JPH02110984A - Device for adjusting optical axis of laser - Google Patents

Device for adjusting optical axis of laser

Info

Publication number
JPH02110984A
JPH02110984A JP26470588A JP26470588A JPH02110984A JP H02110984 A JPH02110984 A JP H02110984A JP 26470588 A JP26470588 A JP 26470588A JP 26470588 A JP26470588 A JP 26470588A JP H02110984 A JPH02110984 A JP H02110984A
Authority
JP
Japan
Prior art keywords
optical axis
laser
flux
position detector
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26470588A
Other languages
Japanese (ja)
Other versions
JP2675357B2 (en
Inventor
Hiroshi Naoi
直井 弘
Yutaka Nemoto
裕 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USHIKATA SHOKAI KK
Original Assignee
USHIKATA SHOKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USHIKATA SHOKAI KK filed Critical USHIKATA SHOKAI KK
Priority to JP26470588A priority Critical patent/JP2675357B2/en
Publication of JPH02110984A publication Critical patent/JPH02110984A/en
Application granted granted Critical
Publication of JP2675357B2 publication Critical patent/JP2675357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable an adjusting operation to be very easily performed by a method wherein an irradiation point of laser rays is made to be coincident with a center axis at two parts whose lengths are different from each other, and the amount of adjustment is displayed basing on the computation of a deviation quantity of the irradiation point. CONSTITUTION:Laser rays flux 81 projected from a light projecting point 2' of a laser tube 2 is separated into light fluxes 81' and 81'' through a half mirror 7, where the light flux 81' half the flux 81 or so in volume travels straight and irradiates a first position detector 9 and the other light flux 81'' half the flux 81 or so in volume is reflected by the half mirror 7 and furthermore reflected two times by reflective film 10s to be a flux in parallel with optical axes 8 and 8', which irradiates a second position detector 11 the same as the flux 81'. Next, the totaled eight detected signals of eight photodetecting elements of the position detectors 9 and 11, which are provided with four photodetecting elements each, are separately amplified through an amplifier 14 and inputted into a computer 15. And, a required set condition is inputted through a set value input 16. As the result of the computation executes basing on the set values and the detected signals of the position detectors 9 and 11, the adjustment quantities of screw members 4 are shown on a display 17.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は円筒形の外管を有するレーザの光軸調整装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical axis adjustment device for a laser having a cylindrical outer tube.

(従来の技術とその課題) 従来、第1図(イ)の正面図、(ロ)の側面図(一部所
面)に示すような円筒形の外管1に前後2個所(a、b
の2個所)でそれぞれ3点保持されているレーザ管2は
、レーザ光の光軸が外管1の中心軸と完全に一致してい
るように光軸調整をしておくことが必要である。
(Prior art and its problems) Conventionally, a cylindrical outer tube 1 has been fitted at two locations (a, b) in the front and back, as shown in the front view of FIG.
It is necessary to adjust the optical axis of the laser tube 2, which is held at three points each (in two places), so that the optical axis of the laser beam is completely aligned with the central axis of the outer tube 1. .

このレーザは3点保持の調整が容易なように、3点の内
の1点はバネによりレーザ管2を外管1の中心軸方向に
弾圧する弾圧部材3と、2点は外管1の中心軸方向に向
かって外管1に螺合されたネジ部材4とで、それぞれ1
20°間隔で保持されているものである。
In order to easily adjust the holding position of this laser at three points, one of the three points is a pressure member 3 that presses the laser tube 2 in the direction of the central axis of the outer tube 1 with a spring, and two points are the 1 each with a screw member 4 screwed onto the outer tube 1 in the direction of the central axis.
They are held at 20° intervals.

このような構造のレーザの光軸21を調整するために、
第5図に示すようにレーザ光の光束211の照射点に照
射位置を検出する位置検出器22を置き、照射位置を調
節する。この位置検出器22は第3図に示すように、中
心点12に対してそれぞれ直角方向に同一半径の位置に
4個の受光素子13.13.13.13を配置し、光束
211による各受光素子13.13.13.13の出力
が同一になるように調整すれば、照射点18を中心点1
2と一致せしめることが出来る。
In order to adjust the optical axis 21 of the laser having such a structure,
As shown in FIG. 5, a position detector 22 for detecting the irradiation position is placed at the irradiation point of the laser beam 211, and the irradiation position is adjusted. This position detector 22, as shown in FIG. If the outputs of elements 13.13.13.13 are adjusted to be the same, the irradiation point 18 can be moved to the center point 1.
2 can be made to match.

しかし、上述の調整方法では調整を実施した一定の距離
では中心点12に照射せしめることが出来るが、異なる
距離の点においては必ずしも中心点12に照射せしめる
か否かは判明しない。これは中心軸に対して光軸21が
傾斜していても上記一定距離での照射点18を中心点1
2に調整してしまうことがあり得るので、完全な光軸調
整は不可能である。
However, with the above-mentioned adjustment method, although it is possible to irradiate the center point 12 at a certain distance after adjustment, it is not always clear whether or not the center point 12 will be irradiated at points at different distances. This means that even if the optical axis 21 is inclined with respect to the central axis, the irradiation point 18 at the above-mentioned constant distance is the central point 1.
Since the optical axis may be adjusted to 2, perfect optical axis adjustment is impossible.

本発明は上述の問題を解決し、光軸が常に中心軸と一致
せしめることが可能な光軸調整装置を提供することを課
題とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide an optical axis adjustment device that can always align the optical axis with the central axis.

(課題を達成するための手段) 本発明は上述の課題を達成するために、円筒形の外管1
の前後2個所でそれぞれ3点保持されたレーザ管2を有
するレーザの光軸調整装置において、レーザ光の光軸8
上に設けたハーフミラ−7により2系統の第一及び第二
の光軸8゛、8”に分割し、第一の光軸8゛上には第一
の位置検出器9を、第二の光軸8”上には第二の位置検
出器11を設け、前記ハーフミラ−7から第一及び第二
の位置検出器9.11までの距離を異なる長さとした光
学系と、この第一及び第二の位置検出器9.11の検出
信号により光軸調整量を算出し表示する制御系とよりな
り、前記制御系には調整量算出の条件となる設定値を入
力する設定値入力器16と、入力された設定値と前記第
一及び第二の位置検出器9.11の出力とにより調整量
を算出する計算器15と、この計算器15の計算結果を
表示する表示器17とを具備するものである。
(Means for Achieving the Object) In order to achieve the above-mentioned object, the present invention provides a cylindrical outer tube 1
In a laser optical axis adjustment device having a laser tube 2 held at three points each at two places before and after the optical axis 8 of the laser beam,
The half mirror 7 provided above divides the system into two systems of first and second optical axes 8'' and 8'', and a first position detector 9 is placed above the first optical axis 8'', and a first position detector 9 is placed above the second optical axis. A second position detector 11 is provided on the optical axis 8'', and an optical system with different distances from the half mirror 7 to the first and second position detectors 9. It consists of a control system that calculates and displays the optical axis adjustment amount based on the detection signal of the second position detector 9.11, and a setting value input device 16 that inputs a setting value that is a condition for calculating the adjustment amount to the control system. , a calculator 15 that calculates the adjustment amount based on the input set value and the outputs of the first and second position detectors 9.11, and a display 17 that displays the calculation results of this calculator 15. It is equipped with.

(作用) 上述のように、本発明の調整装置ではレーザ光の照射点
18を長さの異なる2個所で中心軸と一致せしめるので
、光軸8と中心軸を完全に一致させることが容易である
(Function) As described above, in the adjustment device of the present invention, since the laser beam irradiation point 18 is made to coincide with the central axis at two different lengths, it is easy to make the optical axis 8 and the central axis coincide with each other completely. be.

又調整量を照射点18のずれ量から算出して表示するの
で、粗調整後は算出結果の表示に従って微調整を行えば
良く、調整作業が極めて容易である。
Further, since the adjustment amount is calculated from the deviation amount of the irradiation point 18 and displayed, after the rough adjustment, fine adjustment can be made according to the display of the calculation result, and the adjustment work is extremely easy.

(実施例) 第1図は本発明の光軸調整装置で光軸調整出来る円筒形
の外管を有するレーザの、(イ)は正面図、(ロ)は側
面図 (一部所面)、第2図は本発明の光軸調整装置の
光学系の説明図、第3図は照射点の位置検出器の説明図
である。
(Example) Fig. 1 shows a laser having a cylindrical outer tube whose optical axis can be adjusted by the optical axis adjusting device of the present invention, (A) is a front view, (B) is a side view (partially shown), FIG. 2 is an explanatory diagram of the optical system of the optical axis adjusting device of the present invention, and FIG. 3 is an explanatory diagram of the position detector of the irradiation point.

先ず、本光軸調整装置で調整可能なレーザについて説明
する。第1図(イ)、(ロ)に示すように、レーザ管2
は円筒形の外管1と同軸になるように前後の2個所で1
20°間隔で3点保持されている。この3点保持は同図
(ロ)のようにレーザ管2の前後2個所a、bで中心軸
に垂直な平面上に位置しており、同図(イ)のように3
点の内の1点はバネにより外管lの半径方向で中心軸に
向かう方向に押圧する弾圧部材3により保持されており
、他の2点は外管1に螺合しているネジ部材4によりそ
れぞれ半径方向で中心軸に向かう方向に押圧して保持さ
れている。
First, a laser that can be adjusted by this optical axis adjustment device will be explained. As shown in Figure 1 (a) and (b), the laser tube 2
1 at two places on the front and back so that it is coaxial with the cylindrical outer tube 1.
Three points are held at 20° intervals. These three points are held on a plane perpendicular to the central axis at two locations a and b at the front and rear of the laser tube 2, as shown in the same figure (b), and three points are located on a plane perpendicular to the central axis, as shown in
One of the points is held by a resilient member 3 that presses the outer tube 1 in the radial direction toward the central axis by a spring, and the other two points are held by a screw member 4 screwed into the outer tube 1. are held by pressing in the radial direction toward the central axis.

この結果、レーザ管2は前後それぞれ2個ずつ、合計4
個のネジ部材4.4.4.4の調節により、投光点2゛
を外管1の中心軸上に調整出来ると共に、光軸8も中心
線と一致せしめることが可能である。
As a result, there are 4 laser tubes 2 in total, 2 each in the front and back.
By adjusting the screw members 4.4.4.4, the light projection point 2' can be adjusted to be on the central axis of the outer tube 1, and the optical axis 8 can also be made to coincide with the central axis.

なお、上記レーザはレーザ管2を弾圧部材3及びネジ部
材4で直接保持しているが、レーザ管2の外周にゴム等
の弾性部材を巻付け、弾圧部材3及びネジ部材4は上記
弾性部材の外側で保持する構造としてレーザ管2に耐震
性及び耐衝撃性を持たせたものでも良いことは勿論であ
る。
In addition, although the laser tube 2 is directly held by the elastic member 3 and the screw member 4 in the above laser, an elastic member such as rubber is wrapped around the outer periphery of the laser tube 2, and the elastic member 3 and the screw member 4 are held by the elastic member. Of course, the structure for holding the laser tube 2 on the outside of the laser tube 2 may be one in which the laser tube 2 has earthquake resistance and shock resistance.

次に光学系の構成について説明する。Next, the configuration of the optical system will be explained.

上述のレーザは第2図に示すように、基板5に固定され
た2個の上面■字形の保持台6.6上に中心軸に対して
回動可能に載置されている。
As shown in FIG. 2, the above-mentioned laser is mounted on two ``■'' shaped holders 6.6 fixed to the substrate 5 so as to be rotatable about the central axis.

このレーザの光軸8上には基板5に固定されたハーラミ
ラー7が光軸8に対して45°の傾斜角で固定されてお
り、この光軸8を直進の第一の光軸8゛と直角方向に反
射する第二の光軸8”に分解する。
On the optical axis 8 of this laser, a Hara mirror 7 fixed to a substrate 5 is fixed at an inclination angle of 45° with respect to the optical axis 8, and this optical axis 8 is designated as a straight first optical axis 8. It splits into a second optical axis 8'' which is reflected in the orthogonal direction.

第一の光軸8゛はそのまま直進し、基板5に固定された
第一の位置検出器9に到達する。第二の光軸8″は更に
2個の反射鏡10.10により反射されて上記光軸8及
び第一の光軸8”と平行となり、基板5に固定された第
二の位置検出器11に到達する。
The first optical axis 8' continues straight and reaches the first position detector 9 fixed to the substrate 5. The second optical axis 8'' is further reflected by two reflecting mirrors 10.10 to become parallel to the optical axis 8 and the first optical axis 8'', and is connected to a second position detector 11 fixed to the substrate 5. reach.

これは第一の光軸8゛より第二の光軸8″の方の通過距
離を長くするためである。
This is to make the passage distance of the second optical axis 8'' longer than that of the first optical axis 8''.

上記第一及び第二の位置検出器9.11は第3図に示す
ように受光面の中心点12を交点とする直角の2方向に
等しい微小距離で4個の受光素子13.13.13.1
3が配置しである。
As shown in FIG. 3, the first and second position detectors 9.11 have four light-receiving elements 13.13.13 arranged at equal minute distances in two directions perpendicular to each other with the center point 12 of the light-receiving surface as the intersection point. .1
3 is the placement.

次に制御系について説明する。Next, the control system will be explained.

第4図は制御系の回路構成図である。第一及び第二の位
置検出器9.11のそれぞれ4個の受光素子13.13
.13.13の検出信号合計8個は別個に増幅器14で
増幅され、計算器15に入力される。
FIG. 4 is a circuit diagram of the control system. Four light receiving elements 13.13 of each of the first and second position detectors 9.11
.. A total of eight detection signals of 13.13 are amplified separately by an amplifier 14 and input to a calculator 15.

上述の検出信号とは別に設定値入力器16により、必要
な設定条件が計算器15に入力される。ここに入力され
る設定条件は次のものである。
In addition to the above-mentioned detection signal, necessary setting conditions are input to the calculator 15 by the setting value input device 16. The setting conditions entered here are as follows.

1)レーザ管2の外径d(第2図記載、以下同じ)2)
レーザ管2の保持点間距離(a−b間距離)j2t3)
l整基準点aから第一の位置検出器9までの距離12 
(光軸8、第一の光軸8゛の合計長)4)調整基準点a
から第二の位置検出器11までの距離β3 (光軸8、
第二の光軸8”の合計長)5)最大許容誤差範囲 上記各設定値と、上記各位置検出器9.11の検出信号
とにより、上記計算器15の計算結果即ち各ネジ部材4
.4.4.4の調整量は表示器17に表示される。
1) Outer diameter d of the laser tube 2 (shown in Figure 2, same below) 2)
Distance between holding points of laser tube 2 (distance between a and b) j2t3)
l Distance 12 from alignment reference point a to first position detector 9
(Total length of optical axis 8 and first optical axis 8゛) 4) Adjustment reference point a
to the second position detector 11 (optical axis 8,
Total length of the second optical axis 8'') 5) Maximum permissible error range Based on the above settings and the detection signals of the position detectors 9 and 11, the calculation results of the calculator 15, that is, each screw member 4
.. The adjustment amount in 4.4.4 is displayed on the display 17.

次に上記光学系の動作について説明する。Next, the operation of the above optical system will be explained.

レーザ管20投光点2″から投光されたレーザ光束8、
はハーフミラ−7により、はぼ1/2光量の光束8、′
は直進して第一の位置検出器9を照射する。
a laser beam 8 projected from a laser tube 20 and a light projection point 2″;
By the half mirror 7, a luminous flux 8,' with approximately 1/2 light intensity is generated.
travels straight and irradiates the first position detector 9.

この照射点を18で示す。他のほぼ1/2光量の光束8
、”はハーフミラ−7で反射し、更に反射鏡10.10
で2回反射して前記光軸8.8゛と平行な光束で光束8
1゛と同様に第二の位置検出器11の照射点18を照射
する。
This irradiation point is indicated by 18. Other luminous flux 8 with approximately 1/2 light intensity
,” is reflected by the half mirror 7, and further reflected by the reflecting mirror 10.10
The light beam is reflected twice and is parallel to the optical axis 8.8゛.
The irradiation point 18 of the second position detector 11 is irradiated in the same manner as in step 1.

この結果、第一の光軸8゛と第二の光軸8″との長さは
異なることになる。
As a result, the lengths of the first optical axis 8'' and the second optical axis 8'' are different.

次に上記調整装置の動作について説明する。Next, the operation of the above adjustment device will be explained.

先ず、第1図に示すようなレーザの外管1を第2図に示
すように保持台6.6に載置し、レーザ管2を動作せし
めてレーザ光束81を発生させる。
First, the outer tube 1 of the laser as shown in FIG. 1 is placed on the holder 6.6 as shown in FIG. 2, and the laser tube 2 is operated to generate a laser beam 81.

次に光束B、+はハーフミラ−7を貫通して第一の位置
検出器9の受光面を照射し、光束8、′はハーフミラ−
7で反射して光束311と分離され、第二の位置検出器
11の受光面を照射するので、目視によりネジ部材4.
4.4.4で粗調整しておく。
Next, the light beams B, + pass through the half mirror 7 and illuminate the light receiving surface of the first position detector 9, and the light beams 8,' pass through the half mirror 7.
7 and is separated from the light beam 311 and illuminates the light-receiving surface of the second position detector 11, so that the screw member 4.
Make rough adjustments in 4.4.4.

この場合、3点保持であるが、1点はバネにより中心軸
方向に弾圧されているので、2方向のネジ部材4で光軸
を調整することが出来る。
In this case, three points are held, but since one point is pressed in the direction of the central axis by a spring, the optical axis can be adjusted using screw members 4 in two directions.

この状態で、位置検出器9.11の受光面では例えば第
3図に示すように中心点12から多少ずれた位置に光束
81゛若しくは81”の照射点18が来た場合には、そ
れぞれの受光素子13.13.13.13の出力は照射
点18のずれ量に応じた電圧が検出信号として出力され
る。
In this state, on the light receiving surface of the position detector 9.11, if the irradiation point 18 of the luminous flux 81" or 81" comes to a position slightly shifted from the center point 12 as shown in FIG. The light receiving element 13.13.13.13 outputs a voltage corresponding to the amount of deviation of the irradiation point 18 as a detection signal.

このそれぞれの検出信号は増幅器14で別個に増幅され
、計算器15に入力する。
These respective detection signals are separately amplified by an amplifier 14 and input to a calculator 15.

この場合、外管1及びレーザ管2の製作誤差による真円
からのズレを補正するため、この入力動作をレーザを中
心軸上で90°ずつ回動して4回行う。
In this case, in order to correct deviations from the perfect circle due to manufacturing errors in the outer tube 1 and the laser tube 2, this input operation is performed four times by rotating the laser 90 degrees each on the central axis.

一方、計算器15には上述のように設定条件d、2、〜
l8、最大許容範囲が入力されているので、上述の各入
力値に基づいて調整値が計算され、4個のネジ部材4.
4.4.4の調整量がそれぞれ別個に表示器17により
表示される。
On the other hand, the calculator 15 has the setting conditions d, 2, ~
l8. Since the maximum allowable range has been input, the adjustment value is calculated based on each of the above input values, and the four screw members 4.
The adjustment amounts of 4.4.4 are individually displayed on the display 17.

この計算動作は次の通りである。This calculation operation is as follows.

1)各位置検出器9.11の受光素子13.13.13
.13及び13.13.13.13のそれぞれの検出信
号を比較し、各位置検出器9.11上で各受光素子13
をそれぞれ含むX−Y座標(原点は中心点12と一致し
ている)で照射点18の位置を算出する。この場合、左
右一対の受光素子13.13の出力差により、照射点の
X方向の位置を、上下一対の受光素子13.13の出力
差によりY方向の位置を算出して照射点18の位置を算
出する。
1) Light receiving element 13.13.13 of each position detector 9.11
.. 13 and 13.13.13.13, each light receiving element 13 on each position detector 9.11 is compared.
The position of the irradiation point 18 is calculated using X-Y coordinates (the origin coincides with the center point 12), respectively. In this case, the position of the irradiation point in the X direction is calculated based on the output difference between the left and right pair of light receiving elements 13.13, and the position in the Y direction is calculated based on the output difference between the upper and lower pair of light receiving elements 13.13, and the position of the irradiation point 18 is calculated. Calculate.

2)第一の位置検出器9上で、前項の算出による照射点
18の位置をX−Y座標の原点と同一の原点を有し、1
20°間隔の3本の軸を有する3軸座標に変換し、原点
に(中心点12)来るようなネジ部材4.4の調整量α
を算出する。この場合の計算は投光点2”が光軸8上に
来るような仮定計数δを使用して行う。
2) On the first position detector 9, the position of the irradiation point 18 calculated in the previous section is set to have the same origin as the origin of the X-Y coordinates, and 1
Convert to 3-axis coordinates with 3 axes spaced at 20° intervals and adjust the adjustment amount α of the screw member 4.4 so that it comes to the origin (center point 12)
Calculate. The calculation in this case is performed using an assumed coefficient δ such that the light projection point 2'' is on the optical axis 8.

3)第二の位置調節器11についても同様の計算を行い
、ネジ部材4.4の調整量βを算出する。この場合も前
項同様に仮定計数εを使用して行う。
3) Similar calculations are performed for the second position adjuster 11 to calculate the adjustment amount β of the screw member 4.4. In this case, as in the previous section, the assumption count ε is used.

4)上記α、βを比較し、差がある場合には上記δ及び
εを変更して第2.3項の計算をやり直す。
4) Compare the above α and β, and if there is a difference, change the above δ and ε and redo the calculation in Section 2.3.

5)前項の結果、αとβとの差が設定されている許容誤
差範囲内であれば調整量α、βの平均値γを算出する。
5) As a result of the previous section, if the difference between α and β is within the set tolerance range, calculate the average value γ of the adjustment amounts α and β.

6)上述の計算を前記のようにレーザを90°回動して
4回行い、それぞれのγの平均値を算出し、表示器17
に表示する。
6) Perform the above calculation four times by rotating the laser 90 degrees as described above, calculate the average value of each γ, and display it on the display 17.
to be displayed.

上述の表示により、4個のネジ部材4.4.4.4をそ
れぞれの表示器りに調整することにより、第一及び第二
の位置検出器9.11上の照射点18.18を共に中心
点12若しくはその許容範囲内の円内に調整することが
出来る。
According to the above-mentioned indication, by adjusting the four screw members 4.4.4.4 to their respective indications, the illumination points 18.18 on the first and second position detectors 9.11 can be set together. Adjustment can be made to the center point 12 or within a circle within its tolerance.

(発明の効果) 上述のように、レーザの光束81の分解された光束81
”、8工”の照射点18をそれぞれ第一及び第二の位置
検出器9.11の中心点12に一致せしめることにより
、異なる距離における中心点を通る光束に調整出来るの
で、レーザの中心線と光束(光軸)とを容易に一致せし
めることが可能である。
(Effects of the Invention) As described above, the luminous flux 81 obtained by decomposing the laser luminous flux 81
By aligning the irradiation points 18 of the ", 8" with the center points 12 of the first and second position detectors 9 and 11, it is possible to adjust the light flux to pass through the center points at different distances, so that the center line of the laser It is possible to easily match the light beam (optical axis) and the light beam (optical axis).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒形の外管を有するレーザで、(イ)は正面
図、(ロ)は側面図(一部所面)、第2図は本発明の光
軸調整装置の光学系の説明図、第3図は照射点の位置検
出器の説明図、第4図は本発明の光軸調整装置の制御系
の説明図、第5図は従来の光軸調整の光学系の説明図で
ある。 1:外管、 2:レーザ管、 7:ハーフミラ、 8:
光軸、 8゛:第一の光軸、 8”:第二の光軸、 9
:第一の位置検出器、 11:第二の位置検出器、 1
5:計算器、 16:設定値入力器、喜1目 喜g!−目 箋5目
Fig. 1 shows a laser having a cylindrical outer tube, (a) is a front view, (b) is a side view (partially), and Fig. 2 is an explanation of the optical system of the optical axis adjustment device of the present invention. 3 is an explanatory diagram of the position detector of the irradiation point, FIG. 4 is an explanatory diagram of the control system of the optical axis adjustment device of the present invention, and FIG. 5 is an explanatory diagram of the conventional optical system for optical axis adjustment. be. 1: Outer tube, 2: Laser tube, 7: Half mirror, 8:
Optical axis, 8゛: first optical axis, 8'': second optical axis, 9
: first position detector, 11: second position detector, 1
5: Calculator, 16: Setting value input device, Kiichimokukig! - 5th sticky note

Claims (1)

【特許請求の範囲】[Claims] 円筒形の外管の前後2個所でそれぞれ3点保持されたレ
ーザ管を有するレーザの光軸調整装置において、レーザ
光の光軸上に設けたハーフミラーにより2系統の第一及
び第二の光軸に分割し、第一の光軸上には第一の位置検
出器を、第二の光軸上には第二の位置検出器を設け、前
記ハーフミラーから第一及び第二の位置検出器までの距
離を異なる長さとした光学系と、この第一及び第二の位
置検出器の出力により光軸調整量を算出し表示する制御
系とよりなり、前記制御系には調整量算出の条件となる
設定値を入力する設定値入力器と、入力された設定値と
前記第一及び第二の位置検出器の検出信号とにより調整
量を算出する計算器と、この計算器の計算結果を表示す
る表示器とを具備することを特徴とするレーザの光軸調
整装置。
In a laser optical axis adjustment device that has a laser tube held at three points each at two points in front and back of a cylindrical outer tube, two systems of first and second beams are adjusted by a half mirror installed on the optical axis of the laser beam. A first position detector is provided on the first optical axis, a second position detector is provided on the second optical axis, and the first and second position detection is performed from the half mirror. It consists of an optical system with different lengths to the instrument, and a control system that calculates and displays the amount of optical axis adjustment based on the outputs of the first and second position detectors. a set value input device for inputting a set value serving as a condition; a calculator for calculating an adjustment amount based on the input set value and the detection signals of the first and second position detectors; and a calculation result of this calculator. What is claimed is: 1. A laser optical axis adjustment device, comprising: a display that displays;
JP26470588A 1988-10-19 1988-10-19 Laser optical axis adjustment device Expired - Fee Related JP2675357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26470588A JP2675357B2 (en) 1988-10-19 1988-10-19 Laser optical axis adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26470588A JP2675357B2 (en) 1988-10-19 1988-10-19 Laser optical axis adjustment device

Publications (2)

Publication Number Publication Date
JPH02110984A true JPH02110984A (en) 1990-04-24
JP2675357B2 JP2675357B2 (en) 1997-11-12

Family

ID=17407037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26470588A Expired - Fee Related JP2675357B2 (en) 1988-10-19 1988-10-19 Laser optical axis adjustment device

Country Status (1)

Country Link
JP (1) JP2675357B2 (en)

Also Published As

Publication number Publication date
JP2675357B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US4758729A (en) Apparatus and method for measuring the included angle of a reflective cone
US5144363A (en) Apparatus for and method of projecting a mask pattern on a substrate
US4130362A (en) Apparatus for determining steering positions of the front wheels of a vehicle
CN206161944U (en) Automatic oblique incidence light path of adjusting
CN110702218A (en) Laser beam pointing measurement device and method
US3826576A (en) Laser measuring or monitoring system
JPH02110984A (en) Device for adjusting optical axis of laser
JPS6336526A (en) Wafer exposure equipment
US4115007A (en) Vehicle wheel alignment system
JPS63225108A (en) Distance and inclination measuring instrument
JPS6227613A (en) Position detector
JPS62224330A (en) Automatic keratometer
JP2574720Y2 (en) Position adjustment device for scratch inspection optical device
JPH09189545A (en) Distance measuring device
JP3927064B2 (en) Non-contact displacement meter
JPS6228606A (en) Film thickness measuring instrument
JPS61223604A (en) Gap measuring instrument
JPS623280A (en) Diffraction grating exposure device
JPS63237830A (en) Horizontally correcting device for x-y table
JPH0197832A (en) Measuring apparatus of eccentricity
Fuhrman A NON-CONTACT OPTICAL PROXIMITY SENSOR FOR MEASURING SURFACE SHAPE
JPS63225120A (en) One-man surveying system
JPS62140420A (en) Position detector of surface
JPH0518815A (en) Correcting device for position of laser beam
JPS61264203A (en) Position detector for laser light source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees