JPH0210921B2 - - Google Patents

Info

Publication number
JPH0210921B2
JPH0210921B2 JP2014880A JP2014880A JPH0210921B2 JP H0210921 B2 JPH0210921 B2 JP H0210921B2 JP 2014880 A JP2014880 A JP 2014880A JP 2014880 A JP2014880 A JP 2014880A JP H0210921 B2 JPH0210921 B2 JP H0210921B2
Authority
JP
Japan
Prior art keywords
substrate
conductive film
liquid crystal
transparent conductive
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2014880A
Other languages
Japanese (ja)
Other versions
JPS56116016A (en
Inventor
Kaname Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014880A priority Critical patent/JPS56116016A/en
Publication of JPS56116016A publication Critical patent/JPS56116016A/en
Publication of JPH0210921B2 publication Critical patent/JPH0210921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、液晶パネルの製造方法に関するもの
であり、特に透明導電膜の目立ち防止処理方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a liquid crystal panel, and more particularly to a method for treating a transparent conductive film to prevent it from becoming conspicuous.

従来からの液晶パネルは、基板と液晶と透明導
電膜の屈折率が異なるため、透明導電膜の目立ち
(ギラギラしたり、少し暗く見える)がおこり、
表示品質を著しく損ねる欠点を有していた。この
欠点を解決する手段として、基板上又は透明導電
膜上から、基板と透明導電膜の中間の屈折率を有
する透明絶縁被膜を所定の厚みに被覆することに
より、透明導電膜の目立ちが防止できることは知
られている。このような透明絶縁膜目立ち防止処
理として、有機金属の熱分解法が優れている。こ
の場合、基板を有機金属を溶解した有機溶媒に浸
漬等速引き上げにより塗布する方法が、膜の均一
性,作業性,コスト面から優れているが、この場
合、液晶と接しない基板裏面にまで、透明絶縁被
膜が被覆され、パネル全体が少し暗くなる欠点を
有していた。この液晶と接しない裏面の反射率
(視感度補正された平均反射率)は、空気と接す
る場合、約2〜3%にも達する。又、偏光板を粘
着剤(n≒1.5)等ではりつけた場合でも、0.5〜
1%に達する。このような絶縁膜のない場合、基
板と粘着剤の間の反射は、無視できる程である。
なぜなら、基板n≒1.5,粘着剤n≒1.5であるか
ら。よつて、このような基板と透明導電膜の中間
の屈折率を有する透明絶縁被膜は、液晶と接する
側の面にだけ被覆するのが望ましい。かかる欠点
を解決する方法として、種々検討した結果、片面
マスクの方法として、フツ素系樹脂のコートが優
れていることがわかつた。浸漬法で被覆するとき
に、液にぬれないことが前提条件である。PVA
等のインクによると、インク上に形成された有機
金属被膜が、熱分解の際に基板上に再付着してし
まうからである。このようなフツ素系樹脂をコー
トする方法として、蒸着,スプレー,ロールコー
ト,ハケ塗り,スクリーン印刷,オフセツト印刷
等が考えられる。フツ素系樹脂とは、Fレージン
(帝人の商標),テフロン(デユポン社の商標),
フツ素系界面活性剤,FX液(住友3Mの商標)等
がある。その厚さは、単分子層以上なら本発明の
目的にかなうものである。
In conventional liquid crystal panels, the refractive index of the substrate, liquid crystal, and transparent conductive film is different, which causes the transparent conductive film to stand out (glare or look a little dark).
This had the drawback of significantly impairing display quality. As a means to solve this drawback, it is possible to prevent the transparent conductive film from becoming noticeable by coating the substrate or the transparent conductive film with a transparent insulating film having a refractive index between that of the substrate and the transparent conductive film to a predetermined thickness. is known. An organic metal thermal decomposition method is excellent as a treatment for preventing such a transparent insulating film from becoming conspicuous. In this case, the method of dipping the substrate in an organic solvent containing an organic metal and pulling it up at a constant speed is superior in terms of film uniformity, workability, and cost. However, it had the disadvantage that it was coated with a transparent insulating film, making the entire panel a little dark. The reflectance of the back surface that does not come into contact with the liquid crystal (average reflectance corrected for visibility) reaches about 2 to 3% when it comes into contact with air. Also, even if the polarizing plate is attached with an adhesive (n≒1.5), the
It reaches 1%. Without such an insulating film, reflections between the substrate and the adhesive are negligible.
This is because the substrate n≒1.5 and the adhesive n≒1.5. Therefore, it is desirable that such a transparent insulating film having a refractive index between that of the substrate and the transparent conductive film be coated only on the side that is in contact with the liquid crystal. As a result of various studies to solve this drawback, it was found that coating with fluororesin is an excellent method for forming a single-sided mask. When coating by dipping, it is a prerequisite that the material does not get wet. PVA
This is because, when using such ink, the organometallic film formed on the ink re-adheres to the substrate during thermal decomposition. Possible methods for coating with such a fluororesin include vapor deposition, spraying, roll coating, brush coating, screen printing, and offset printing. Fluorine-based resins include F resin (Teijin trademark), Teflon (DuPont trademark),
Examples include fluorine-based surfactants and FX liquid (trademark of Sumitomo 3M). If the thickness is at least a monomolecular layer, it will meet the objectives of the present invention.

また、本発明は透明絶縁膜を透明導電膜上から
被覆して、透明導電膜の目立ちを防止する場合に
も適用できる。この時、端子部,上下導通部を被
覆しないようにする必要があるが、この場合も、
フツ素系樹脂が優れていることがわかつた。いず
れにしても、本発明は基板上に必要な箇所だけ、
有機金属の浸漬等速引き上げ法により被覆する場
合、マスク剤としてフツ素系樹脂が優れているこ
とを見いだした点である。
Further, the present invention can also be applied to cases in which a transparent insulating film is coated over a transparent conductive film to prevent the transparent conductive film from being noticeable. At this time, it is necessary to avoid covering the terminals and upper and lower conductive parts, but in this case,
It was found that fluorine-based resins are superior. In any case, the present invention allows only the necessary parts to be placed on the board.
It has been discovered that fluororesin is excellent as a masking agent when coating by the organic metal immersion constant velocity pulling method.

本発明に用いられる基板としては、相対する基
板の少なくとも一方が透明であればよく、材料と
して、ガラス(ソーダ系ガラス,ホウケイ酸系ガ
ラス,他),セラミツク,プラスチツク等が用い
られる。場合によつては、これらを組み合わせて
用いてもよい。又、この基板上に形成する透明絶
縁被膜は、酸化ケイ素と酸化チタンの混合物が良
く、モル分率により、1.45〜2.3の間で屈折率を
調整できる。膜厚は100Å〜3000Å、好ましくは
200Å〜1500Å範囲であり、透明導電膜目立ち防
止の目的からして、この屈折率により適正値及び
適正範囲が存在する。屈折率が小さいと膜厚を大
きく、屈折率が大きければ膜厚は小さくなる。こ
のような混合絶縁被膜は、それぞれの有機金属を
含む有機溶媒に基板を浸漬後、等速引き上げ塗布
し、50〜200℃で乾燥後、300〜600℃の基板の耐
熱性の範囲で熱分解させる。有機金属とは、ケイ
素及びチタンのアルコキシ金属,キレート,アシ
レート等であり、これらから1種類以上、場合に
よつては、ケイ素とチタンで種類の異なるものを
選んで用いれば良い。
The substrate used in the present invention may be made of glass (soda glass, borosilicate glass, etc.), ceramic, plastic, etc. as long as at least one of the opposing substrates is transparent. Depending on the case, these may be used in combination. The transparent insulating film formed on this substrate is preferably a mixture of silicon oxide and titanium oxide, and the refractive index can be adjusted between 1.45 and 2.3 by changing the molar fraction. Film thickness is 100Å to 3000Å, preferably
The refractive index ranges from 200 Å to 1500 Å, and for the purpose of preventing the transparent conductive film from standing out, there are appropriate values and ranges depending on the refractive index. The smaller the refractive index, the larger the film thickness, and the larger the refractive index, the smaller the film thickness. Such mixed insulating coatings are made by dipping the substrate in an organic solvent containing each organic metal, then pulling it up at a constant speed, drying it at 50 to 200℃, and then thermally decomposing it within the heat resistance range of the substrate at 300 to 600℃. let The organic metals include alkoxy metals, chelates, acylates, etc. of silicon and titanium, and one or more types thereof, and in some cases, different types of silicon and titanium may be selected and used.

以下、実施例によつて本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例1 (第1図,第2図参照) ホウケイ酸系ガラス1の片面にフツ素系樹脂2
としてFレージン(帝人製)の0.5%アセトン溶
液をスプレーした。(第1図―1)100℃でキユア
ー後、下記の組成から成る有機金属液に浸漬し
た。
Example 1 (See Figures 1 and 2) Fluorine resin 2 was coated on one side of borosilicate glass 1.
As a solution, a 0.5% acetone solution of F resin (manufactured by Teijin) was sprayed. (Figure 1-1) After curing at 100°C, it was immersed in an organometallic liquid having the following composition.

イソプピルアルコール 100部 テトラブトキシシラン 10部 テトラオクチルオキシチタン 20部 アセチルアセトン 10部 塩酸 6N 1部 10cm/minで等速引き上げ後120℃で15分キユ
アを行ない(第1図―2)、さらに500℃で1時間
焼成を行つた(第1図―3)。等速引き上げ時に、
Fレージンが被覆された面は上記液をハジき全く
ぬれなかつた。又500℃の熱分解時にフツ素系樹
脂2も熱分解し、全く痕跡もなかつた。有機金属
被膜3は約700Åで屈折率1.75を有していた。
Isopropyl alcohol 100 parts Tetrabutoxysilane 10 parts Tetraoctyloxytitanium 20 parts Acetylacetone 10 parts Hydrochloric acid 6N 1 part After pulling at a constant speed of 10 cm/min, cure at 120°C for 15 minutes (Figure 1-2), and then heat to 500°C. Baking was performed for 1 hour (Figure 1-3). When pulling at a constant speed,
The surface coated with F resin was not wetted by the above liquid at all. Furthermore, during the thermal decomposition at 500°C, the fluororesin 2 was also thermally decomposed, leaving no trace at all. Organometallic coating 3 was approximately 700 Å and had a refractive index of 1.75.

次に有機金属被覆膜3上にCVD法で透明導電
膜4として酸化スズを400Å被覆した(第1図―
4)。所定のフオト工程を経て、Zn―HClでパタ
ーニングを行なつた(第1図―5)。このような
第1図―5のような基板2枚を用い、シラン系カ
ツプリング剤で処理後、綿布で一定方向ラビング
を行ない、第2図に示すようなFETN型液晶表
示パネルを組み立てた。5はTN液晶、6はエポ
キシ系接着剤によるシーールで、10μmのアルミ
ナギヤツプ剤を含んでなる。第2図の液晶パネル
は透明導電膜4は全く目立たなかつた。又基板1
の両面に被膜3を被覆したものよりも一段と明る
さを増した。
Next, tin oxide was coated with a thickness of 400 Å on the organometallic coating film 3 as a transparent conductive film 4 using the CVD method (Fig.
4). After a prescribed photo process, patterning was performed using Zn-HCl (Figure 1-5). Using two such substrates as shown in Figure 1-5, they were treated with a silane coupling agent and then rubbed in a certain direction with a cotton cloth to assemble a FETN type liquid crystal display panel as shown in Figure 2. 5 is a TN liquid crystal, and 6 is a seal using an epoxy adhesive, which includes a 10 μm alumina gapping agent. In the liquid crystal panel shown in FIG. 2, the transparent conductive film 4 was not noticeable at all. Also board 1
The brightness was further increased compared to the one in which both sides were coated with Coating 3.

比較例 1 フツ素系樹脂の代わりにポリビニルアルコール
を用いた場合、有機金属液に浸漬等速引き上げし
た時、ポリビニルアルコール被膜上にも有機金属
が被覆され熱分解時に基板1に再付着し、きれい
な外観が得られなかつた。
Comparative Example 1 When polyvinyl alcohol is used instead of fluororesin, when it is immersed in an organic metal solution and pulled up at a constant speed, the organic metal is also coated on the polyvinyl alcohol film and reattached to the substrate 1 during thermal decomposition, resulting in a clean I couldn't get the appearance.

実施例2 (第3図,第4図参照) 実施例1と同様の基板1上に酸化スズを5%ド
ープした酸化インジウム透明導電膜4を200Å蒸
着法を用い形成した(第3図―1)。所定のフオ
ト工程を経てHClを用い第3図―2のごとくバタ
ーニングを行なつた。上下導通部7及びリード部
8(選択的マスキングをしてから)及び、4とそ
の反対面である基板裏面にFX液(住友3M製)か
らなるフツ素系樹脂2をハケ塗りした(第3図―
3)。次に下記の有機金属を含む液に浸漬した。
Example 2 (See Figures 3 and 4) An indium oxide transparent conductive film 4 doped with 5% tin oxide was formed on the same substrate 1 as in Example 1 using a 200 Å vapor deposition method (see Figure 3-1). ). After a prescribed photo process, buttering was performed using HCl as shown in Figure 3-2. Fluorine-based resin 2 made of FX liquid (manufactured by Sumitomo 3M) was applied by brush to the upper and lower conductive parts 7 and lead parts 8 (after selective masking), 4 and the back side of the board, which is the opposite surface. figure-
3). Next, it was immersed in a liquid containing the following organic metal.

アトロンNSi:10(日本ソーダ製)80部 アトロンNTi:(日本ソーダ製)20部 15cm/minで等速引き上げ塗布した(第3図―
4)。60℃で乾燥後500℃で1時間熱分解した。冷
却すると第3図―5の構造が得られた。フツ素樹
脂2は熱分解してコン跡が存在しなかつた。この
ような基板を2枚組み合わせ実施例1と同様にし
て液晶パネル第(4図参照)を組み立てた。9は
銀ペーストであり上下導通の働きを成す。第4図
の液晶パネルは、従来品に比較して透明導電膜4
の目立ちは全くなく、又基板1の両面に透明絶縁
膜3を形成したものより明るかつた。又上記導電
膜4上に絶縁膜3を被覆して成るため、パネルの
消費電流が約3割低減した。又透明導電膜4の基
板1との段差が少なくなり、特に透明導電膜4の
エツジ部で著しいため点灯時におけるドメインが
減少した。
Atron NSi: 10 (manufactured by Nippon Soda) 80 parts Atron NTi: (manufactured by Nippon Soda) 20 parts Pulled up and applied at a constant speed of 15 cm/min (Fig. 3)
4). After drying at 60°C, it was thermally decomposed at 500°C for 1 hour. When cooled, the structure shown in Figure 3-5 was obtained. The fluororesin 2 was thermally decomposed and there was no trace of a compound. A liquid crystal panel (see FIG. 4) was assembled in the same manner as in Example 1 by combining two such substrates. Reference numeral 9 is a silver paste, which functions as vertical conduction. The liquid crystal panel shown in Figure 4 has a transparent conductive film 4 compared to conventional products.
was not noticeable at all, and was brighter than the one in which the transparent insulating film 3 was formed on both sides of the substrate 1. Furthermore, since the conductive film 4 is coated with the insulating film 3, the current consumption of the panel is reduced by about 30%. Furthermore, the level difference between the transparent conductive film 4 and the substrate 1 is reduced, and this is particularly noticeable at the edge portions of the transparent conductive film 4, so that the domain during lighting is reduced.

第2図及び第4図の構造の液晶パネルは
FETNモード以外にも、GH,相転移型GH,
DSM,DAP等の液晶表示モード、その他EL,
EPID,EL,コロイダルライトバルブ等にも応用
可能である。本発明を用いた液晶表示素子は、時
計,電卓等に用いられ、従来よりも表示品質が格
段と良くなつた。
The liquid crystal panel with the structure shown in Figures 2 and 4 is
In addition to FETN mode, GH, phase transition type GH,
LCD display modes such as DSM, DAP, other EL,
It can also be applied to EPID, EL, colloidal light valves, etc. The liquid crystal display element using the present invention is used in watches, calculators, etc., and the display quality is much better than before.

以上述べたように、本発明によれば、基板上の
必要な箇所に透明絶縁被膜を容易に形成できる。
さらに、浸漬等速引き上げ法によるので、一度に
多量の処理が可能であり、したがつて、量産性の
高い製造方法が提供できる。また、有機ケイ素お
よび有機チタンが溶解された有機溶媒を用いたの
で、透明絶縁被膜の屈折率の調整が可能である。
As described above, according to the present invention, a transparent insulating film can be easily formed at necessary locations on a substrate.
Furthermore, since the immersion constant velocity pulling method is used, a large amount can be processed at one time, and therefore a manufacturing method with high mass productivity can be provided. Furthermore, since an organic solvent in which organosilicon and organotitanium were dissolved was used, it is possible to adjust the refractive index of the transparent insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1による基板を製造工
程ごとに示した断面図。第2図は本発明の実施例
1の液晶パネルの断面図。第3図は本発明の実施
例2による基板を製造工程ごとに示した断面図。
第4図は本発明の実施例2の液晶パネルの断面
図。 10,11……偏光板。
FIG. 1 is a cross-sectional view showing each manufacturing process of a substrate according to Example 1 of the present invention. FIG. 2 is a sectional view of a liquid crystal panel according to Example 1 of the present invention. FIG. 3 is a cross-sectional view showing each manufacturing process of a substrate according to Example 2 of the present invention.
FIG. 4 is a sectional view of a liquid crystal panel according to a second embodiment of the present invention. 10, 11...Polarizing plate.

Claims (1)

【特許請求の範囲】 1 基板の一方の面上または該面上に形成された
透明導電膜上に、該透明導電膜の屈折率と前記基
板の屈折率の中間の屈折率を有し該透明導電膜の
目立ちを防止する透明絶縁被膜を形成してなる液
晶パネルの製造方法において、前記基板の他方の
面上および前記一方の面の任意の箇所をフツ素系
樹脂で被覆処理し、有機ケイ素および有機チタン
が溶解された有機溶媒を浸漬等速引き上げ法によ
り前記基板上に塗布した後、加熱処理によつて前
記透明絶縁被膜を形成するとともに前記フツ素系
樹脂を熱分解することを特徴とする液晶パネルの
製造方法。 2 前記フツ素系樹脂を上下導通部およびまたは
リード部に被覆形成したことを特徴とする特許請
求の範囲第1項記載の液晶パネルの製造方法。
[Scope of Claims] 1. On one surface of a substrate or on a transparent conductive film formed on the surface, the transparent conductive film has a refractive index intermediate between the refractive index of the transparent conductive film and the refractive index of the substrate. In a method of manufacturing a liquid crystal panel in which a transparent insulating film is formed to prevent the conspicuousness of a conductive film, the other surface of the substrate and any part of the one surface are coated with a fluorine-based resin, and an organosilicon and applying an organic solvent in which organic titanium is dissolved onto the substrate by a dipping constant velocity pulling method, and then forming the transparent insulating film by heat treatment and thermally decomposing the fluororesin. A manufacturing method for liquid crystal panels. 2. The method of manufacturing a liquid crystal panel according to claim 1, wherein the fluorine-based resin is coated on the upper and lower conductive parts and/or the lead parts.
JP2014880A 1980-02-20 1980-02-20 Manufacture of liquid crystal panel Granted JPS56116016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014880A JPS56116016A (en) 1980-02-20 1980-02-20 Manufacture of liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014880A JPS56116016A (en) 1980-02-20 1980-02-20 Manufacture of liquid crystal panel

Publications (2)

Publication Number Publication Date
JPS56116016A JPS56116016A (en) 1981-09-11
JPH0210921B2 true JPH0210921B2 (en) 1990-03-12

Family

ID=12019060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014880A Granted JPS56116016A (en) 1980-02-20 1980-02-20 Manufacture of liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS56116016A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606943A (en) * 1983-06-25 1985-01-14 Futaba Corp Photosensitive composition and formation of micropattern by using it
JPS61184532A (en) * 1985-02-13 1986-08-18 Tokyo Denshi Kagaku Kk Photosensitive comosition
JPH03132623A (en) * 1989-10-18 1991-06-06 Canon Inc Liquid crystal element

Also Published As

Publication number Publication date
JPS56116016A (en) 1981-09-11

Similar Documents

Publication Publication Date Title
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
US6798032B2 (en) Metal film pattern and manufacturing method thereof
JPS63104023A (en) Electro-optical device
JPH043121A (en) Liquid crystal display and manufacture thereof
JPH0210921B2 (en)
JPH09135096A (en) Transparent electromagnetic shielding substrate
JP3245112B2 (en) Cleaning method for glass substrate for color filter
JPH07257945A (en) Transparent electric conductive laminated body and pen input touch panel
US4116658A (en) Method of coating substrate for liquid crystal display device
EP0500397A2 (en) Method of producing transparent zinc oxide films
JPS5499449A (en) Roduction of liquid crystal display element
JPS60146226A (en) Liquid crystal display device
JP2979565B2 (en) Protective film forming solution for transparent electrodes
JPS5752024A (en) Manufacture of transparent electrode substrate
JPH03167522A (en) Liquid crystal device fitted with transparent panel heater
KR100300856B1 (en) Color filter for liquid crystal display
JPS62239124A (en) Liquid crystal display element
JPH09208264A (en) Glass top for copying machine
JPS6048742B2 (en) Liquid crystal cell substrate and its manufacturing method
WO1996035139A1 (en) Flat panel display with parylene barrier and protective films
JPH07325308A (en) Liquid crystal display device and its production
JPS6261203A (en) Transparent conductive film
KR950011954B1 (en) Insulating membrane making method of lcd elements
JP2005519423A (en) Composition comprising silver metal particles and a silane derivative
JPH06289379A (en) Production of liquid crystal display element