JPH02109266A - Sintered substrate for alkaline storage battery and manufacture thereof - Google Patents

Sintered substrate for alkaline storage battery and manufacture thereof

Info

Publication number
JPH02109266A
JPH02109266A JP63263103A JP26310388A JPH02109266A JP H02109266 A JPH02109266 A JP H02109266A JP 63263103 A JP63263103 A JP 63263103A JP 26310388 A JP26310388 A JP 26310388A JP H02109266 A JPH02109266 A JP H02109266A
Authority
JP
Japan
Prior art keywords
particle size
sintered substrate
sintered
nickel powder
mean particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63263103A
Other languages
Japanese (ja)
Inventor
Masahiko Naito
内藤 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63263103A priority Critical patent/JPH02109266A/en
Publication of JPH02109266A publication Critical patent/JPH02109266A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To increase porosity of a sintered substrate and at the same time to increase mechanical strength of the substrate by sintering cabonyl nickel powder having a specified mean particle size. CONSTITUTION:Carbonyl nickel powder having a mean particle size of 3.0-4.0mum is sintered to obtain a sintered substrate for an alkaline storage battery. If carbonyl nickel powder having a mean particle size of 2.2-2.8mum is used, shrink age in sintering is advanced and porosity tends to increase. If the mean particle size exceeds 3.0mum, shrinkage in sintering is retarded and porosity is kept high. If the mean particle size exceed 4.0mum, flexibility in electrode winding is de creased, and an active material comes off. By specifying mean particle size, an electrode having large mechanical strength and stable quality can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、アルカリ蓄電池の電極に用いられる焼結基板
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a sintered substrate used as an electrode of an alkaline storage battery and a method for manufacturing the same.

(口〕 従来の技術 アルカリ蓄電池等に用いられる電極は、一般にく用いら
れている。
(Talking) Conventional technology Electrodes used in alkaline storage batteries and the like are generally widely used.

焼結式!極はたとえばニッケル粉末を主成分とするスラ
リーを、多孔性の導電芯体の表面に塗着した後、焼結し
て多孔性焼結基板を得、該基板を活物質保持体としてそ
の細孔にニッケル塩溶液やカドミウム塩溶液などの金属
塩溶液を含浸し、次いでアルカリによって前記金属塩を
水酸化物に変化させる化学含浸操作により、活物質を基
板の細孔内に充填して製造される。
Sintering type! For the electrode, for example, a slurry mainly composed of nickel powder is applied to the surface of a porous conductive core and then sintered to obtain a porous sintered substrate, and the pores are filled with the substrate as an active material holder. It is manufactured by filling the active material into the pores of the substrate through a chemical impregnation operation in which the substrate is impregnated with a metal salt solution such as a nickel salt solution or a cadmium salt solution, and then the metal salt is converted into a hydroxide using an alkali. .

このような焼結基板の活物質充填量は、焼結基板の多孔
度によって決定さiする。そこで、多孔度を向上させる
べくスラリー中に有機中空球体を添加(特開昭61−1
.85865号公報参照)したり、スラリー中にポリス
チレン微粉末を添加(特開昭59−175565号公報
参照)することが提案されている。
The amount of active material filled in such a sintered substrate is determined by the porosity of the sintered substrate. Therefore, in order to improve the porosity, organic hollow spheres were added to the slurry (Japanese Patent Laid-Open No. 61-1
.. 85865) or adding polystyrene fine powder to the slurry (see Japanese Patent Laid-Open No. 175565/1983).

(ハ) 発明が解決しようとする課組 に述のような造化剤として有機中空球体を用いた場合に
は、焼結の際に造化剤が熱膨張現象を生じ、5を泡のバ
ラつきが生じる。その結果、焼結基板において多孔度の
バラつきが観察され、活物質の充填量をtI−ノーにす
るのが難しくなり、品質の安定した電極が得られないと
いう問題がある。
(c) When organic hollow spheres are used as a shaping agent as described in the problem to be solved by the invention, the shaping agent causes a thermal expansion phenomenon during sintering, resulting in unevenness of bubbles. . As a result, variations in porosity are observed in the sintered substrate, making it difficult to adjust the filling amount of the active material to tI-no, resulting in a problem that an electrode of stable quality cannot be obtained.

また一方造化剤としてポリスチレン等の有機高分子−m
脂粉末を用いた場合には、前述のような焼結基板におけ
る多孔度のバラつきは観察されないが、焼結時に、前記
有機高分子甜脂の分解生成物が焼結基板中に残渣として
残存する。その結果、この残渣が電極特性に悪影響を与
えるという問題を′1:しる。
On the other hand, organic polymers such as polystyrene can be used as a shaping agent.
When fat powder is used, the above-mentioned variation in porosity in the sintered substrate is not observed, but during sintering, the decomposition products of the organic polymer sugar remain as residue in the sintered substrate. . As a result, there is a problem that this residue adversely affects the electrode characteristics.

そしてこれら造化剤の使用は、焼結基板製造コストを上
昇させるらのである。
The use of these shaping agents increases the cost of manufacturing sintered substrates.

そこで本発明はかかる点に鑑みてなされたものであって
、造化剤を用いない場合であっても高多孔度を得、更に
はニッケル粒子間及び、ニッケル柁fと導電芯体との密
着性に優れ、機械的強度大なる焼結基板を得ようとする
ものである。
Therefore, the present invention has been made in view of these points, and it is possible to obtain high porosity even when no forming agent is used, and also to improve the adhesion between nickel particles and between nickel particles and the conductive core. The purpose is to obtain a sintered substrate that has excellent properties and high mechanical strength.

(ニ)課萌を解決するための手段 +発明のアルカリ蓄電池用焼結基板は、平均粒径が30
〜1 、 OIi mであるカーボニルニッケル粉末を
焼結させて得たことを特徴とするものである。
(d) Means for solving the problem + the sintered substrate for alkaline storage batteries of the invention has an average particle size of 30
~1, OIi m is obtained by sintering carbonyl nickel powder.

又、イ(発明のアルカリ蓄電池用焼結基板の製造方法は
、カーボニルニッケル粉末と、増粘剤と、分散媒とを混
練してスラリーを得、該スラリーを導電芯体に塗着して
乾燥した後、還元雰囲気中で焼結する方イ去であって、
前記カーボニルニッケル粉末の平均粒径が360〜4.
0μmのものを用いることを特徴としている。
In addition, (a) the method for manufacturing a sintered substrate for an alkaline storage battery of the invention involves kneading carbonyl nickel powder, a thickener, and a dispersion medium to obtain a slurry, applying the slurry to a conductive core, and drying it. After that, it is preferable to sinter in a reducing atmosphere,
The carbonyl nickel powder has an average particle size of 360 to 4.
It is characterized by using a material with a diameter of 0 μm.

(ホ)作 用 4\発明者は、焼結基板の多孔度及び機械的強度、更に
は電極を構成したときの持回のし易さが、カーボニルニ
ッケル粉末の粒径に依存することを見い出し、本発明を
完成するに至ったものである。
(E) Effect 4 The inventor discovered that the porosity and mechanical strength of the sintered substrate, as well as the ease of handling when forming an electrode, depend on the particle size of the carbonyl nickel powder. , which led to the completion of the present invention.

即ち、焼結基板の多孔度として85%以−1−を得よう
とする際に、平均粒径が22〜2 、87y mのカー
ボニルニッケル粉末であれば、焼結体の幹が細く、強度
的にも穐い焼結基板しか得られない。
That is, when trying to obtain a porosity of 85% or more in a sintered substrate, if carbonyl nickel powder has an average particle size of 22 to 2.87 mm, the body of the sintered body will be thin and the strength will be However, only a solid sintered substrate can be obtained.

こhはカーボニルニッケル粉末の平均粒径が22〜2 
、81.r mの範囲であると、幹が細いので焼結時収
縮が進行しやすく、多孔度の低下を招く傾向が大きい。
The average particle size of carbonyl nickel powder is 22~2
, 81. If it is within the r m range, the trunk is thin, so shrinkage during sintering tends to progress, and there is a strong tendency for the porosity to decrease.

しかじ平均粒径が3,0μn1を越えると焼結時に収縮
しにくい傾向を示し、多孔度を高いままに維持すること
が可能となる。この場合カーボニルニ・、・ケル粉末の
粒径が大きいため、焼結体の幹は太く、強固な骨格を形
成する。その結果高多孔度であ−)てしかも、強度的に
優れた焼結基板が得らj′Lる。
However, if the average particle size exceeds 3.0 μn1, it tends to be difficult to shrink during sintering, making it possible to maintain a high porosity. In this case, since the particle size of the carbonyl nitride powder is large, the trunk of the sintered body is thick and forms a strong skeleton. As a result, a sintered substrate with high porosity and excellent strength can be obtained.

−・方、カーボニルニッケル粉末の平均粒径が4 、 
t) (r n]を越えると電極として用いて持回構成
した場合、フレキシブル性が低下して活物質の脱落を招
く。その結果、電極において高多孔度でかつ機械的強度
に優れるという特徴を発揮し難くなる。
-, the average particle size of carbonyl nickel powder is 4,
t) If (r n) is exceeded, when used as an electrode in a rotating configuration, the flexibility decreases and the active material falls off.As a result, the electrode has the characteristics of high porosity and excellent mechanical strength. It becomes difficult to perform.

史に、有機中空球体等の造孔剤を添加しないという点に
若[1した場合には、ニッケル粉末同志間の結合点の数
は多く、かつ太く強固ならのどなる。そして二lケル粉
末と導電芯体との密着性、史には導電性が向I−するの
で、その結果、焼結基板の高多孔度化が図f−L、かか
る焼結基板を用いることにより、強度大なる品質の安定
した電極が得らメLる。
Historically, nickel powder has a large number of bonding points between each other, and if it is thick and strong, it becomes thick and strong. Since the adhesion between the 2L Kel powder and the conductive core improves the conductivity, as a result, the sintered substrate has a high porosity as shown in Figure f-L. As a result, a stable electrode with high strength and quality can be obtained.

(へ)実施例 J、’J、 F’に、本発明の実施例と比較例の月比に
a及し、詳述する。
(f) In Examples J, 'J, and F', the monthly ratios of the examples of the present invention and comparative examples will be described in detail.

(実施例1) 平均粒径30〜4 、0 lt mのカーボニルニッケ
ル粉末100重量部と、水100重量部と、増粘剤とし
ての7ヂルセルロース(MC)3重量部とを混練12て
スラリーを得、130℃で乾燥を行った。
(Example 1) 100 parts by weight of carbonyl nickel powder with an average particle size of 30-4.0 ltm, 100 parts by weight of water, and 3 parts by weight of 7-di cellulose (MC) as a thickener were kneaded for 12 hours to form a slurry. was obtained and dried at 130°C.

次に二りを還元雰囲気中880℃で焼結を行い、多孔亀
860oの焼結基板を(()な。そして、この焼結基板
を本発明焼結基板Aとした。
Next, the two were sintered at 880° C. in a reducing atmosphere to obtain a sintered substrate with a porous shell 860o (()).This sintered substrate was designated as the sintered substrate A of the present invention.

この焼結基板Aを用いて化学含浸法により二ノゲル活物
質を充填し、ニッケル電極を得、イ〈発明電極aとした
This sintered substrate A was filled with a Ni-nogel active material by a chemical impregnation method to obtain a nickel electrode, which was designated as Invention Electrode A.

(比較例1) +tij記実施例1において、平均粒径が22〜287
、+ mのカーボニルニッケル粉末(INCO社製T\
l) F 255 )を用い780℃で焼結を行った1
、J、夕[は同様にして、多孔度86%の焼結基板を得
た。これを比較焼結基板Bとし、1iii記同様にして
比較電極すを作製した。
(Comparative Example 1) In Example 1, the average particle size was 22 to 287.
, + m carbonyl nickel powder (T\ manufactured by INCO)
1) Sintered at 780°C using F255)
, J., Yu [obtained a sintered substrate with a porosity of 86% in the same manner. This was used as a comparative sintered substrate B, and a comparative electrode was prepared in the same manner as described in 1iii.

(比較例2) oXiX実記例1において、平均粒径が22〜28pm
のカーボニルニッケル粉末を用い更に造化剤としての有
機樹脂製中空球体を4重量部添加し950℃で焼結を行
った以外は同様にして、多孔度860−Qの焼結基板を
得た。これを比較焼結基板Cとし、O11記同様にして
比較電極Cを作製した。
(Comparative example 2) In oXiX practical example 1, the average particle size was 22 to 28 pm.
A sintered substrate with a porosity of 860-Q was obtained in the same manner except that 4 parts by weight of organic resin hollow spheres as a shaping agent were added and sintered at 950° C. using carbonyl nickel powder. This was used as a comparative sintered substrate C, and a comparative electrode C was produced in the same manner as described in O11.

ぐ比f2例3) iij記実施例1において、平均粒径が2.2〜28 
fJmのカーボニルニッケル粉末を用い700℃で焼結
を行った以外は同様にして、多孔度81%の焼結基板を
得た。これを比較焼結基板りとし、OXj記同様にして
比f9.電極dを作製した。
In Example 1, the average particle size was 2.2 to 28.
A sintered substrate with a porosity of 81% was obtained in the same manner except that fJm carbonyl nickel powder was used and sintering was performed at 700°C. This was used as a comparative sintered substrate, and the ratio f9. Electrode d was produced.

