JPH0210891B2 - - Google Patents

Info

Publication number
JPH0210891B2
JPH0210891B2 JP57143887A JP14388782A JPH0210891B2 JP H0210891 B2 JPH0210891 B2 JP H0210891B2 JP 57143887 A JP57143887 A JP 57143887A JP 14388782 A JP14388782 A JP 14388782A JP H0210891 B2 JPH0210891 B2 JP H0210891B2
Authority
JP
Japan
Prior art keywords
sample
internal strain
phase difference
etching
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57143887A
Other languages
Japanese (ja)
Other versions
JPS5932805A (en
Inventor
Toshiaki Wada
Yoshiaki Katsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14388782A priority Critical patent/JPS5932805A/en
Publication of JPS5932805A publication Critical patent/JPS5932805A/en
Publication of JPH0210891B2 publication Critical patent/JPH0210891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、アルミナ系セラミツクス材料の内
部歪測定方法に係り、偏光解析法を用いて該材料
の鏡面加工面より内部歪を非破壊で相対的に測定
する方法に関する。 背景技術 今日、コンピユーター用を始め、オーデイオ用
VTR用等の各種磁気ヘツドに、記録密度の高密
度化並びに耐摩耗性の改善が強く求められてお
り、このため、ICテクノロジーを用いて製造す
る薄膜磁気ヘツドが最適と考えられている。 一般に、薄膜磁気ヘツド基板材料として、Mn
−Znフエライト、Ni−Znフエライト、センダス
ト等の軟磁性材料、あるいは、Al2O3−TiC系等
のアルミナ系セラミツクス材料の如き耐摩耗性、
精密加工性のすぐれた非磁性材料が基板として用
いられている。 また、薄膜磁気ヘツド・スライダーの浮上量の
減少化とスライダー面の平面度は1/100μm程度
の加工精度が要求されており、かかる高精度平面
を得るのに、研削、ラツピング等の加工技術並び
に平面度計測技術と同様に、被加工材の内部歪に
ついても充分考慮する必要がある。 かかる加工の際に、被加工材に発生するそりの
原因は次の2つに大別される。その1つは被加工
材の表面加工歪層の存在により、表裏面の歪差か
らそりが発生する場合であり、もう1つは、被加
工材に内在する内部歪が表面加工によつて開放さ
れてそりが発生する場合である。 上記のそり対策として、前者の場合はエツチン
グあるいはメカノケミカルポリツシングなどによ
り、無歪な平面に加工する方法や、材料面から高
ヤング率の材料を開発して対処している。 しかし、後者の内部歪が基板に内在する場合は
上記の処理では除去できず、内部歪の程度を測定
して対処す必要がある。 一般にかかる内部歪の測定方法としては、直接
法として、被加工材の加工時に発生するそり量を
測定する方法、熱処理によるそりの変化を測定す
る方法、エツチング速度やエツチピツトにより内
部欠陥や粒界歪などに依存する転位やマイクロク
ラツク、不純物等を観察する方法が採用されてい
る。 また、間接法としては、X線応力測定装置によ
り被加工材の格子間隔の変化量により内部歪を測
定する方法がある。 かかる測定方法は破壊検査が主であり、実操業
や量産体制下においては品質管理上の全数検査は
不可能である。 発明の目的 この発明は、Al2O3−TiC、Al2O3−TiO2やこ
れらに添加物を加えたものなどのアルミナ系セラ
ミツクス材料の内部歪を非接触で測定できる内部
歪の測定方法を目的とし、特に、磁気ヘツドの量
産化において有効に活用し得る内部歪の測定方法
を目的としている。 発明の概要 この発明は、 表面粗度50Å以下に精密研摩したアルミナ系セ
ラミツクス試料と、これをさらにエツチング処理
した試料を、偏光解析法によつて各々の試料の位
相差Δ1,Δ2を測定し、 上記両者の試料の位相差(Δ1−Δ2)を算出し、 前記算出偏差値と予め設定された位相差の偏差
(Δ1−Δ2)の基準値を対比して、被加工材の内部
歪を相対的に判定することを要旨とするアルミナ
系セラミツクス材料の内部歪測定方法である。 この発明において、アルミナ系セラミツクス材
料の表面を50Å以下の表面粗度で精密研摩する方
法として、例えば、ダイヤモンドポリツシング、
メカノケミカルポリツシングがあり、エツチング
する方法としては多種方法があり適宜採用できる
が、HNO3中に試料を浸漬し、揺動運動させてエ
ツチングのむらの発生を防止しながら処理する方
法が好ましく、エツチング量はHNO3の濃度、エ
ツチング濃度、エツチング時間により調節でき
る。 発明の図面に基づく開示 第1図は偏光解析法の原理を示す光学経路図で
ある。 以下に偏光解析法を説明する。偏光解析法は試
料Sa表面に偏光を投射し、反射の際に生じる偏
光状態の変化を観測するものである。 試料Saの位相差Δを求めるには、まず補償板
Cのfast軸を/4傾け、偏光子P1と検光子A1
を共に回転させ、いわゆるクロスニコルの状態と
なつて検光子透過光が零となるようにし、この時
の偏光子方位角(P方位)θを測定し、下記(1)よ
り試料Saの位相差Δを得る。 Δ=/2−2θ ……(1) また、偏光子方位角(S方位)φは、反射係数
比を得るのに必要な観測値である。 次に、偏光解析法によつて得られた試料の位相
差Δを基準に、設定した位相差Δと対比させて試
料の内部歪を相対的に測定する方法を、この発明
による実施例に基づいて詳述する。 供試材には、Al2O362wt%、TiC37wt%、
MgO1wt%の組成からなるAl2O3−TiC材を用い
た。 上記試料はホツトプレスにより焼成されるが、
その内部歪は焼成条件、熱処理条件により異なる
ため、次の3種の試料を準備した。 まず、A試料は、1700℃でのホツトプレス後
1300℃で焼なましたものであり、B試料は、1700
℃でホツトプレスしたままであり、C試料は、
1700℃でホツトプレスした後1400℃で焼なましを
施したものである。 上記の3種の試料を幅25mm、厚み5mm、長さ25
mmの所定寸法に切断し、さらに各焼成品の表面層
を2mm以上研削し、粒径05μmのダヤモンドパウ
ダーを使用するダイヤモンドポリツシングを施し
た。 この際、各試料の表面層に生じる加工変質層を
同一にするため、同一ラツプ基板に貼着して同一
加工条件で、表面粗度50Åとなるまでラツピング
した。 その後、各試料を偏光解析装置にかけ、各試料
のθ、φ値を観測した。なお、観測条件は、偏光
入射角70゜、測定波長5461Åであつた。 また、上記の精密研摩を施した3種の試料を、
60%HNO3中で10分間のエツチング処理したの
ち、上記の観測条件で偏光解析法を行ないθ、φ
値を観測した。 以上の各試料の観測値および位相差の偏差値、
並びに表面段差測定器による表面粗度とともに第
1表に示す。 作用効果 ここで、一般に、内部歪の多い材料程、ケミカ
ルエツチングされやすいことが知られているの
で、第1表の精密研摩後とエツチング後の偏光解
析値を対比すると、試料Bはエツチングにより表
面粗度が粗く、位相差(Δ1−Δ2)値も他の試料
A、Cに較べて変化量が大きいことから、試料B
の内部歪は試料A、Cに較べて相対的に大きいこ
とが明らかである。 従つて上述した対比により、ラツピング加工試
料及びエツチング処理試料の位相差と内部歪との
相関関係をもとめて、位相差の基準値を設定し、
この基準値と製造量産工程でのラツピング加工及
びエツチング処理した被加工材との位相差(Δ−
Δ2)とを対比させることにより、被加工材の内
部歪を相対的に判別することができ、品質管理
上、製品ロツトの良否判定に極めて有効となり、
量産上歩留向上効果等が期待できる。 【表】
[Detailed description of the invention] Industrial field of application The present invention relates to a method for measuring internal strain in alumina-based ceramic materials, in which internal strain is relatively measured non-destructively from a mirror-finished surface of the material using ellipsometry. Regarding the method. BACKGROUND TECHNOLOGY Today, there are many devices used for computers and audio devices.
There is a strong demand for higher recording density and improved wear resistance for various magnetic heads such as those for VTRs, and for this reason, thin-film magnetic heads manufactured using IC technology are considered optimal. Generally, Mn is used as a thin film magnetic head substrate material.
- Wear resistance such as soft magnetic materials such as Zn ferrite, Ni-Zn ferrite, sendust, or alumina ceramic materials such as Al 2 O 3 -TiC,
Nonmagnetic materials with excellent precision machinability are used as substrates. In addition, a reduction in the flying height of a thin film magnetic head slider and a processing accuracy of about 1/100 μm are required for the flatness of the slider surface. Similar to flatness measurement technology, it is also necessary to fully consider the internal strain of the workpiece. The causes of warpage that occurs in the workpiece during such processing can be broadly classified into the following two types. One is when warpage occurs due to the strain difference between the front and back surfaces due to the existence of a strained layer on the surface of the workpiece, and the other is when the internal strain inherent in the workpiece is released by surface treatment. This is the case where warping occurs. To counter the above warping, in the former case, methods include etching or mechanochemical polishing to form a flat surface without distortion, and materials with a high Young's modulus are developed. However, if the latter internal strain is inherent in the substrate, it cannot be removed by the above process, and it is necessary to measure the degree of the internal strain and take measures. Generally, such internal strain can be measured using the direct method, which measures the amount of warpage that occurs during machining of the workpiece, which measures changes in warp due to heat treatment, and which measures internal defects and grain boundary strain based on etching speed and etching pits. A method is used to observe dislocations, microcracks, impurities, etc. Further, as an indirect method, there is a method of measuring internal strain based on the amount of change in the lattice spacing of the workpiece using an X-ray stress measuring device. Such measurement methods mainly involve destructive testing, and 100% testing for quality control purposes is not possible during actual operations or mass production. Purpose of the Invention The present invention provides a method for measuring internal strain that can non-contactly measure the internal strain of alumina-based ceramic materials such as Al 2 O 3 -TiC, Al 2 O 3 -TiO 2 , and materials with additives added thereto. In particular, the purpose of this paper is to provide a method for measuring internal strain that can be effectively utilized in the mass production of magnetic heads. Summary of the Invention This invention measures an alumina ceramic sample that has been precisely polished to a surface roughness of 50 Å or less, and a sample that has been further etched, using ellipsometry to measure the phase differences Δ 1 and Δ 2 of each sample. Then, calculate the phase difference (Δ 1Δ 2 ) between the two samples mentioned above, compare the calculated deviation value with a preset standard value of the phase difference deviation (Δ 1 − Δ 2 ), and calculate the This is a method for measuring the internal strain of alumina-based ceramic materials, the gist of which is to relatively determine the internal strain of the material. In the present invention, methods for precision polishing the surface of alumina-based ceramic materials to a surface roughness of 50 Å or less include, for example, diamond polishing,
There is mechanochemical polishing, and there are many different etching methods that can be adopted as appropriate, but a preferred method is to immerse the sample in HNO 3 and perform rocking motion to prevent uneven etching. The amount of etching can be adjusted by the concentration of HNO 3 , etching concentration, and etching time. DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is an optical path diagram showing the principle of ellipsometry. The ellipsometry method will be explained below. The ellipsometry method projects polarized light onto the surface of the sample Sa and observes changes in the polarization state that occur upon reflection. To find the phase difference Δ of the sample Sa, first tilt the fast axis of the compensator C by /4, and then set the polarizer P 1 and analyzer A 1
The polarizer azimuth angle (P azimuth) θ at this time is measured, and the phase difference of the sample Sa is determined from (1) below. Get Δ. Δ=/2−2θ (1) Moreover, the polarizer azimuth (S azimuth) φ is an observed value necessary to obtain the reflection coefficient ratio. Next, based on an embodiment of the present invention, a method for relatively measuring the internal strain of a sample by comparing the phase difference Δ of the sample obtained by ellipsometry with a set phase difference Δ will be described. This will be explained in detail. The sample materials include Al 2 O 3 62wt%, TiC 37wt%,
An Al 2 O 3 -TiC material with a composition of 1wt% MgO was used. The above sample is fired by hot pressing,
Since the internal strain varies depending on firing conditions and heat treatment conditions, the following three types of samples were prepared. First, sample A was hot pressed at 1700℃.
It was annealed at 1300℃, and sample B was annealed at 1700℃.
C sample remains hot pressed at ℃.
It was hot pressed at 1700℃ and then annealed at 1400℃. The above three types of samples are 25 mm wide, 5 mm thick, and 25 mm long.
Each fired product was cut into a predetermined size of mm, and the surface layer of each fired product was ground by 2 mm or more, and diamond polishing was performed using diamond powder with a particle size of 05 μm. At this time, in order to make the process-affected layer formed on the surface layer of each sample the same, each sample was attached to the same wrap substrate and lapped under the same processing conditions until the surface roughness reached 50 Å. Thereafter, each sample was subjected to a polarization analyzer, and the θ and φ values of each sample were observed. The observation conditions were a polarized light incident angle of 70° and a measurement wavelength of 5461 Å. In addition, the three types of samples subjected to the above precision polishing were
After etching in 60% HNO3 for 10 minutes, ellipsometry was performed under the above observation conditions to determine θ, φ.
Observed value. Observed values and phase difference deviation values for each sample above,
Table 1 also shows the surface roughness measured by a surface step measuring device. Effect: Generally, it is known that the more internal strain a material has, the more easily it is chemically etched, so when comparing the ellipsometric analysis values after precision polishing and after etching in Table 1, sample B shows that the surface of sample B has been etched by etching. Sample B
It is clear that the internal strain of Sample A is relatively large compared to Samples A and C. Therefore, through the comparison described above, the correlation between the phase difference and internal distortion of the wrapping processed sample and the etching processed sample was determined, and a reference value of the phase difference was set.
The phase difference (Δ-
By comparing Δ 2 ), it is possible to relatively determine the internal strain of the workpiece, which is extremely effective in determining the quality of a product lot in terms of quality control.
It can be expected to improve yield in mass production. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は偏光解析法の原理を示す光学経路図で
ある。 図中、A1……検光子、C……補償板、P1…
…偏光子、Sa……試料、θ……偏光子方位角、
φ……偏光子方位角。
FIG. 1 is an optical path diagram showing the principle of ellipsometry. In the figure, A1...analyzer, C...compensator, P1...
...polarizer, Sa...sample, θ...polarizer azimuth,
φ...Polarizer azimuth angle.

Claims (1)

【特許請求の範囲】[Claims] 1 表面粗度50Å以下に精密研摩したアルミナ系
セラミツクス試料と、この試料をさらにエツチン
グ処理したアルミナ系セラミツクス試料とを、偏
光解析法ににより各々の試料の位相差Δ1,Δ2
測定し、両者の位相差の偏差(Δ1−Δ2)を算出
し、算出した偏差値と予め設定された位相差の偏
差(Δ1−Δ2)の基準値と対比して被加工材の内
部歪を相対的に判定することを特徴とするアルミ
ナ系セラミツクス材料の内部歪測定方法。
1. Measure the phase difference Δ 1 and Δ 2 of each sample using ellipsometry using an alumina ceramic sample that has been precisely polished to a surface roughness of 50 Å or less and an alumina ceramic sample that has been further etched. The deviation of the phase difference (Δ 1 − Δ 2 ) between the two is calculated, and the internal strain of the workpiece is determined by comparing the calculated deviation value with a preset standard value of the deviation of the phase difference (Δ 1 − Δ 2 ). A method for measuring internal strain in alumina-based ceramic materials, which is characterized by relatively determining .
JP14388782A 1982-08-18 1982-08-18 Method for measuring inner strain in alumina ceramics material Granted JPS5932805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14388782A JPS5932805A (en) 1982-08-18 1982-08-18 Method for measuring inner strain in alumina ceramics material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14388782A JPS5932805A (en) 1982-08-18 1982-08-18 Method for measuring inner strain in alumina ceramics material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21771289A Division JPH02118426A (en) 1989-08-23 1989-08-23 Method for measuring internal strain of alumina ceramics material

Publications (2)

Publication Number Publication Date
JPS5932805A JPS5932805A (en) 1984-02-22
JPH0210891B2 true JPH0210891B2 (en) 1990-03-12

Family

ID=15349334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14388782A Granted JPS5932805A (en) 1982-08-18 1982-08-18 Method for measuring inner strain in alumina ceramics material

Country Status (1)

Country Link
JP (1) JPS5932805A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107941283B (en) * 2017-12-22 2024-03-12 中南大学 Multi-parameter on-line monitoring system and method for hot-press curing process of composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223725A (en) * 1982-06-23 1983-12-26 Taisei Corp Method and apparatus for measuring stress of member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223725A (en) * 1982-06-23 1983-12-26 Taisei Corp Method and apparatus for measuring stress of member

Also Published As

Publication number Publication date
JPS5932805A (en) 1984-02-22

Similar Documents

Publication Publication Date Title
US7640788B2 (en) Wear gauge and method of use
US4604670A (en) Magnetic head
US4225892A (en) Wear resistant magnetorestrictive head
JPH0210891B2 (en)
JPH0515974B2 (en)
Griffiths Ferro-magnetic resonance in thin ni-films
Coll et al. Dynamics of Crack Propagation during Silicon Spalling
CN108247874B (en) A kind of processing method of yttrium luetcium silicate crystal cuboid device
Zanzucchi et al. Optical Reflectance Method for Determining the Surface uality of Sapphire (Al2 O 3)
Kotake et al. Quantitative photoelastic measurement of residual stress in lec grown gap crystals
JPH01316632A (en) Device and method for evaluating mechanical property of thin film
JPS5912962B2 (en) Measuring method of mirror-finishing altered layer of ferrite
Potgiesser et al. Mechanical wear and degeneration of the magnetic properties of magnetic heads caused by the tape
Gamarts et al. Characterization of stress in semiconductor wafers using birefringence measurements
JPS58202807A (en) Method for measuring modified layer caused by surface machining of sendust
JPS63167207A (en) Measuring method for surface working affected layer of insb semiconductor wafer
JPS6145285B2 (en)
JPS58201007A (en) Method for measuring layer degenerated by surface processing of al2o3 composite material
JPS6048253A (en) Fine polishing of crystallized glass
Wada An improvement of ferrite substrate
Kuriyama et al. Ferromagnetic Resonance Absorption of Single-Crystal Thin Films of Nickel
JPH0530300B2 (en)
Wu et al. Experimental Investigation of Ultra-Thin Silicon Wafers Warpage
Ahn et al. Magnetic Damage in Mn-Zn and Ni-Zn Ferrites Induced by Abrasion
SU921385A1 (en) Method of producing standard measure of thickness of semiconductor layers