JPS6145285B2 - - Google Patents

Info

Publication number
JPS6145285B2
JPS6145285B2 JP11633779A JP11633779A JPS6145285B2 JP S6145285 B2 JPS6145285 B2 JP S6145285B2 JP 11633779 A JP11633779 A JP 11633779A JP 11633779 A JP11633779 A JP 11633779A JP S6145285 B2 JPS6145285 B2 JP S6145285B2
Authority
JP
Japan
Prior art keywords
gap
thickness
sample
ferrite
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11633779A
Other languages
Japanese (ja)
Other versions
JPS5641518A (en
Inventor
Toshiaki Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP11633779A priority Critical patent/JPS5641518A/en
Publication of JPS5641518A publication Critical patent/JPS5641518A/en
Publication of JPS6145285B2 publication Critical patent/JPS6145285B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気ヘツドのギヤツプ形成方法に
関し、狭ギヤツプ長を設定どおりに形成できるい
わゆるガラスボンデイングによるギヤツプ形成方
法に関する。 電算機、VTR、オーデイオ用等のフエライト
磁気ヘツドを製造する方法として、所定形状に形
成し鏡面研摩後、ガラス材を溶融状態にし、毛細
管現象を利用してギヤツプ部の空隙に入れる方法
が一般的である。 このガラスボンデイング方式は、例えばガラス
材質に適当なものを選択することによりヘツドコ
アを構成するフエライト材とガラス材との良好な
接着力が得られ、十分に強固なヘツドを作製でき
るすぐれた特長がある。 又この強い接着は、フエライト材と溶融したガ
ラス材との反応の進行により、実効ギヤツプ長が
設定した値より広くなる結果も招いている。つま
り光学的ギヤツプと磁気的ギヤツプが一致せず後
者が大きい値となり、1μmのスペーサーでギヤ
ツプ形成しても実質的には1.1〜1.4μmとなり精
度のバラツキも大きくなつている。 以上のギヤツプの拡大は加工変質層にともなう
ものと考えられる。すなわち、普通に行なわれて
いるフエライトの研摩法はダイヤモンドの微細粉
を用いるラツピングであり、この加工によつて加
工変質層が発生し、0.05〜0.2μm厚みの非晶相
として存在し、しかもスクラツチの集積であるか
ら一定厚でない。 従つて、この加工したフエライトを対向させて
ガラスボンデイングした場合、ガラスとフエライ
ト間の侵蝕作用は、上記加工歪の大きい方が高く
なり無歪に近い方が少なくなる。 ところが従来はこの加工変質層の測定方法がな
く、フエライトの加工面状況や歪の度合、又ガラ
スボンデイング後のガラス―フエライトの拡散侵
蝕状況が十分に把握されずに、完成品の磁気ヘツ
ド特性により電気的条件を個別に補償し、磁気記
録装置に組込んでいた。 そこで、この発明は所定ギヤツプ長を拡大させ
ることなく設定どおりのギヤツプ長を形成できる
方法を提案することを目的とする。 すなわちこの発明は、フエライトの加工変質層
の厚みdを測定し、所定ギヤツプ長gに対し、g
−2dのスペーサーを用いてガラスボンデイング
する磁気ヘツドのギヤツプ形成方法である。ある
いは、ギヤツプ面の片側にg−2d/2の非磁性層を蒸 着、スパツター等の方法により形成し、対向面を
溶着してもよい。 また加工変質層の測定方法は、反射電子回折法
によりフエライト加工表面の無歪で結晶規則性の
良い試料を選択し、これを基準として偏光解析法
により、試料の複素反射係数比を得て、加工変質
層の厚さを求める方法である。 以下に加工変質層の測定方法を具体的に説明す
る。 偏光解析法で薄膜測定するには、試料の位相差
(Δ)と2色性(RP/RS)を同時に求める方法
がとられる。 第1図に偏光解析法の原理説明図を示し、これ
にもとづいて説明すると、補償板Cのfast軸を
π/4傾け、偏光子P1と検光子A1を共に回転さ
せ検光子透過光が零となるようにし、P方位θ、
A方位ψを測定し、試料Saの位相差ΔとP方向
に振動する成分波とそれに垂直に振動するS方向
成分波との試料Saでの反射係数比RP/RS(2
色性)を求める。 位相差と反射係数比は下記式で求められ、これ
ら両者より薄膜試料による反射を求めると複素反
射係数比RP/RSが得られる。 Δ=π/2−2θ,RP/RS=tanψ RP/RS=(RP/RS)exp(iΔ) また第2図に薄膜での反射の説明図を示すが、
雰囲気の屈折率n1、下御の屈折率n3、薄膜の屈折
率n2、その厚さd2、牌入射角φさらに測定波長
λとすると、RP/RSはこれらの関数で表わすこ
とができる。次に各境界面でのフレネルの反射係
数を求めることができる。さらにスネルの法則か
らn1sinφ=n2Sinφ=n3Sinφが得られ
る。 ここでn1,n3,λ,φを既知とし、Δ,ψを
測定すれば、先の複素反射係数比の関係式から薄
膜の屈折率と厚さが得られる。 ところで下地の屈折率n3は既知として得ておく
必要があり、試料に薄膜の存在しないよう加工し
てn3をもとめても、これを零へ外挿できる値が得
られないため反射電子回折法を用いる。 すなわち、反射電子回折法は同透過型の場合に
くらべてその回折は深度によつてd-2〜d-3と減衰
してしまうため、得られる情報は極く表面のもの
に限られ、その回折像は規則性のある多結晶構造
ではリング状の回折スポツトが得られ、不規則な
場合にはハロー像が得られる。 よつて加工変質層の場合にリング状の回折スポ
ツトが得られた試料は、一応歪がなく規則性のあ
る結晶構造とみなすことができる。この試料より
n3を得て、先の偏光解析法に基準値として適用す
ればよい。 次にギヤツプの形成方法を説明する。 第3図に磁気ヘツドの断面図を示しこれに基づ
いて説明すると、まず上述の測定方法でフエライ
トの鏡面加工変質層の層厚dを測定し、所定のギ
ヤツプ長がgである場合、これに対しg―2dの
寸法のスペーサーを作製し、ギヤツプ部にこのス
ペーサーを挾み溶融ガラスを流し込みギヤツプを
形成する。 ここでガラスとフエライト間の拡散侵蝕の度合
は、前述したように測定した加工変質層の層厚分
にとどまるから、事前に侵蝕分2dを所定ギヤツ
プ長のスペーサーgより差し引いてあれば、ガラ
スの侵蝕によつてギヤツプが拡大しても所定のギ
ヤツプ長に形成することができる。 すなわちg―2dのスペーサーを用いることに
よつて、ガラスボンデイング法でも所定のギヤツ
プ長、特に狭ギヤツプ長が容易に設定形成でき
る。 以下にこの発明による実施例を示しその効果を
明らかにする。 磁気ヘツドのギヤツプ長gを1.0μmに設定
し、上記したこの発明方法によるg―2dのスペ
ーサーを用いてガラスボンデイングしたもの(番
号1〜3)と従来のガラスボンデイング方法によ
るもの(番号4〜6)とを成品ヘツドのギヤツプ
精度で評価した。 また全試料の加工変質層の層厚を該測定法で測
定し、ギヤツプのガラスによる拡大した厚みと比
較した。これらの結果は第1表に示す通りであ
る。 この結果から明らかな如く、この発明方法によ
つてギヤツプ精度が著しく向上したことがわか
る。しかも従来法では、先に測定した加工変質層
の厚みに見合うだけ精度が低下していることがわ
かる。さらにこの発明方法によつて精度のバラツ
キが少なくなり、歩留りが向上し90%以上になつ
た。
The present invention relates to a method for forming a gap in a magnetic head, and more particularly to a method for forming a gap using so-called glass bonding, which can form a narrow gap length as set. A common method for manufacturing ferrite magnetic heads for computers, VTRs, audio, etc. is to form them into a predetermined shape, mirror polish them, then melt the glass material and use capillary action to fill the gap in the gap. It is. This glass bonding method has an excellent feature that, for example, by selecting an appropriate glass material, good adhesive strength can be obtained between the ferrite material that makes up the head core and the glass material, allowing the production of a sufficiently strong head. . Moreover, this strong adhesion also results in the effective gap length becoming wider than the set value due to the progress of the reaction between the ferrite material and the molten glass material. In other words, the optical gap and the magnetic gap do not match, and the latter has a large value, and even if a gap is formed with a 1 μm spacer, it is substantially 1.1 to 1.4 μm, resulting in large variations in accuracy. The widening of the gap described above is thought to be due to the process-affected layer. In other words, the commonly used polishing method for ferrite is lapping using fine diamond powder, and this process generates a process-altered layer, which exists as an amorphous phase with a thickness of 0.05 to 0.2 μm, and is difficult to scratch. The thickness is not constant because it is an accumulation of Therefore, when the processed ferrite is glass bonded while facing each other, the corrosive effect between the glass and the ferrite increases as the processing strain is large, and decreases as the process strain is close to zero. However, in the past, there was no method for measuring this process-affected layer, and the condition of the processed surface of the ferrite, the degree of distortion, and the state of diffusion corrosion of the glass-ferrite after glass bonding were not fully understood, and the characteristics of the magnetic head of the finished product were not fully understood. The electrical conditions were individually compensated and incorporated into the magnetic recording device. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to propose a method that can form a gap length as set without enlarging a predetermined gap length. That is, in this invention, the thickness d of the process-affected layer of ferrite is measured, and for a predetermined gap length g, g
This is a method for forming a gap in a magnetic head using glass bonding using a -2D spacer. Alternatively, a nonmagnetic layer of g-2d/2 may be formed on one side of the gap surface by a method such as vapor deposition or sputtering, and the opposite surface may be welded. In addition, the method for measuring the process-affected layer is to select a sample with a strain-free ferrite processed surface and good crystal regularity using reflected electron diffraction, and using this as a reference, obtain the complex reflection coefficient ratio of the sample using ellipsometry. This is a method for determining the thickness of the process-affected layer. The method for measuring the process-affected layer will be specifically explained below. To measure thin films using ellipsometry, a method is used to simultaneously determine the phase difference (Δ) and dichroism (R P /R S ) of the sample. Figure 1 shows a diagram explaining the principle of ellipsometric analysis. Based on this, the fast axis of the compensator C is tilted by π/4, the polarizer P 1 and the analyzer A 1 are both rotated, and the light transmitted through the analyzer is is zero, P direction θ,
The A direction ψ is measured, and the phase difference Δ of the sample Sa and the reflection coefficient ratio R P /R S (2
chromaticity). The phase difference and the reflection coefficient ratio are determined by the following formula, and when the reflection by the thin film sample is determined from both of them, the complex reflection coefficient ratio R P /R S is obtained. Δ=π/2−2θ, R P /R S =tanψ R P /R S =(R P /R S )exp(iΔ) In addition, Fig. 2 shows an explanatory diagram of reflection in a thin film.
Assuming that the refractive index of the atmosphere n 1 , the refractive index of the lower layer n 3 , the refractive index of the thin film n 2 , its thickness d 2 , the angle of incidence on the tile φ 1 and the measurement wavelength λ, R P /R S is a function of these. can be expressed. Next, the Fresnel reflection coefficient at each interface can be determined. Furthermore, from Snell's law, n 1 sinφ 1 = n 2 Sinφ 2 = n 3 Sinφ 3 can be obtained. Here, if n 1 , n 3 , λ, and φ 1 are known and Δ and ψ are measured, the refractive index and thickness of the thin film can be obtained from the above relational expression of the complex reflection coefficient ratio. By the way, it is necessary to obtain the refractive index n 3 of the base as a known value, and even if we process the sample so that there is no thin film and obtain n 3 , we cannot obtain a value that can be extrapolated to zero, so we use backscattered electron diffraction. use law. In other words, in the backscattered electron diffraction method, the diffraction is attenuated by d -2 to d -3 depending on the depth compared to the same transmission type, so the information obtained is limited to the surface information, and the information obtained is limited to the surface information. In the case of a regular polycrystalline structure, a ring-shaped diffraction spot is obtained in the diffraction image, and in the case of an irregular polycrystalline structure, a halo image is obtained. Therefore, a sample in which a ring-shaped diffraction spot is obtained in the case of a process-affected layer can be regarded as having a regular crystal structure without distortion. From this sample
It is sufficient to obtain n 3 and apply it as a reference value to the previous ellipsometry method. Next, a method for forming the gap will be explained. Fig. 3 shows a cross-sectional view of the magnetic head, and the explanation will be based on this. First, the layer thickness d of the mirror-finishing altered layer of ferrite is measured using the above-mentioned measuring method. If the predetermined gap length is g, then On the other hand, a spacer with a dimension of g-2d is prepared, this spacer is placed in the gap part, and molten glass is poured into the gap part to form a gap. Here, the degree of diffusion corrosion between the glass and ferrite is limited to the thickness of the process-affected layer measured as described above, so if the corrosion amount 2d is subtracted from the spacer g of the predetermined gap length in advance, Even if the gap expands due to erosion, it can be formed to a predetermined gap length. That is, by using the g-2d spacer, a predetermined gap length, especially a narrow gap length, can be easily set and formed even with the glass bonding method. Examples according to the present invention will be shown below to clarify its effects. The gap length g of the magnetic head was set to 1.0 μm and glass bonding was performed using a g-2d spacer according to the method of this invention described above (numbers 1 to 3), and those using the conventional glass bonding method (numbers 4 to 6). ) was evaluated based on the gap accuracy of the finished product head. In addition, the layer thicknesses of the process-affected layers of all samples were measured using this measuring method, and compared with the thickness expanded by the gap glass. These results are shown in Table 1. As is clear from these results, it can be seen that the gap accuracy was significantly improved by the method of the present invention. Furthermore, it can be seen that in the conventional method, the accuracy decreases in proportion to the thickness of the process-affected layer measured earlier. Furthermore, the method of this invention reduces variations in accuracy and improves yield to over 90%.

【表】 以上に述べた如く、この発明による磁気ヘツド
のギヤツプ形成方法は、ガラスボンデイングのも
つ量産性をいかし、さらに設定したギヤツプ長の
再現性が極めてすぐれたギヤツプ形成方法であ
る。
[Table] As described above, the method for forming a gap in a magnetic head according to the present invention takes advantage of the mass productivity of glass bonding, and furthermore, the reproducibility of the set gap length is extremely excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は偏光解析法の原理説明図、第2図は薄
膜での反射状態の説明図、第3図はヘツドギヤツ
プの説明図である。
FIG. 1 is an explanatory diagram of the principle of polarization analysis, FIG. 2 is an explanatory diagram of the state of reflection in a thin film, and FIG. 3 is an explanatory diagram of the head gap.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気ヘツドコア素材の加工表面の加工変質層
の厚みdを、反射電子回折法により加工表面の無
歪で結晶規則性の良い試料を選択し、これを基準
として偏光解析法により、試料の複素反射係数比
を得て、加工変質層の厚さを測定する方法で測定
し、所定ギヤツプ長gに対して、g―2dのスペ
ーサーを用いてガラスボンデイングすることを特
徴とする磁気ヘツドのギヤツプ形成方法。
1. The thickness d of the process-affected layer on the processed surface of the magnetic head core material was determined by using backscattered electron diffraction to select a sample with no strain on the processed surface and good crystal regularity, and using this as a reference to determine the complex reflection of the sample using ellipsometry. A method for forming a gap in a magnetic head, characterized in that the coefficient ratio is obtained, the thickness of the process-affected layer is measured by a method, and glass bonding is performed using a spacer of g-2d for a predetermined gap length g. .
JP11633779A 1979-09-11 1979-09-11 Formation method of magnetic head gap Granted JPS5641518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11633779A JPS5641518A (en) 1979-09-11 1979-09-11 Formation method of magnetic head gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11633779A JPS5641518A (en) 1979-09-11 1979-09-11 Formation method of magnetic head gap

Publications (2)

Publication Number Publication Date
JPS5641518A JPS5641518A (en) 1981-04-18
JPS6145285B2 true JPS6145285B2 (en) 1986-10-07

Family

ID=14684453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11633779A Granted JPS5641518A (en) 1979-09-11 1979-09-11 Formation method of magnetic head gap

Country Status (1)

Country Link
JP (1) JPS5641518A (en)

Also Published As

Publication number Publication date
JPS5641518A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
US4352016A (en) Method and apparatus for determining the quality of a semiconductor surface
JP2003272336A (en) Mounting member made of glass for magnetic disk and method for manufacturing the same
JPH01133204A (en) Magnetic head and production
CN107462530B (en) Full-spectrum optical constant characterization method of hydrogen-containing diamond-like carbon film
King et al. Ellipsometry applied to films on dielectric substrates
JPS6145285B2 (en)
US6731386B2 (en) Measurement technique for ultra-thin oxides
JPH0475566B2 (en)
JPS6334404B2 (en)
JPS5912962B2 (en) Measuring method of mirror-finishing altered layer of ferrite
JP4282878B2 (en) Thin film density measurement method
JP4421054B2 (en) Method for measuring surface shape of semiconductor thin film
JPH0210891B2 (en)
Zanzucchi et al. Optical Reflectance Method for Determining the Surface uality of Sapphire (Al2 O 3)
JPS58201007A (en) Method for measuring layer degenerated by surface processing of al2o3 composite material
Hicken et al. In situ Brillouin light scattering from ultrathin epitaxial Fe/Ag (100) films with Cr and Ag overlayers
JPH0515974B2 (en)
US6704103B2 (en) Coatings for sensitivity enhancement of signal from glass disks
JP2890588B2 (en) Method of measuring film thickness
JPS5938950A (en) Magneto-optic storage element
JPS63167207A (en) Measuring method for surface working affected layer of insb semiconductor wafer
JPH10153543A (en) Carbon film quality evaluation method for magnetic recording medium, and magnetic recording medium
JPS597226A (en) Measuring method for incidence angle of polarization analyzing monitor
JP2001228327A (en) Method for manufacturing birefringent plate
JPS6222747B2 (en)