そして本発明焼結基板A及び比較焼結基板B、C,Dを
用い、焼結基板の強度を比較した。この比較はE点強度
試験法を用いて行い、焼結基板にクランクが入るとき、
即ち破壊時の曲げ応力を求めた。この結果を、第1表に
示す。
Then, the strength of the sintered substrates was compared using the sintered substrate A of the present invention and comparative sintered substrates B, C, and D. This comparison was made using the E-point strength test method, and when the crank is inserted into the sintered board,
That is, the bending stress at the time of fracture was determined. The results are shown in Table 1.

第  1  表 尚、曲げ応力は次式に基づき算出した。Table 1 Incidentally, the bending stress was calculated based on the following formula.

る。Ru.

次に本発明電極a及び比較電極す、c、dを用い、活物
質の充填量及び巻取りくすft率を比較した。この結果
を、第2表に示す。
Next, using electrode a of the present invention and comparison electrodes s, c, and d, the filling amount of active material and the winding ft ratio were compared. The results are shown in Table 2.

第  2  表 尚、善取りくずれ率はローラ径5φの加圧ローラで巻取
り渦巻電極体を構成した時の、巻取り前区の!極の重量
差に対する巻取り前のt極重量の比て−ある。
In Table 2, the good removal failure rate is calculated in the pre-winding section when the wound spiral electrode body is constructed using a pressure roller with a roller diameter of 5φ. There is a ratio of the weight of the t-pole before winding to the difference in the weight of the poles.

第2表より、本発明電極aは、同じ多孔度を有する比$
2電極す、cと同程度の高い活物質充填量が得ろ7する
ことかわかる。また、本発明電極aは、機械的強度に優
れたものであるので、巻取りくずれ率が極めて小さいも
のであることが理解さメする。
From Table 2, the electrode a of the present invention has the same porosity as the ratio $
It can be seen that a filling amount of active material as high as that of the two electrodes S and C can be obtained. Furthermore, it is understood that the electrode a of the present invention has excellent mechanical strength, and therefore has an extremely small winding failure rate.

尚、造化剤を用いた比較電極Cは焼結体の空孔の・・う
つきが大きく、活物質充填量も十分に得らノtない場合
が生じると共に、巻取つくすれ率の点においても十分で
あるとはいい難い。
In addition, in comparison electrode C using a sintering agent, the pores of the sintered body are filled with a large amount, and there are cases where a sufficient amount of active material cannot be obtained. It is difficult to say that this is sufficient.

(実施例2) 次に焼結時に用いるカーボニルニッケル粉末の平均粒径
を種々変化させ、その曲げ応力を調べた。この時用いた
カーボニルニ・/ケル粒子の平均粒径は、そノtぞれ、
2.2μm、2 、671m、30L1m、3.4μm
、3.871m、4.2pm、4゜61tm、50μn
〕のらのを用いた。そしてこれらを用い、前記実施例1
と同様にしてスラリーを得、700〜1000℃の温度
で焼結を行った。
(Example 2) Next, the average particle size of the carbonyl nickel powder used during sintering was varied, and the bending stress thereof was investigated. The average particle diameters of the carbonyl Ni/Kel particles used at this time were as follows:
2.2μm, 2, 671m, 30L1m, 3.4μm
, 3.871m, 4.2pm, 4°61tm, 50μn
] Norano was used. Using these, Example 1
A slurry was obtained in the same manner as above, and sintered at a temperature of 700 to 1000°C.

そしてこのようにして得た、多孔度85%の焼結基板を
用いたものである。この結果を、図に示す。図は、カー
ボニルニッケル粉末の平均粒径と、曲げ応力との関係を
示すものである。
The thus obtained sintered substrate with a porosity of 85% was used. The results are shown in the figure. The figure shows the relationship between the average particle size of carbonyl nickel powder and bending stress.

この結果より、カーボニルニンケルの平均粒径として3
.Oum以1−のものを用いると、曲げ応力が大幅に向
上することが!つかる。しかしながら、平均粒径が40
メ川ηを越える辺りから、同じ移几度とした場合、を極
として持回したときのフレキシブル性が低下し、掻回し
にくくなる。
From this result, the average particle size of carbonyl nickel is 3.
.. If a material with a value of 1- or more is used, the bending stress can be significantly improved! I can use it. However, the average particle size is 40
If the same degree of transfer is maintained from around the point where the river η is exceeded, the flexibility when carried as a pole decreases and it becomes difficult to stir.

又、捲回時に活物質が脱落しやすくなる。Moreover, the active material tends to fall off during winding.

したがって用いるカーボニルニッケル粉末の平均粒径と
しては、30〜440μmの範囲のものが好適すること
が理解される。
Therefore, it is understood that the average particle size of the carbonyl nickel powder used is preferably in the range of 30 to 440 μm.

尚、本実施例においてカーボニルニッケル粉末の平均粒
径は、マクロトラック法によって求めたものである。
In this example, the average particle size of the carbonyl nickel powder was determined by the macrotrack method.

0)発明の効果 本発明のアルカリ蓄電池用焼結基板及びその製造方法に
よhば、焼結基板の多孔度を高いままに維持して基板の
機械的強度を向上させることができる。また、かかる焼
結基板を用いた電極の強度を増大させることが可能とな
り活物質の脱落を抑制でき、その工業的価値は極めて大
きい。
0) Effects of the Invention According to the sintered substrate for alkaline storage batteries and the manufacturing method thereof of the present invention, the porosity of the sintered substrate can be maintained at a high level and the mechanical strength of the substrate can be improved. Furthermore, it is possible to increase the strength of an electrode using such a sintered substrate, and it is possible to suppress the active material from falling off, which has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図は焼結基板におけるカーボニルニッケル粉末の平均粒
径と曲げ応力との関係を示す図である。
The figure is a diagram showing the relationship between the average particle size of carbonyl nickel powder and bending stress in a sintered substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径が3.0〜4.0μmであるカーボニル
ニッケル粉末を焼結させて得たことを特徴とするアルカ
リ蓄電池用焼結基板。
(1) A sintered substrate for an alkaline storage battery, which is obtained by sintering carbonyl nickel powder having an average particle size of 3.0 to 4.0 μm.
(2)カーボニルニッケル粉末と、増粘剤と、分散媒と
を混練してスラリーを得、該スラリーを導電芯体に塗着
して乾燥した後、還元雰囲気中で焼結する焼結基板の製
造方法において、 前記カーボニルニッケル粉末の平均粒径が3. 0〜4.0μmのものを用いることを特徴とするアルカ
リ蓄電池用焼結基板の製造方法。
(2) Carbonyl nickel powder, thickener, and dispersion medium are kneaded to obtain a slurry, and the slurry is applied to a conductive core, dried, and then sintered in a reducing atmosphere to create a sintered substrate. In the manufacturing method, the carbonyl nickel powder has an average particle size of 3. A method for manufacturing a sintered substrate for an alkaline storage battery, characterized in that a sintered substrate for an alkaline storage battery is used.
JP63263103A 1988-10-19 1988-10-19 Sintered substrate for alkaline storage battery and manufacture thereof Pending JPH02109266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263103A JPH02109266A (en) 1988-10-19 1988-10-19 Sintered substrate for alkaline storage battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263103A JPH02109266A (en) 1988-10-19 1988-10-19 Sintered substrate for alkaline storage battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02109266A true JPH02109266A (en) 1990-04-20

Family

ID=17384866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263103A Pending JPH02109266A (en) 1988-10-19 1988-10-19 Sintered substrate for alkaline storage battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02109266A (en)

Similar Documents

Publication Publication Date Title
JPH05114402A (en) Nickel positive electrode
JPH02109266A (en) Sintered substrate for alkaline storage battery and manufacture thereof
JPS6329450A (en) Manufacture of electrode for cell
JPH0630248B2 (en) Nickel electrode for alkaline batteries
JP4079667B2 (en) Sintered substrate for alkaline storage battery and manufacturing method thereof
JP2798700B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2951008B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2942637B2 (en) Method for producing paste-type nickel electrode
JPS6266570A (en) Cathode for alkaline storage battery
JPS63105469A (en) Manufacture of nickel substrate for alkaline battery
JPH02139864A (en) Sintered base board for alkaline storage battery and its manufacture
JPS6065464A (en) Manufacture of sintered substrate for battery
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH02256162A (en) Paste type nickel positive electrode for alkaline battery
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JP3783457B2 (en) Method for producing sintered substrate for alkaline storage battery
JP2770438B2 (en) Manufacturing method of separator for lead storage battery
JPS62271346A (en) Manufacture of positive electrode for alkaline storage battery
JPS5832743B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPH04296453A (en) Nickel sintered substrate for alkaline secondary battery
JPH01319257A (en) Manufacture of alkaline storage battery electrode
JPH02109265A (en) Manufacture of sintered substrate for alkaline storage battery
JPS63114068A (en) Manufacture of electrode for battery