーション Method for manufacturing semiconductor integrated circuit
JP2006302999A (en) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP2009076889A (en) * 2007-08-24 2009-04-09 Hitachi Metals Ltd Method of forming cu wiring film

Similar Documents

Publication Publication Date Title
JPS63202911A (en) Manufacture of titanium/titanium nitride double-layer in high density integrated circuit
JPS63301548A (en) Manufacture of semiconductor device
JPH1174224A (en) Improved tantalum-containing barrier layers for copper
US20070032075A1 (en) Deposition method for wiring thin film
JPH06151815A (en) Semiconductor device and manufacture threof
JPH0316132A (en) Aluminum wiring and manufacture thereof
JPS63132475A (en) Thin film and manufacture thereof
JPS62274624A (en) Manufacture of semiconductor device
JPS61261472A (en) Bias sputtering method and its apparatus
JP3128165B2 (en) Method for forming electrode of compound semiconductor device
JPS60160612A (en) Manufacture of semiconductor device
US4992152A (en) Reducing hillocking in aluminum layers formed on substrates
JP3278877B2 (en) Wiring formation method
JP3288010B2 (en) Method for forming metal wiring of semiconductor device
JP3559290B2 (en) Metal thin film and method for producing the same
JPS58158918A (en) Manufacture of metal nitride thin film
JPH02113531A (en) Metallic film of semiconductor device
KR950005265B1 (en) Metal wiring method of semiconductor device
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture
JPH0499861A (en) Formation of thin film
JPS6248048A (en) Manufacture of semiconductor device
JPH0499031A (en) Manufacture of semiconductor integrated circuit device
JPS62165328A (en) Method of alloying metal after oxidization
JPH0244701A (en) Thin film resistor and manufacture thereof
JPH08186114A (en) Wiring thin film and manufacture thereof