JPH02113118A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH02113118A
JPH02113118A JP26689288A JP26689288A JPH02113118A JP H02113118 A JPH02113118 A JP H02113118A JP 26689288 A JP26689288 A JP 26689288A JP 26689288 A JP26689288 A JP 26689288A JP H02113118 A JPH02113118 A JP H02113118A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
floating body
teeth
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26689288A
Other languages
Japanese (ja)
Other versions
JP2717819B2 (en
Inventor
Kazuhide Watanabe
和英 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP63266892A priority Critical patent/JP2717819B2/en
Publication of JPH02113118A publication Critical patent/JPH02113118A/en
Application granted granted Critical
Publication of JP2717819B2 publication Critical patent/JP2717819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means
    • F16C39/063Permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0412Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly
    • F16C32/0414Passive magnetic bearings with permanent magnets on one part attracting the other part for radial load mainly with facing axial projections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0417Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
    • F16C32/0419Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly with facing radial projections

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To obtain a strong restoring force trying to pull back a floating body to the original position when the floating body has moved in the direction perpendicular to a magnetic flux by tapering roots of magnetic pole teeth in a magnetic bearing in which plural opposed magnetic pole teeth are provided between a fixed body and a floating body, and the floating body is supported on the fixed body with non-contact. CONSTITUTION:A magnetic bearing device is provided with a magnetic pole 1 on the fixed body side, a magnetic pole 2 on the floating body side, a magnet 3 provided on the fixed body side. Tapers 1b and tapers 2b are provided on respective roots of magnetic teeth 1a of the magnetic pole 1 and magnetic teeth 2a of the magnetic pole 2. By tapering the roots of the opposed magnetic pole teeth, no magnetic satulation occurs at the roots of the magnetic poles teeth even if a large amount of magnetic flux flows to the magnetic poles, and a high magnetic flux density can be obtained at the tips of the magnetic pole teeth. When the floating body has moved in the direction of the arrow B perpendicular to the magnetic flux PHI, a strong restoring force trying to pull back the floating body to the original position is generated, and a highly rigid magnetic bearing device can thus be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気的に浮上体を非接触で支承する磁気軸受
装置に関し、磁気軸受の浮上体側及び固定体側のそれぞ
れの磁極に磁極歯を対向して設け、高い軸受剛性を得る
ことができる磁気軸受装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetic bearing device that magnetically supports a floating object in a non-contact manner. The present invention relates to a magnetic bearing device that can be provided facing each other to obtain high bearing rigidity.

〔従来技術〕[Prior art]

第5図は従来のこの種の磁気軸受装置(ラジアル磁気軸
受装置)の概略構造を示す一部断面図である。従来の磁
気軸受装置は同図に示したようニ、固定体21.22に
設けられた磁極に歯21a、22aに対向許せて浮上体
23に磁極の歯23aを設けている。磁石24から発生
する磁束が常時歯21a、22a及び23aの部分に軸
方向に流れている。ここで浮上体23がラジアル軸方向
に移動した場合、対向している歯の部分で元に戻そうと
する復元力が生じる。即ち、歯21aとに 歯23aを例に説明すると第孕図に示すように、磁束Φ
は歯21aと歯23aとの空隙近傍に発生し、浮上体2
3を移動方向Xと反対方向に戻そうとする復元力Frが
発生する。このように上記構造の磁気軸受装置はラジア
ル軸方向に受動的な磁気力を発生することにより、浮上
体23を磁気的に非接触で支承持することができる。
FIG. 5 is a partial sectional view showing the schematic structure of a conventional magnetic bearing device of this type (radial magnetic bearing device). In the conventional magnetic bearing device, as shown in the figure, magnetic pole teeth 23a are provided on the floating body 23 so as to be opposed to teeth 21a and 22a on the magnetic poles provided on the fixed bodies 21 and 22. Magnetic flux generated from the magnet 24 always flows in the axial direction through the teeth 21a, 22a, and 23a. When the floating body 23 moves in the radial axis direction, a restoring force is generated in the opposing tooth portions to return it to its original state. That is, taking the teeth 21a and 23a as an example, as shown in FIG.
occurs near the gap between the tooth 21a and the tooth 23a, and the floating object 2
A restoring force Fr is generated that attempts to return 3 in the direction opposite to the moving direction X. In this manner, the magnetic bearing device having the above structure can support and support the floating body 23 magnetically without contact by generating passive magnetic force in the radial axis direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の磁気軸受装置において、浮上体23が移動す
ると上記の如く磁気復元力を発生するが、この磁気復元
力が小さく、高い軸受剛性を得ることができないという
問題があった。また、高い軸受剛性を得るために磁石2
4の発生する磁束を増やしても歯21a、22aの根元
で磁気飽和を起こし、高い磁束密度を必要とする歯の先
端で高い磁束密度を得る事ができないという問題もあっ
た。
In the conventional magnetic bearing device described above, when the floating body 23 moves, a magnetic restoring force is generated as described above, but this magnetic restoring force is small and there is a problem in that high bearing rigidity cannot be obtained. In addition, in order to obtain high bearing rigidity, the magnet 2
Even if the magnetic flux generated by No. 4 is increased, magnetic saturation occurs at the roots of the teeth 21a and 22a, and there is a problem in that high magnetic flux density cannot be obtained at the tips of the teeth where high magnetic flux density is required.

本発明は上述の点に鑑みてなされたもので、歯の形状、
間隔を工夫することによって高い軸受剛性を持つ磁気軸
受装置を提供することにある。
The present invention has been made in view of the above points, and includes the shape of the teeth,
The object of the present invention is to provide a magnetic bearing device that has high bearing rigidity by devising spacing.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は磁気軸受装置を、2個
以上の磁極歯を有する固定体と、該固定体の磁極歯に対
向する2個以上の磁極歯を有する浮上体を具備し、該浮
上体を固定体に非接触で支承する磁気軸受において、磁
極歯の根元にテーパを設けたことを特徴とする。
In order to solve the above problems, the present invention provides a magnetic bearing device including a fixed body having two or more magnetic pole teeth, a floating body having two or more magnetic pole teeth opposite to the magnetic pole teeth of the fixed body, and a floating body having two or more magnetic pole teeth opposite to the magnetic pole teeth of the fixed body. A magnetic bearing that supports a floating body on a fixed body in a non-contact manner is characterized in that the roots of the magnetic pole teeth are tapered.

また、対向する固定体の磁極歯と浮上体の磁極歯の間隔
を異なる寸法としたことを特徴とする。
Further, it is characterized in that the spacing between the magnetic pole teeth of the fixed body and the magnetic pole teeth of the floating body that are opposed to each other is set to different dimensions.

〔作用〕[Effect]

磁気軸受装置を上記の如く構成することにより、対向す
る磁極の磁極歯の根元にテーパを付けるから、多量の磁
束が磁極に流れても磁極歯の根元で磁気飽和が起こるこ
とがなく、磁極歯の先端部分で高い磁束密度を得ること
ができる。従って、浮上体が磁束と垂直な方向へ移動し
た場合、この浮上体を元の位置に引き戻そうとする強い
復元力が発生ずる。
By configuring the magnetic bearing device as described above, the roots of the magnetic pole teeth of the opposing magnetic poles are tapered, so even if a large amount of magnetic flux flows to the magnetic poles, magnetic saturation does not occur at the roots of the magnetic pole teeth. A high magnetic flux density can be obtained at the tip. Therefore, when the floating body moves in a direction perpendicular to the magnetic flux, a strong restoring force is generated that tends to pull the floating body back to its original position.

また、対向する歯の間隔を変えることによって浮上体3
が移動しなくとも磁極に与えた磁束の方向と垂直な磁気
力を発生し常に強い支持力を得ることができる。
In addition, by changing the spacing between the opposing teeth, the floating body 3
Even if the magnetic pole does not move, it generates a magnetic force perpendicular to the direction of the magnetic flux applied to the magnetic pole, and can always obtain strong supporting force.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の磁気軸受装置に用いる磁極の構造を示
す図である。図示するように、磁気軸受装置は固定体側
の磁極1、浮上体側の磁極2、固定体側に設けられた磁
石3を具備し、磁極1の磁極歯1a及び磁極2の磁極歯
2aのそれぞれの根元にはテーパ1b及びテーパ2bを
設けている。
FIG. 1 is a diagram showing the structure of a magnetic pole used in the magnetic bearing device of the present invention. As shown in the figure, the magnetic bearing device includes a magnetic pole 1 on the fixed body side, a magnetic pole 2 on the floating body side, and a magnet 3 provided on the fixed body side. is provided with a taper 1b and a taper 2b.

第2図は上記構造の磁気軸装置の磁極において、磁石3
から発生した磁束の流れを示す図で、同図(a)は第1
図のA部分の拡大図、同図(b)は浮上体が移動した時
の磁極歯1aと磁極歯2bの空隙部分の磁束の流れを示
す図である。
Figure 2 shows the magnetic poles of the magnetic shaft device having the above structure.
This figure shows the flow of magnetic flux generated from the first
The enlarged view of part A in the figure (b) is a diagram showing the flow of magnetic flux in the gap between the magnetic pole teeth 1a and the magnetic pole teeth 2b when the floating body moves.

第2図(a)に示すように、磁極歯1aの根元にはテー
パ1bが設けられているから、磁束Φは磁極歯1aで飽
和することなく、磁極歯1aの先端に達し、浮上体側の
磁極歯2aへ流れる。そして第2図(b)の矢印B方向
に浮上体側の磁極2が移動すると、磁極歯1aと磁極歯
2aの部分でラジアル軸方向の磁束が発生し復元力Fが
生じる。
As shown in FIG. 2(a), since the taper 1b is provided at the root of the magnetic pole tooth 1a, the magnetic flux Φ reaches the tip of the magnetic pole tooth 1a without being saturated at the magnetic pole tooth 1a, and is directed toward the floating body side. It flows to the magnetic pole tooth 2a. When the magnetic pole 2 on the floating body side moves in the direction of arrow B in FIG. 2(b), magnetic flux in the radial axis direction is generated between the magnetic pole teeth 1a and the magnetic pole teeth 2a, and a restoring force F is generated.

復元力Fは磁極間の空隙の磁束密度が高いほど大きいか
ら、根元にテーパlb、2bが設けられている本磁極歯
1a、lbでは、根元部分で磁気飽和することなく先端
で高い磁束密度が得られるので、大きい復元力Fが得ら
れる。
Since the restoring force F increases as the magnetic flux density in the gap between the magnetic poles increases, the magnetic pole teeth 1a and lb, which are provided with tapers lb and 2b at the roots, have a high magnetic flux density at the tips without magnetic saturation at the roots. Therefore, a large restoring force F can be obtained.

第3図は本発明の他の磁気軸受装置の磁極の構造を示す
図である。図示するように、固定体側の磁極1の磁極歯
1aと1aの間隔と、浮上体側の磁極2の磁極歯2aと
2aの間隔が異なる。また、磁極歯1a及び磁極歯2a
の根元にはテーパ1b及びテーパ2bがそれぞれ設けら
れている。
FIG. 3 is a diagram showing the structure of the magnetic pole of another magnetic bearing device according to the present invention. As shown in the figure, the interval between the magnetic pole teeth 1a of the magnetic pole 1 on the fixed body side is different from the interval between the magnetic pole teeth 2a and 2a of the magnetic pole 2 on the floating body side. Moreover, the magnetic pole tooth 1a and the magnetic pole tooth 2a
A taper 1b and a taper 2b are respectively provided at the base of the .

上記磁極構造とすることにより、第3図に示すように、
浮上側の磁極1が移動しなくとも元の磁束の向きQとそ
れに対する垂直な向きPの磁束が発生し、ラジアル軸方
向の復元力が絶えず働く。
By adopting the above magnetic pole structure, as shown in Fig. 3,
Even if the magnetic pole 1 on the floating side does not move, the original magnetic flux direction Q and the magnetic flux in the perpendicular direction P are generated, and a restoring force in the radial axis direction constantly acts.

従って、平衡状態(浮上体がPの方向に移動しない時)
でも力が働き安定性が良く剛性の高い磁気軸受を構成す
ることができる。
Therefore, in equilibrium state (when the floating object does not move in the direction of P)
However, it is possible to construct a magnetic bearing with good force, stability, and high rigidity.

また、上記実施例ではラジアル軸受を例に説明したが、
上記磁極構造はラジアル磁気軸受装置に限定されるもの
ではなく、スラスト磁気軸受装置にも適用できる。
In addition, in the above embodiment, a radial bearing was explained as an example, but
The above magnetic pole structure is not limited to radial magnetic bearing devices, but can also be applied to thrust magnetic bearing devices.

第4図は上記構造の磁極を磁気軸受装置に用いた例を示
す図で、同図(a)はラジアル磁気軸受装置の概略構造
を示す一部断面図、同図(b)はスラスト磁気軸受装置
を示す一部断面図である。
Fig. 4 shows an example in which the magnetic poles having the above structure are used in a magnetic bearing device. Fig. 4 (a) is a partial cross-sectional view showing the schematic structure of a radial magnetic bearing device, and Fig. 4 (b) is a diagram showing a thrust magnetic bearing device. FIG. 2 is a partial cross-sectional view showing the device.

ラジアル磁気軸受装置は第4図(a)に示すように、断
面口字状の固定子4の上下の対向面のそれぞれに磁石3
を挾んで左右に磁極1が配置されており、対向する上部
磁極1の磁極歯1a、laと下部磁極1の磁極歯1a、
laの間に所定の空隙が形成され、この上下の磁極歯1
a、laと磁極歯1a、laの間に上下に磁極歯2aを
有する磁極2が配置されている。この磁極2は浮上体5
に固定されて、磁極歯2aと23の間隔は磁極1の磁極
歯1aと1aの間の間隔より小さく形成されている(第
3図の磁極構造参照)。
As shown in FIG. 4(a), the radial magnetic bearing device has magnets 3 on each of the upper and lower opposing surfaces of the stator 4, which has a cross-sectional shape.
Magnetic poles 1 are arranged on the left and right sides, with opposing magnetic pole teeth 1a, la of the upper magnetic pole 1 and magnetic pole teeth 1a of the lower magnetic pole 1,
A predetermined gap is formed between the upper and lower magnetic pole teeth 1
A magnetic pole 2 having upper and lower magnetic pole teeth 2a is arranged between the magnetic pole teeth 1a and 1a and the magnetic pole teeth 1a and 1a. This magnetic pole 2 is the floating body 5
The distance between the magnetic pole teeth 2a and 23 is smaller than the distance between the magnetic pole teeth 1a and 1a of the magnetic pole 1 (see the magnetic pole structure in FIG. 3).

上記ラジアル磁気軸受装置は、第3図に示す磁極の構造
と同様、浮上体5の磁極2が移動しなくとも元の磁束の
向きと垂直な向きの磁束が発生し、ラジアル軸方向の復
元力が絶えず働く。従って、平衡状態でも力が働き安定
性の良い剛性の高い磁気軸受となる。
Similar to the magnetic pole structure shown in FIG. 3, the above radial magnetic bearing device generates magnetic flux in a direction perpendicular to the original magnetic flux direction even if the magnetic pole 2 of the floating body 5 does not move, and has a restoring force in the radial axis direction. works constantly. Therefore, even in an equilibrium state, a force acts, resulting in a highly stable and highly rigid magnetic bearing.

スラスト磁気軸受装置は第4図(b)に示すように、固
定体4に磁石3,3を挾んで磁極1゜1.1が固定きれ
ており、磁極1,1.1に対向して磁極2が浮上体5に
固定きれている。磁極1.1.1のそれぞれの磁極歯1
a、ia、laの間隔は磁極2の磁極歯2 a r 2
 a + 2 a * 28の間隔より大きく形成され
ている(第3図の磁極構造参照)。
As shown in FIG. 4(b), the thrust magnetic bearing device has a fixed body 4 with magnets 3, 3 sandwiched between the magnetic poles 1°1.1, and the magnetic poles 1°1.1 facing the magnetic poles 1,1.1. 2 is fixed to the floating body 5. Each pole tooth 1 of the pole 1.1.1
The spacing between a, ia, and la is the magnetic pole tooth 2 of the magnetic pole 2 a r 2
The spacing is larger than a + 2 a * 28 (see the magnetic pole structure in Figure 3).

上記スラスト磁気軸受装置は、第3図に示す磁極の構造
と同様、浮上体5の磁極2が移動しなくとも元の磁束の
向きと垂直な向きの磁束が発生し、ラジアル軸方向の復
元力が絶えず働くから、平衡状態でも力が働き安定性の
良い剛性の高い磁気軸受となる。
Similar to the magnetic pole structure shown in FIG. 3, the above thrust magnetic bearing device generates magnetic flux in a direction perpendicular to the original magnetic flux direction even if the magnetic pole 2 of the floating body 5 does not move, and has a restoring force in the radial axis direction. Because it works constantly, a force is exerted even in an equilibrium state, resulting in a stable and highly rigid magnetic bearing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、下記のような優れ
た効果が得られる。
As explained above, according to the present invention, the following excellent effects can be obtained.

(1)対向する磁極の歯の根元にテーバを付けるから、
多量の磁束が磁極に流れても磁極歯の根元で磁気飽和が
起こることがなく、磁極歯の先端部分で高い磁束密度を
得ることができるから、浮上体が磁束と垂直な方向へ移
動した場合、この浮上体を元の位置に引き戻そうとする
強い復元力が発生するので高剛性の磁気軸受装置を提供
できる。
(1) Tapers are attached to the roots of the opposing magnetic pole teeth, so
Even if a large amount of magnetic flux flows through the magnetic poles, magnetic saturation does not occur at the roots of the magnetic pole teeth, and a high magnetic flux density can be obtained at the tips of the magnetic pole teeth, so when the floating object moves in a direction perpendicular to the magnetic flux. Since a strong restoring force is generated to pull the floating body back to its original position, a highly rigid magnetic bearing device can be provided.

(2)また、対向する磁極歯の間隔を変えることによっ
て、浮上体が移動しなくとも磁極に与えた磁束の方向と
垂直な磁気力を発生し常に強い支持力を得るから、より
強い復元力を有する高剛性の磁気軸受装置を提供できる
(2) In addition, by changing the spacing between the opposing magnetic pole teeth, a magnetic force perpendicular to the direction of the magnetic flux applied to the magnetic poles is generated even if the floating object does not move, and a strong supporting force is always obtained, resulting in stronger restoring force. A highly rigid magnetic bearing device can be provided.

【図面の簡単な説明】 第1図は本発明の磁気軸受装置に用いる磁極の構造を示
す図、第2図は第1図の磁気軸装置の磁極の磁石から発
生した磁束の流れを示す図で、同図(a)は第1図のA
部分の拡大図、同図(b)は磁極歯と磁極歯の空隙部分
の磁束の流れを示す図、第3図は本発明の他の磁気軸受
装置の磁極の構造を示す図、第4図は本発明の磁気軸受
装置に用いた例を示す図、第5図は従来のこの種の磁気
軸受装置の概略構造を示す断面図、第弊図はその動作を
説明するための図である。 図中、1・・・・磁極、2・・・・磁極、3・・・・磁
石、4・・・・固定体、5・・・・浮上体。 スラスロ融1匁藺 第3図 第5図
[Brief Description of the Drawings] Fig. 1 is a diagram showing the structure of the magnetic pole used in the magnetic bearing device of the present invention, and Fig. 2 is a diagram showing the flow of magnetic flux generated from the magnet of the magnetic pole of the magnetic shaft device of Fig. 1. So, (a) in the same figure is A in Figure 1.
An enlarged view of a portion, FIG. 4(b) is a diagram showing the flow of magnetic flux in the gap between the magnetic pole teeth, FIG. 5 is a sectional view showing a schematic structure of a conventional magnetic bearing device of this type, and FIG. 5 is a diagram for explaining its operation. In the figure, 1: magnetic pole, 2: magnetic pole, 3: magnet, 4: fixed body, 5: floating body. Sura Slo Fuyu 1 Momme 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)2個以上の磁極歯を有する固定体と、該固定体の
磁極歯に対向する2個以上の磁極歯を有する浮上体を具
備し、該浮上体を固定体に非接触で支承する磁気軸受に
おいて、前記磁極歯の根元にテーパを設けたことを特徴
とする磁気軸受装置。
(1) Equipped with a fixed body having two or more magnetic pole teeth and a floating body having two or more magnetic pole teeth facing the magnetic pole teeth of the fixed body, and supporting the floating body on the fixed body in a non-contact manner. What is claimed is: 1. A magnetic bearing device, characterized in that, in the magnetic bearing, a taper is provided at the root of the magnetic pole tooth.
(2)対向する前記固定体の磁極歯間隔と前記浮上体の
磁極歯間隔を異なる寸法としたことを特徴とする請求項
(1)記載の磁気軸受装置。
(2) The magnetic bearing device according to claim 1, wherein the spacing between the magnetic pole teeth of the opposing fixed body and the spacing between the magnetic pole teeth of the floating body are set to different dimensions.
JP63266892A 1988-10-21 1988-10-21 Magnetic bearing device Expired - Fee Related JP2717819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266892A JP2717819B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266892A JP2717819B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH02113118A true JPH02113118A (en) 1990-04-25
JP2717819B2 JP2717819B2 (en) 1998-02-25

Family

ID=17437103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266892A Expired - Fee Related JP2717819B2 (en) 1988-10-21 1988-10-21 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP2717819B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107517U (en) * 1991-03-01 1992-09-17 光洋精工株式会社 magnetic bearing device
WO2006098500A1 (en) * 2005-03-18 2006-09-21 Rigaku Corporation Magnetic device
DE102007059467A1 (en) * 2007-12-11 2009-06-25 Minebea Co., Ltd. Magnetic axial bearing for initiating axial force, has bearing part provided with permanent magnet and flux guide elements provided on opposing end faces of magnet, and other elements provided at mutual spacing with respect to each other
US20100148600A1 (en) * 2008-12-17 2010-06-17 Martin Bauer Fluid dynamic bearing system
US8212444B2 (en) 2007-12-11 2012-07-03 Minebea Co., Ltd. Magnetic axial bearing and a spindle motor having this kind of magnetic axial bearing
EP4124770A1 (en) * 2021-07-28 2023-02-01 Maschinenfabrik Rieter AG Axial bearing and pole disc for an axial bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946043A (en) * 1972-09-09 1974-05-02
JPS53113948A (en) * 1977-03-16 1978-10-04 Hitachi Ltd Magnetic bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946043A (en) * 1972-09-09 1974-05-02
JPS53113948A (en) * 1977-03-16 1978-10-04 Hitachi Ltd Magnetic bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107517U (en) * 1991-03-01 1992-09-17 光洋精工株式会社 magnetic bearing device
WO2006098500A1 (en) * 2005-03-18 2006-09-21 Rigaku Corporation Magnetic device
US7719152B2 (en) 2005-03-18 2010-05-18 Rigaku Corporation Magnetic levitation actuator
JP4942114B2 (en) * 2005-03-18 2012-05-30 株式会社リガク Magnetic device
DE102007059467A1 (en) * 2007-12-11 2009-06-25 Minebea Co., Ltd. Magnetic axial bearing for initiating axial force, has bearing part provided with permanent magnet and flux guide elements provided on opposing end faces of magnet, and other elements provided at mutual spacing with respect to each other
DE102007059467B4 (en) * 2007-12-11 2010-06-02 Minebea Co., Ltd. Magnetic thrust bearing
US8212444B2 (en) 2007-12-11 2012-07-03 Minebea Co., Ltd. Magnetic axial bearing and a spindle motor having this kind of magnetic axial bearing
US20100148600A1 (en) * 2008-12-17 2010-06-17 Martin Bauer Fluid dynamic bearing system
EP4124770A1 (en) * 2021-07-28 2023-02-01 Maschinenfabrik Rieter AG Axial bearing and pole disc for an axial bearing

Also Published As

Publication number Publication date
JP2717819B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
JPH02113118A (en) Magnetic bearing device
JP6696855B2 (en) Magnetic bearing
JP6681802B2 (en) Diskless thrust magnetic bearing and 3-axis active control magnetic bearing
JP2636168B2 (en) Superconducting bearing device
JPS6211218B2 (en)
JPH01234618A (en) Superconducting magnetic bearing
JP2879934B2 (en) Stage equipment
JP2564851B2 (en) Field structure of linear DC brushless motor
JPH0721107Y2 (en) Linear motor
JP2764546B2 (en) Superconducting bearing device
JP2722497B2 (en) Double sided linear pulse motor
JPH01159582U (en)
JP3010986U (en) Power generator
JPS591415Y2 (en) linear motion motor
JPH0366532B2 (en)
JPS5826265B2 (en) Magnetic bearing vibration damping device
JPS6237247B2 (en)
JPS6041819Y2 (en) frequency generator
JPS6380758A (en) Linear pulse motor
JPH02151239A (en) Magnetic bearing device
JPS6118342A (en) Linear motor
JPH01247822A (en) Support construction for rotary shaft
JPS62135247A (en) Motor
JPS6268059A (en) Bearing structure of pm type stepping motor
JPS6211392U (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees