JPS58202807A - Method for measuring modified layer caused by surface machining of sendust - Google Patents

Method for measuring modified layer caused by surface machining of sendust

Info

Publication number
JPS58202807A
JPS58202807A JP8685782A JP8685782A JPS58202807A JP S58202807 A JPS58202807 A JP S58202807A JP 8685782 A JP8685782 A JP 8685782A JP 8685782 A JP8685782 A JP 8685782A JP S58202807 A JPS58202807 A JP S58202807A
Authority
JP
Japan
Prior art keywords
sample
measured
refractive index
sendust
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8685782A
Other languages
Japanese (ja)
Other versions
JPS6334404B2 (en
Inventor
Toshiaki Wada
和田 俊朗
Yoshiaki Katsuyama
勝山 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8685782A priority Critical patent/JPS58202807A/en
Publication of JPS58202807A publication Critical patent/JPS58202807A/en
Publication of JPS6334404B2 publication Critical patent/JPS6334404B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve measuring accuracy, by obtaining a refractive index, when a plane of a sample surface which is mechanochemically polished in a liquid wherein the fine powder of a specified material is suspended in pure water, is made to be reference, and using this index as a reference index for the texture of a sample to be measured. CONSTITUTION:The fine powder of MgO, SiO2, and the like, whose diameter is 0.05mum or less, is suspended in pure water, so that the weight % of the powder is 0.5-20. The surface of a sample is made to face a lap such as hard cloth and Sn in said liquid and lapped by mechanochemical polishing. Thus very precise flat plane is obtained on the sample by the lapping. With this sample as a reference, the refractive index of the texture of a sample to be measured is obtained. A complex number reflection coefficient ratio Rp/Rs of the sample to be measured is computed by a polarization analysis method. Then, a width (d) of a changed layer of the sample to be measured caused by machining is obtained. By this method, flatness and nondistortion property of a magnetic head substrate and the like can be accurately measured.

Description

【発明の詳細な説明】 この発明は、センダストに鏡面加工を施す際、ツノ0エ
表面に発生するQO工変質着の層厚を非接触で測定する
加工変質層の測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring a process-affected layer, which non-contactly measures the layer thickness of a QO process-altered deposit that occurs on the surface of a horn when mirror finishing is applied to sendust.

1ンダストは電Jli、VTRあるいはオーディオ用・
つ詔気ヘッド累材として、その特性の長さから広く利用
されているが、今日さらに記録密度の同上が求められ、
各用途における磁気ヘッドの性能向上が12]望されて
いる。
1 dust is for electrical equipment, VTR or audio.
It is widely used as a tsusuke head composite material due to its long characteristics, but today there is a demand for even higher recording density.
It is desired to improve the performance of magnetic heads in various applications.

磁気ヘッドの性能を決定する大きな要素としてヘッドの
ギャップ精度が挙げられるが、ギャップ精度の向上には
磁気ヘッド基板の十分な平坦度亜びに加工表面の無歪性
が特に必要とされる。
The gap accuracy of the head is a major factor that determines the performance of a magnetic head, and in order to improve the gap accuracy, sufficient flatness of the magnetic head substrate and non-distortion of the processed surface are particularly required.

一般に、平坦度を確保するための鏡面機械研摩したセン
ダストの加工表面には、加工に伴う層厚の加工変質層が
発生し、この加工度jt層は磁気ヘッドの性能を大きく
低下させる要因であることが知られている。そこで今日
ではこの加工変質ノーを除去できる無歪加工法としてメ
カノ争ケミカルポリッシングが開発されつつある。
Generally, on the machined surface of Sendust, which has been mirror-polished to ensure flatness, a thick processed layer is generated due to processing, and this processed layer is a factor that greatly reduces the performance of the magnetic head. It is known. Nowadays, mechanical chemical polishing is being developed as a strain-free processing method that can eliminate this processing deterioration.

ところが、上記の加工変を層の測定方法が具体的になく
、実操業において加工変質−の1−厚専の発生度合を把
握できずに、磁気ヘッドとして完成させたものを、最終
の鑞磁変換特性で判断する方法が一般に用いられるのみ
であった。
However, there was no specific method for measuring the above-mentioned processing deterioration in the layer, and it was not possible to grasp the degree of occurrence of processing deterioration (1) in actual operation. Generally, only the method of determining based on conversion characteristics was used.

また、試験方法として、斜め研摩法、゛成子線反射回折
法等が知られているが、渣産体制下においては斜め研摩
法は破壊検査であるため適用することができなく、又、
電子線反射回折法は加工変質1−の存a 74 tB、
しかできないものであった。
In addition, as testing methods, the diagonal polishing method, the Seiko beam reflection diffraction method, etc. are known, but the diagonal polishing method cannot be applied in the residue production system because it is a destructive test.
Electron beam reflection diffraction method shows the existence of processing deterioration 1-a 74 tB,
It was the only thing I could do.

こ7)発明は、センダストの加工表面に発生したUn工
変貢層の′酋厚を非接触で測定し、賞気ヘッド製造遣羊
過程で有効に活用できる加工変質−の測定方法を逼案す
ることを目的としている。
7) The invention proposes a method for measuring processing deterioration that can be effectively utilized in the production process of bounty heads by non-contactly measuring the thickness of the unprocessed deformation layer generated on the processed surface of sendust. It is intended to.

すなわち、この発明は、MgO,5iOt等の微細粉末
を純水中に懸?蜀させた液中で、メカノ・ケミカルポリ
ッシングを施した試料表面の屈折率を被測定試料下地の
屈折率(n、)とし、偏光解析法により、仮測定試料の
摸索反射係数比(Rp/Rs)を算出して被測定試料の
那工変質1−々厚(a)を求めることをlf!黴とする
センダストの表面加工変質層の測定方法である。
That is, in this invention, fine powder of MgO, 5iOt, etc. is suspended in pure water. The refractive index of the surface of the sample subjected to mechano-chemical polishing in the solution was taken as the refractive index (n,) of the base of the sample to be measured, and the measured reflection coefficient ratio (Rp/Rs) of the temporary measurement sample was determined by ellipsometry. ) to find the thickness (a) of the sample to be measured. This is a method for measuring the surface-treated altered layer of sendust, which is moldy.

一般に、センダスト材の71工表面の加工変質層は表面
から流動層、応力層そしてバルク層の順に各1存在する
と考えられ、流動層は非晶相として存在し、この下部に
は流動層の歪の影響を受けた応力1−が実・系には流動
層とは区□別できない状態で存在すると考えられる。
In general, the process-affected layers on the surface of sendust material are thought to exist in the order of a fluidized layer, a stress layer, and a bulk layer from the surface, and the fluidized layer exists as an amorphous phase, and the strained layer below this layer is It is thought that the stress 1- affected by □ exists in a real system in a state that cannot be distinguished from that of a fluidized bed.

このような加工変質層の如き薄膜を、偏光解析法を用い
て測定するには、偏光の試料における反射の際に生ずる
偏光量変化を一位相差(Δ)と振幅反射係数比(Rp/
Rs)で求める方法をとる。すなわち、試料による反射
を基本とするため、試料下。
To measure a thin film such as a process-affected layer using ellipsometry, the change in the amount of polarized light that occurs when polarized light is reflected on a sample is calculated by calculating the change in the amount of polarized light by one phase difference (Δ) and the amplitude reflection coefficient ratio (Rp/
The method used is to calculate the amount using Rs. In other words, it is based on reflection by the sample, so it is below the sample.

地、加工変質層、雰囲気の各々の屈折率が重要となり、
未刈数の加工変質層を求めるには、試料下地の屈折率を
特定しなければならない。
The refractive index of the ground, process-altered layer, and atmosphere are important.
To determine the uncut number of process-affected layers, the refractive index of the sample base must be specified.

そこでセンダスト試料の表面を研摩して屈折率を求める
が、センダストは結晶方位による化学的侵蝕速度が夫々
異なるため、一般的な鏡面加工条件では必ず結晶段差が
発生し、又粒界拡散が大きく、粒界が腐蝕されやすく、
基準とすべき屈折率を得ることができない。
Therefore, the refractive index is determined by polishing the surface of the sendust sample, but since the chemical erosion rate of sendust differs depending on the crystal orientation, crystal steps will always occur under general mirror finishing conditions, and grain boundary diffusion will be large. Grain boundaries are easily corroded,
It is not possible to obtain a refractive index that should be used as a reference.

従って、この発明では、例えば粒径0.05μm以下の
MgO,Si偽等の微細粉末を1、純水中に0.5〜2
0wtチ程度を懸濁させた液中で、硬質クロス、Sn等
のラップに対向させて液中ラップするメカノ・ケミカル
ポリッシングを試料表面に施し、超精密平面となした試
料を基準とし、その屈折率を被測定試料の下地の屈折率
とするもので、これによって測定蛸度の同上を計ること
ができる。
Therefore, in this invention, for example, 1 part fine powder of MgO, Si pseudo, etc. with a particle size of 0.05 μm or less is added to 0.5 to 2 parts of pure water.
The surface of the sample was mechano-chemical polished by lapping it in the liquid against a hard cloth, Sn, etc. in a suspension of about 0 wt. The refractive index of the base of the sample to be measured is taken as the refractive index of the base of the sample to be measured, and it is possible to measure the same as the measured refractive index.

以下に、偏光解析法について説明する。第1図は!堀元
解析法の原理を示す説明図、第2図は試料(Sa )の
那工変を層での反射を示す説明図である。
The polarization analysis method will be explained below. Figure 1 is! FIG. 2 is an explanatory diagram showing the principle of the Horimoto analysis method.

閣元解析法は、試料表面に偏光を投射し、反射の際に生
じる偏光状態の変化を測定し表面上の薄層の厚さを求め
るものであり、かかる加工変質層の厚みを求めるには、
まず試料の位相差(Δ)と2色性(Rp/Rs)を同時
に求める。
The Kakumoto analysis method projects polarized light onto the sample surface and measures the change in polarization state that occurs upon reflection to determine the thickness of the thin layer on the surface. ,
First, the phase difference (Δ) and dichroism (Rp/Rs) of the sample are determined simultaneously.

すなわち、補償板(C)のfast軸をπ/4傾け、偏
光子(Pl)と検光子(A1)を共に回転させ、いわゆ
るクロスニフルの状態となって検光子透過光が4となる
ようにし、この時の偏光子方位角(P方位)θを測定し
、(1)式より試料(Sa )の位相差(Δ)を得る。
That is, the fast axis of the compensator (C) is tilted by π/4, the polarizer (Pl) and the analyzer (A1) are rotated together, so that a so-called cross niffle state is created, and the light transmitted through the analyzer becomes 4. At this time, the polarizer azimuth (P azimuth) θ is measured, and the phase difference (Δ) of the sample (Sa) is obtained from equation (1).

次いで、偏光の変化をP1回に振動するP成分波とこれ
に垂直に振動するS成分波との試料での反−It率比、
すなわ″r02色性で測定する。これは上記のP方位角
θを測定したときの、検光子方位角(S方Ig、)ψを
測定し、(2)式により反射係数比(R1)/R11)
を得る。
Next, the change in polarization is determined by the anti-It rate ratio in the sample of the P component wave that oscillates once P and the S component wave that oscillates perpendicularly to this,
In other words, it is measured by "r02 chromaticity. This is done by measuring the analyzer azimuth angle (S direction Ig, ) ψ when measuring the above P azimuth angle θ, and calculating the reflection coefficient ratio (R1) using equation (2). /R11)
get.

このように試A(Sa)による反射を位相差(Δ)と反
射係数比(Rp/ Rs)で求めたとき、(3)式より
複素反射係数比(ip/Rs)を得ることができる。す
なわち、dとψの2つの量が偏光パラメータとなり、エ
リプソメトソーにおいて重要な鎗となる。
When the reflection by sample A (Sa) is determined by the phase difference (Δ) and the reflection coefficient ratio (Rp/Rs) in this way, the complex reflection coefficient ratio (ip/Rs) can be obtained from equation (3). That is, the two quantities d and ψ become polarization parameters, which are important keys in ellipsometry.

Δ = π/2−2θ  ・・・・・・・・・・・・(
1)式Rp/R@=tanψ     ・・・・・・・
・・・・・(2)式Rp/ Rs= (Rp/Rs )
 exp (tΔ)−・−・−(31式また、試料(S
a)での反射において、雰囲気の屈折率をnい加工変質
層の屈折率をnいその厚みをd、下地の屈折率をn3、
各層での入射角をφ1゜b−fs、さらに測定波長をλ
とすると、複素反射係数比(Rp/Rs)はこれらの関
数で表わすことができ、各境界面でのフレネル反射係数
も求めることができる。さらにヌネルの法則から nl sinφ* = ”t sin 42 = 11
3 sinφ。
Δ = π/2-2θ ・・・・・・・・・・・・(
1) Formula Rp/R@=tanψ ・・・・・・・・・
...(2) Formula Rp/Rs= (Rp/Rs)
exp (tΔ)−・−・−(Formula 31 Also, sample (S
In the reflection in a), the refractive index of the atmosphere is n, the refractive index of the processed damaged layer is n, its thickness is d, the refractive index of the base is n3,
The incident angle at each layer is φ1゜b-fs, and the measurement wavelength is λ
Then, the complex reflection coefficient ratio (Rp/Rs) can be expressed by these functions, and the Fresnel reflection coefficient at each boundary surface can also be determined. Furthermore, from Nunell's law, nl sinφ* = ”t sin 42 = 11
3 sinφ.

である。It is.

丁なわち、(3)式の実故部と虚数部を分解することで
、 Δ=f(ni m ”! m d s ”3 eφ8.
λ)ψ=f(”l e ”! e d s  ”S−φ
1.λ)を尋る。
That is, by decomposing the real and imaginary parts of equation (3), Δ=f(ni m ”! m d s ”3 eφ8.
λ)ψ=f("le"! e ds "S-φ
1. λ).

ここで、”Lm”、*−□、λが既知であれば、Δ= 
 f、cnt、 a ) ψ=g (”* * d ) となり、”2*dの関数を得る。
Here, if "Lm", *-□, and λ are known, Δ=
f, cnt, a) ψ=g ("* * d)," and a function of "2*d is obtained.

よって、加工変質層の屈折率n3とその厚みdをパラメ
ータとして、峨子計算機を用いて第3図に示すようなψ
−Δ図をf1m製することにより、測定値であるΔとψ
より加工変質1−の厚み(a)を得ることができるっ 17″・m□′¥[ff1i−)fTfi、OgN*(
Kl・)を得る必要がちるが、この発明で)i前述した
卯く、メカノ拳ケミカルポリッシングを施して超精密平
面となしだ試料を基準とし、この試料の屈折率を被測定
試柵の下地の屈折率(n、)とするため、基準設定が容
易でかつ高測定積度が得られる。な2、センダストは吸
収体であるため、その屈折率(n、)は複素Jで表わさ
れる。
Therefore, using the refractive index n3 of the process-affected layer and its thickness d as parameters, ψ as shown in Fig. 3 can be calculated using the Eko calculator.
- By making the Δ diagram f1m, the measured values Δ and ψ
From this, the thickness (a) of 1- due to processing damage can be obtained.
However, in this invention, the refractive index of this sample is determined from the base of the test fence to be measured. Since the refractive index (n,) is set to , it is easy to set the standard and a high measurement density can be obtained. 2. Since Sendust is an absorber, its refractive index (n,) is expressed by the complex J.

次に、この発明による実施例を示しその効果を明らかに
する。
Next, an example according to the present invention will be shown to clarify its effects.

沼気ヘッド用基板にセンダスト(組成:Fe/Al/s
i= 8515.4/9.6,1100℃X3HrH,
中で焼なまし)を使用し、第1表に示す那工条件で表面
研摩を行った各試料を用いてこの発明方法を実施した。
Sendust (composition: Fe/Al/s
i=8515.4/9.6, 1100℃X3HrH,
The method of the present invention was carried out using each sample whose surface was polished under the conditions shown in Table 1.

第3図には、各試料について偏光解析装a(商品名、島
津Ep−10)による観測値より得たψとΔ値をψ、Δ
チャート上に表わしてあり、図中の番号と試料番号は一
致する。なお、入射角(φ1)は700、測定波長(λ
)は5461Xである。
Figure 3 shows the ψ and Δ values obtained for each sample using the polarization analyzer a (product name, Shimadzu Ep-10).
It is shown on the chart, and the numbers in the figure and sample numbers match. The incident angle (φ1) is 700, and the measurement wavelength (λ
) is 5461X.

試料1は、粒径0.0011ImのMgO微細粉末を純
水中に5wt*懸濁させた加工液を用いてメカノ・ケミ
カルポリッシングを施したもって、これを基準と   
 □し、試料1のψ、Δの値より下地の屈折率として”
s= 1.998  3L195jを得た。
Sample 1 was subjected to mechano-chemical polishing using a processing fluid in which 5 wt* of MgO fine powder with a particle size of 0.0011 Im was suspended in pure water, and this was used as a standard.
□ Then, from the values of ψ and Δ of sample 1, as the refractive index of the base.
s=1.998 3L195j was obtained.

次に、電子計算機を用いて、叩上変質層の平均^ 屈折4n2とその厚さdをパラメータとしてψ−Δ図を
炸裂し、試料1〜4のプロットが含まれるよう△   
                         
     へニn!ヲ犬定した。コノとき、il、= 
i、go −1,70i 。
Next, using an electronic computer, we exploded the ψ-Δ diagram using the average refraction 4n2 of the beaten-up altered layer and its thickness d as parameters, and plotted Δ so that the plots of samples 1 to 4 were included.

Heni n! The dog was determined. Kono time, il, =
i, go −1,70i.

n、= 1.95−2.201:を得た。n, = 1.95-2.201: was obtained.

厚さa 、−i 2本のn2の曲線上に各々計算により
求めプロットした2点間を仲り緑で結んで表示しである
。これより得ちれた各試料のガロエ変質層厚(d)七ね
表に示す。
Thicknesses a and -i are calculated and plotted on two n2 curves, and the two points are connected with a green line. The Galloe altered layer thickness (d) of each sample obtained from this is shown in Table 7.

第  1  表 第1表より試料2の加工変質層厚は100^、試料3は
300^、試料4は500^であり、第3図に明らかな
如く、はぼ直線的に加工変質層厚゛dの値が変化し、加
工条件との相関がよく一致していることがわかる。
Table 1 From Table 1, the thickness of the damaged layer of sample 2 is 100^, that of sample 3 is 300^, and that of sample 4 is 500^. It can be seen that the value of d changes and the correlation with the processing conditions matches well.

以上の実施例からも明らかな如く、この発明方法によっ
て鏡面研摩面の加工変質層を非接触で測定でき、例えば
ロフト判定にも量産的に適応でき、生産性9歩留90向
上に効果をもたらす、すぐれたセンダストの表面加工変
質層の測定方法である。
As is clear from the above examples, the method of the present invention allows non-contact measurement of the process-affected layer on a mirror-polished surface, and can be applied to mass production, for example, to determine the loft, resulting in an improvement in productivity 90 and yield 90. This is an excellent method for measuring the surface treatment-altered layer of sendust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は偏光解析法の原理説明図、第2図は試料の1工
変質層での反射を示す説明図、第3図はこの発明方法に
よる試料測定値のψとΔの関係を示す図表である。 P8・・・偏光子、C・・・補償板、Sa・・・試料、
A1・・・検光子。 出願人  住友特殊金属株式会社 代理人   押   1)  良   久第2図
Figure 1 is an explanatory diagram of the principle of ellipsometry, Figure 2 is an explanatory diagram showing reflection at a single degraded layer of a sample, and Figure 3 is a diagram showing the relationship between ψ and Δ of sample measurements by this invention method. It is. P8...Polarizer, C...Compensation plate, Sa...Sample,
A1...Analyzer. Applicant Sumitomo Special Metals Co., Ltd. Agent 1) Yoshihisa Figure 2

Claims (1)

【特許請求の範囲】[Claims] I  Mgo、sio、等の微細粉末を純水中に懸濁さ
せた液中で、メカノ争ケミカルポリッシングを施した試
叫表面の屈折率を仮測定試料下地の屈折率とし、偏光率
析法により、仮測定試料の複素反射係数比(Rp/Rs
)を算出して被測定試料の加工変質層々厚(a)を求め
ることを特徴とするセンダストの表面加工変質層の測定
方法。
In a solution in which fine powders such as I Mgo, SIO, etc. are suspended in pure water, the refractive index of the test surface subjected to mechanochemical polishing is used as the refractive index of the temporary measurement sample base, and the polarization index analysis method is used. , the complex reflection coefficient ratio (Rp/Rs
) is calculated to determine the thickness (a) of the process-affected layers of the sample to be measured.
JP8685782A 1982-05-21 1982-05-21 Method for measuring modified layer caused by surface machining of sendust Granted JPS58202807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8685782A JPS58202807A (en) 1982-05-21 1982-05-21 Method for measuring modified layer caused by surface machining of sendust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8685782A JPS58202807A (en) 1982-05-21 1982-05-21 Method for measuring modified layer caused by surface machining of sendust

Publications (2)

Publication Number Publication Date
JPS58202807A true JPS58202807A (en) 1983-11-26
JPS6334404B2 JPS6334404B2 (en) 1988-07-11

Family

ID=13898478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8685782A Granted JPS58202807A (en) 1982-05-21 1982-05-21 Method for measuring modified layer caused by surface machining of sendust

Country Status (1)

Country Link
JP (1) JPS58202807A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640703A (en) * 1979-09-11 1981-04-17 Sumitomo Special Metals Co Ltd Measuring method of degenerated layer of mirror polishment machining for ferrite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640703A (en) * 1979-09-11 1981-04-17 Sumitomo Special Metals Co Ltd Measuring method of degenerated layer of mirror polishment machining for ferrite

Also Published As

Publication number Publication date
JPS6334404B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
Lindau et al. Experimental verification of optically excited longitudinal plasmons
US5531016A (en) Method of manufacturing a thin-film magnetic head
EP0086007B1 (en) Magnetic head
Hillebrands et al. Dispersion of localized elastic modes in thin supported gold layers measured by Brillouin scattering
King et al. Ellipsometry applied to films on dielectric substrates
Fu et al. Dielectric tensor characterization and evaluation of several magneto‐optical recording media
JPS58202807A (en) Method for measuring modified layer caused by surface machining of sendust
JPS5912962B2 (en) Measuring method of mirror-finishing altered layer of ferrite
JPH0210891B2 (en)
JPH0515974B2 (en)
Prinz et al. Order-disorder effects in the magneto-optical properties of evaporated Fe-Co alloy films
JPH0530300B2 (en)
JPS58201007A (en) Method for measuring layer degenerated by surface processing of al2o3 composite material
Gamarts et al. Characterization of stress in semiconductor wafers using birefringence measurements
Van Driel et al. Magnetic linear dichroism of infrared light in ferromagnetic alloy films
JPS6145285B2 (en)
Bis et al. Preparation of polished substrates of BaF2
JPS6222747B2 (en)
Hicken et al. In situ Brillouin light scattering from ultrathin epitaxial Fe/Ag (100) films with Cr and Ag overlayers
McBride et al. Ellipsometric study of the charge-transfer excitation in single-crystal La 2 CuO 4
Wada An improvement of ferrite substrate
JPS6331343B2 (en)
JPS6242328B2 (en)
Adamson Reflection equivalence of inhomogeneous and uniaxially anisotropic dielectric films with optical axis normal to the film surface
JPS6013786B2 (en) Precision polishing method for polycrystalline ferrite