JPH02113495A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02113495A
JPH02113495A JP63266527A JP26652788A JPH02113495A JP H02113495 A JPH02113495 A JP H02113495A JP 63266527 A JP63266527 A JP 63266527A JP 26652788 A JP26652788 A JP 26652788A JP H02113495 A JPH02113495 A JP H02113495A
Authority
JP
Japan
Prior art keywords
erasing
voltage
memory transistor
memory element
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63266527A
Other languages
Japanese (ja)
Other versions
JPH0758595B2 (en
Inventor
Takeshi Watanabe
毅 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26652788A priority Critical patent/JPH0758595B2/en
Publication of JPH02113495A publication Critical patent/JPH02113495A/en
Publication of JPH0758595B2 publication Critical patent/JPH0758595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Read Only Memory (AREA)

Abstract

PURPOSE:To stably set the threshold voltage of an erasing memory transistor TR by providing a dummy memory TR, a current detecting circuit, and a means which stops the erasing operation by the output of this circuit. CONSTITUTION:A memory TR M1 and a dummy memory TR Md1 are written in the initial state, and a threshold voltage VT of the memory TR is 0.8V. When an erasing signal Erase is switched from the low level to the high level and the erasing operation is started, an erasing signal generating circuit output voltage VE is switched from the low level to the high level, and a voltage VS is raised to +15V from 0V, and voltages VX and VR are equal to 0V and 2V respectively, and +15V, 0V, +15V, and +2V are impressed to the source of the TR M1, its control gate, the source of the TR Md1, and its control gate respectively, and TRs M1 and Md1 start erasing. At this time, the TR Md1 is turned on and its current is detected by a current detecting circuit A2. Thus, the circuit A2 drives the erasing signal generating circuit to stop the erasing operation. Consequently, TRs M1 and Md1 complete the erasing operation with 2V voltage VT, and the voltage VT is not reduced to 0V or lower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に浮遊ゲートを有し電気
的に書込み及び消去可能な不揮発性半導体装置における
消去回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to an erase circuit in a nonvolatile semiconductor device having a floating gate and capable of being electrically written and erased.

〔従来の技術〕[Conventional technology]

従来、浮遊ゲートを有し電気的に書込み及び消去可能な
不揮発性半導体記憶素子である絶縁ゲート電界効果型メ
モリトランジスタ(以下メモリトランジスタと記す)は
、たとえば米国Electronics誌1980年2
月28日号P113〜117に記載されているように選
択トランジスタとメモリトランジスタの2つのトランジ
スタ素子によって構成される。更に最近高密度化を図る
ために選択トランジスタを省きメモリトランジスタだけ
の1トランジスタ素子によって構成される方法が、たと
えばIEEE  l5SC01988年P133〜提案
されている。第2図はこのメモリトランジスタの構造断
面図であるが、制御ゲート1とP型半導体基板6との間
に絶縁膜3を介して浮遊ゲート2を形成し、ドレイン4
とソース5を基板上に形成してなる。次にこのメモリト
ランジスタの基本動作について説明する。まずメモリト
ランジスタの書込みは次のように行なう。ドレイン4に
書込み情報に対応して書込みを行なう場合は高電圧(+
12V)又は書込み禁止の場合はOVを印加し、制御ゲ
ート1に高電圧(+12V)、ソース5に0■を印加し
て行なう。書込みを行なう場合はドレイン及び制御ゲー
トに高電圧を印加するためにドレイン近傍で発生したホ
ットエレクトロンが浮遊ゲートに捕獲され、浮遊ゲート
に電子を蓄積し浮遊ゲートの電位を負にする。ドレイン
にOvを印加すると制御ゲートに高電圧(+12V)を
印加しても浮遊ゲートへの電子の注入は起こらない。こ
の動作は広く知られているEPROMの書込み動作と同
じである。このようにして書込み動作を実現する。
Conventionally, an insulated gate field effect memory transistor (hereinafter referred to as a memory transistor), which is a nonvolatile semiconductor memory element having a floating gate and which can be electrically written and erased, has been described, for example, in the US Electronics magazine, 1980, 2.
As described in pages 113 to 117 of the May 28th issue, it is composed of two transistor elements: a selection transistor and a memory transistor. Furthermore, recently, in order to achieve higher density, a method has been proposed, for example, in IEEE 15SC01988 P133~, in which the selection transistor is omitted and the memory transistor is used as a single transistor element. FIG. 2 is a cross-sectional view of the structure of this memory transistor, in which a floating gate 2 is formed between a control gate 1 and a P-type semiconductor substrate 6 with an insulating film 3 interposed therebetween, and a drain 4
and a source 5 are formed on the substrate. Next, the basic operation of this memory transistor will be explained. First, writing to the memory transistor is performed as follows. When writing to drain 4 in accordance with the write information, a high voltage (+
12V) or OV is applied in the case of write inhibition, a high voltage (+12V) is applied to the control gate 1, and 0■ is applied to the source 5. When writing, a high voltage is applied to the drain and control gate, so hot electrons generated near the drain are captured by the floating gate, and electrons are accumulated in the floating gate, making the potential of the floating gate negative. When Ov is applied to the drain, no electrons are injected into the floating gate even if a high voltage (+12V) is applied to the control gate. This operation is the same as the widely known write operation of EPROM. In this way, a write operation is realized.

次に消去動作について説明する。Next, the erase operation will be explained.

消去は制御ゲートにOv、ソースに高電圧(+12v)
を印加しソースと浮遊ゲートとの間に高電界を発生しF
−Nl−ンネル電流により浮遊ゲートからソースへ電子
を引出して実現する。このときドレインはopen、 
 OV、正電位など、どちらの電位でもかまわない。こ
のようにして書込みまたは消去したメモリトランジスタ
の浮遊ゲートの状態(ii位)を制御ゲートに読出し電
圧を印加してドレインとソースとの間に流れる電流の有
無として検出することにより読出し動作を実現する。つ
まり書込みが行なわれ、浮遊ゲートの電位が“負”のと
きは電流が流れず、書込みが行なわれていない状態又は
消去状態では浮遊ゲートの電位が正”になり電流が流れ
る。
For erasing, Ov is applied to the control gate, and high voltage (+12V) is applied to the source.
is applied to generate a high electric field between the source and the floating gate.
-Nl- This is achieved by drawing electrons from the floating gate to the source using a channel current. At this time, the drain is open,
Any potential such as OV or positive potential may be used. A read operation is realized by applying a read voltage to the control gate to detect the state (II) of the floating gate of the memory transistor written or erased in this way and detecting the presence or absence of current flowing between the drain and source. . That is, when writing is performed and the potential of the floating gate is "negative", no current flows; in a state where no writing is performed or an erased state, the potential of the floating gate becomes "positive" and current flows.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のメモリトランジスタは、消去動作におい
て浮遊ゲートよりソースに電子が放出し、浮遊ゲートの
電位は正電位になるが所望の消去を実現した後も、消去
動作を続けると浮遊ゲートの電位は更に正電位が大きく
なり制御ゲートからみたしきい値電圧はOv以下、つま
りデプレーションになる。この特性を持つメモリトラン
ジスタをマトリクス構成する場合通常デジット線にドレ
インを共通にして複数個並列接続しているが、一方のメ
モリトランジスタを選択して読出す場合に他方のメモリ
トランジスタが前記デプレーションであるとすると一方
のメモリトランジスタ読出しが不可能になるという不具
合が生じる。つまり一方のメモリトランジスタが書込ま
れていて、この情報を読出す動作を所望して一方のメモ
リトランジスタが’off”であるべきものに対して他
方のメモリトランジスタが並列接続されているためデジ
ット線からみた一方のメモリトランジスタの情報は“o
n”であると見なされ情報の誤動作を起こす。この不具
合を解決する手段は次のような事が有る。消去してもメ
モリトランジスタのしきい値電圧がデプレーションにな
らないようにプロセス製造条件を工夫している。たとえ
ばメモリトランジスタの浮遊ゲート直下のチャンネル領
域にしきい値を上げるイオン注入を行ない、メモリトラ
ンジスタのしきい値電圧を4vに弓上げる。このように
すると消去してもメモリトランジスタのしきい値電圧は
4Vから小さくなってもOv以下になりにくい。しかし
この方法の欠点として選択読出しの時メモリトランジス
タのドレインとソースの間に流れる電流が小さい事が挙
げられる。つまり読出し電圧5v、しきい値4■電位差
が1vしかないためにメモリトランジスタのOn電流I
onはIOMA以下になる。またしきい値を4vにあげ
ても、消去をやるとOv以下になりにくいが消去を長期
的に行なうとOv以下になるという程度の差でしかなく
抜本的な解決策でないという欠点がある。以上のように
このメモリトランジスタにおいて安定な特性を実現する
ことは困難であるという欠点がある。
In the above-mentioned conventional memory transistor, electrons are emitted from the floating gate to the source during the erase operation, and the potential of the floating gate becomes a positive potential. However, even after the desired erase is achieved, if the erase operation continues, the potential of the floating gate decreases. The positive potential further increases and the threshold voltage seen from the control gate becomes less than Ov, that is, depletion. When configuring a matrix of memory transistors with this characteristic, a plurality of memory transistors are usually connected in parallel with a common drain connected to the digit line, but when one memory transistor is selected for reading, the other memory transistor is If so, a problem arises in that reading from one memory transistor becomes impossible. In other words, one memory transistor is written to and the other memory transistor is connected in parallel to what should be 'off' in order to read this information. The information of one memory transistor seen from
n", causing information malfunction. The means to solve this problem are as follows. The process manufacturing conditions should be adjusted so that the threshold voltage of the memory transistor does not become depleted even after erasing. For example, ions are implanted into the channel region directly below the floating gate of the memory transistor to raise the threshold voltage of the memory transistor to 4V. Even if the threshold voltage decreases from 4V, it is difficult to fall below Ov.However, the drawback of this method is that the current flowing between the drain and source of the memory transistor during selective readout is small.In other words, when the readout voltage is 5V, Threshold 4■ Since the potential difference is only 1V, the ON current I of the memory transistor
on becomes below IOMA. Further, even if the threshold value is raised to 4V, there is a drawback that it is difficult to go below Ov when erased, but it becomes below Ov when erased for a long time, and it is not a fundamental solution. As described above, this memory transistor has the disadvantage that it is difficult to realize stable characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、浮遊ゲートを有し電気的に書込
み及び消去可能な絶縁ゲート電界効果型メモリトランジ
スタを有し、該メモリトランジスタと同構成の擬似メモ
リトランジスタ及び該擬似メモリトランジスタのソース
からドレインに流れる電流の有無を検出する電流検出回
路を設け、該擬似メモリトランジスタのドレインに接続
し消去動作時前記メモリトランジスタ及び擬似メモリト
ランジスタのそれぞれのソースに高電圧を印加し、前記
メモリトランジスタの制御ゲートに印加する電圧よりも
前記擬似メモリトランジスタの制御ゲートに印加する電
圧の方を高く設定する消去手段と前記擬似メモリトラン
ジスタのソースからドレインに電流が流れると消去動作
を停止する手段を有している。
A semiconductor device of the present invention includes an insulated gate field effect memory transistor having a floating gate and electrically writable and erasable, and a pseudo memory transistor having the same configuration as the memory transistor, and a source to drain of the pseudo memory transistor. A current detection circuit is provided for detecting the presence or absence of a current flowing through the memory transistor, and is connected to the drain of the pseudo memory transistor, and applies a high voltage to the sources of each of the memory transistor and the pseudo memory transistor during an erase operation, and applies a high voltage to the source of each of the memory transistor and the pseudo memory transistor. and means for stopping the erasing operation when current flows from the source to the drain of the pseudo memory transistor. .

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示すブロック図である。浮
遊ゲートを有し電気的に書込み及び消去可能な絶縁ゲー
ト電界効果型メモリトランジスタM1と同構成の擬似メ
モリトランジスタMdlおよびMdlのソースからドレ
インに流れる電流の有無を検出する電流検出回路A2を
設け、この回路をMdlのドレインに接続して、消費動
作時M1とMdlのソースに高電圧vsを印加するソー
ス電圧回路とMlの制御ゲートに印加する電圧V8(O
V)よりもMdlの制御ゲートに印加する電圧VR(2
V)を高くするための擬似制御ゲート電圧回路と、Md
lのソースからドレインに電流が流れると消去停止信号
V s t o pが“L”→“H”になり消去信号発
生回路を停止して消去動作を停止する手段とを設ける。
FIG. 1 is a block diagram showing one embodiment of the present invention. A current detection circuit A2 is provided to detect the presence or absence of a current flowing from the source to the drain of the pseudo memory transistors Mdl and Mdl, which have the same configuration as the insulated gate field effect memory transistor M1 having a floating gate and which can be electrically written and erased, This circuit is connected to the drain of Mdl, and a source voltage circuit applies a high voltage vs to the sources of M1 and Mdl during consumption operation, and a voltage V8 (O
The voltage VR(2) applied to the control gate of Mdl is higher than the voltage VR(2
Pseudo control gate voltage circuit for increasing Md
When a current flows from the source to the drain of I, the erase stop signal V s t op changes from "L" to "H" to stop the erase signal generating circuit and stop the erase operation.

またMl、Md 1のドレインには書込みを実現するた
めの書込み回路をそれぞれ接続する。またMlの読出し
動作を実現するためにセンスアンプ回路A1をMlのド
レインに接続する。消去信号発生回路出力v8は消去信
号E rase及びV s t o pを入力とする。
Further, write circuits for realizing writing are connected to the drains of Ml and Md1, respectively. Further, in order to realize the read operation of M1, the sense amplifier circuit A1 is connected to the drain of M1. The erase signal generation circuit output v8 receives the erase signals E rase and V s t op as inputs.

次に消去動作のフローについて説明する。初期状態とし
て、メモリトランジスタM1とMdH1書込まれており
、メモリトランジスタのしきい値電圧vTは+8vにな
っているとする。次に消去信号E raseが°′L”
→゛″H”になり消去動作を開始するとv8はILII
→“H”、v3はov−+15V、VX=OV、VR=
2VEなりMlの7−スに+15V、制御ゲートにOV
、Md 1のソースに+15V制御ゲートに+2vが印
加されMl。
Next, the flow of the erase operation will be explained. Assume that in the initial state, data has been written to the memory transistors M1 and MdH1, and the threshold voltage vT of the memory transistors is +8V. Next, the erase signal E rase is
→ When it becomes ``H'' and the erase operation starts, v8 becomes ILII.
→“H”, v3 is ov-+15V, VX=OV, VR=
2VE, +15V to 7-s of Ml, OV to control gate
, +2V is applied to the control gate of +15V to the source of Md 1 and Ml.

Mdlは消去を開始する。MlとMdlのそれぞれの浮
遊ゲートに蓄積されている電子がソースに流れ出し、■
アは8vから低下して0■に近ずく。
Mdl begins erasing. The electrons accumulated in the floating gates of Ml and Mdl flow to the source, and ■
A decreases from 8V and approaches 0■.

この時Mdlの制御ゲートに2■の電圧が印加されてい
るため、MdlのV、が2v以下になるとMdlが“o
n”′してMdlのソースからドレインへ電流が流れ始
め、この電流をA2が検出する。
At this time, a voltage of 2■ is applied to the control gate of Mdl, so when V of Mdl becomes 2V or less, Mdl becomes "o".
At n''', current begins to flow from the source to the drain of Mdl, and A2 detects this current.

これによりA2は出力V s t o pをIIL”→
II HIIにして消去信号発生回路を駆動して、v8
をII HII→“′L′′に制御する。v2が“L”
になることにより消去動作を停止し、これによりVsが
15V→Ovに変化する。このA1の働きによりMlと
MdlのvTはそれぞれ2vで消去を完了し、消去動作
を行なうと常に■アは2vに設定でき、vTはOv以下
にならない。
As a result, A2 changes the output V s t op to IIL”→
II HII and drive the erase signal generation circuit to v8
II HII → “L”. v2 is “L”
As a result, the erase operation is stopped and Vs changes from 15V to Ov. Due to the action of A1, erasure is completed with vT of Ml and Mdl each being 2v, and when the erasing operation is performed, ①A can always be set to 2v, and vT does not become less than Ov.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は擬似メモリトランジスタと
電流検出回路と該回路出力により消去動作を停止する手
段を設けることにより、消去時メモリトランジスタのし
きい値電圧を安定に設定でき、しきし・値電圧を“負°
′にすることによる弊害を取除くことが可能にできる効
果がある。
As explained above, the present invention provides a pseudo memory transistor, a current detection circuit, and a means for stopping the erase operation using the output of the circuit, thereby making it possible to stably set the threshold voltage of the memory transistor during erasing, thereby increasing the threshold voltage. Change the voltage to “negative”
It has the effect of making it possible to remove the negative effects caused by

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のブロック図、第2図は本発明
に使用するメモリトランジスタの構造断面図である。 ■・・・・・・制御ゲート、2・・・・・・浮遊ゲート
、3・・・・・・絶縁膜、4,5・・・・・・ドレイン
、ソース、6・・・・・・半導体基板。 代理人 弁理士  内 原   晋 ERASE 第 図 第2図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a structural sectional view of a memory transistor used in the present invention. ■...Control gate, 2...Floating gate, 3...Insulating film, 4, 5...Drain, source, 6... semiconductor substrate. Agent Patent Attorney Susumu Uchihara ERASE Figure 2

Claims (1)

【特許請求の範囲】[Claims] 浮遊ゲートを有し、電気的に書込み及び消去可能な絶縁
ゲート電界効果型メモリトランジスタをメモリ素子とす
る半導体装置において、前記メモリ素子と同構成の擬似
メモリ素子および該擬似メモリ素子のソースからドレイ
ンに流れる電流の有無を検出する電流検出回路を設け該
回路を該擬似メモリ素子のドレインに接続して、消去動
作時前記メモリ素子と前記擬似メモリ素子のそれぞれの
ソースに高電圧を印加し、前記メモリ素子の制御ゲート
に印加する電圧よりも前記擬似メモリ素子の制御ゲート
に印加する電圧の方を高く設定する消去手段と前記擬似
メモリ素子のソースからドレインに電流が流れると前記
電流検出回路により消去動作を停止する手段を設けるこ
とを特徴とする半導体装置。
In a semiconductor device having a floating gate and having an electrically writable and erasable insulated gate field effect memory transistor as a memory element, a pseudo memory element having the same configuration as the memory element and a source to drain of the pseudo memory element are provided. A current detection circuit for detecting the presence or absence of a flowing current is provided, and the circuit is connected to the drain of the pseudo memory element, and during an erase operation, a high voltage is applied to the sources of the memory element and the pseudo memory element, and the memory An erasing means sets the voltage applied to the control gate of the pseudo memory element higher than the voltage applied to the control gate of the element, and when a current flows from the source to the drain of the pseudo memory element, the current detection circuit performs an erasing operation. A semiconductor device characterized in that it is provided with means for stopping.
JP26652788A 1988-10-21 1988-10-21 Semiconductor device Expired - Fee Related JPH0758595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26652788A JPH0758595B2 (en) 1988-10-21 1988-10-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26652788A JPH0758595B2 (en) 1988-10-21 1988-10-21 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH02113495A true JPH02113495A (en) 1990-04-25
JPH0758595B2 JPH0758595B2 (en) 1995-06-21

Family

ID=17432128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26652788A Expired - Fee Related JPH0758595B2 (en) 1988-10-21 1988-10-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0758595B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120296A (en) * 1981-01-19 1982-07-27 Toshiba Corp Semiconductor storage device
JPS62146496A (en) * 1985-12-20 1987-06-30 Nec Corp Non-volatile semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120296A (en) * 1981-01-19 1982-07-27 Toshiba Corp Semiconductor storage device
JPS62146496A (en) * 1985-12-20 1987-06-30 Nec Corp Non-volatile semiconductor memory device

Also Published As

Publication number Publication date
JPH0758595B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
JP3091687B2 (en) Sense amplifier circuit
JP3450896B2 (en) Non-volatile memory device
US5521866A (en) Non-volatile semiconductor memory device having floating gate
JPS63153799A (en) Semiconductor memory
KR940006611B1 (en) Automatic erase optimization circuit and method for eeprom
JP2807256B2 (en) Non-volatile semiconductor memory
JPS63188896A (en) Nonvolatile semiconductor memory
JPH0212695A (en) Memory cell and its reading method
US4434479A (en) Nonvolatile memory sensing system
JP2573335B2 (en) Non-volatile memory
JPH02113495A (en) Semiconductor device
JP3106473B2 (en) Nonvolatile semiconductor memory device
JPH04229655A (en) Erasure system at nonvolatile semiconductor memory device
JP3181478B2 (en) Nonvolatile semiconductor memory device
JPH0527195B2 (en)
JP2648099B2 (en) Nonvolatile semiconductor memory device and data erasing method thereof
JPH03101168A (en) Nonvolatile semiconductor memory
JPS59162694A (en) Semiconductor memory
JPH03203097A (en) Semiconductor memory device
JP2625298B2 (en) Nonvolatile semiconductor memory device
KR100308120B1 (en) Semiconductor memory device ahving static burn-in test circuit
JP2002008380A (en) Multi-level memory
JP2569759B2 (en) Nonvolatile random access semiconductor memory
JPS586238B2 (en) Fukihatsei Handout Thai Memory Souch
JPH0922598A (en) Operation control method of semiconductor memory device, semiconductor memory device and microcomputer using same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees