JPH02118426A - Method for measuring internal strain of alumina ceramics material - Google Patents

Method for measuring internal strain of alumina ceramics material

Info

Publication number
JPH02118426A
JPH02118426A JP21771289A JP21771289A JPH02118426A JP H02118426 A JPH02118426 A JP H02118426A JP 21771289 A JP21771289 A JP 21771289A JP 21771289 A JP21771289 A JP 21771289A JP H02118426 A JPH02118426 A JP H02118426A
Authority
JP
Japan
Prior art keywords
sample
phase difference
internal strain
difference delta
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21771289A
Other languages
Japanese (ja)
Other versions
JPH0515974B2 (en
Inventor
Toshiaki Wada
和田 俊朗
Yoshiaki Katsuyama
勝山 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP21771289A priority Critical patent/JPH02118426A/en
Publication of JPH02118426A publication Critical patent/JPH02118426A/en
Publication of JPH0515974B2 publication Critical patent/JPH0515974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To directly measure the internal strain of an alumina ceramics sample without contact by measuring the phase difference DELTA of the above-mentioned sample by a polarization analysis method and contrasting the measured value with the reference value of the phase difference DELTA which is set by the previously determined correlation between the internal strain and phase difference DELTA of the sample. CONSTITUTION:The phase difference DELTA of the alumina ceramics sample which is precisely polished to <=50Angstrom surface roughness is first estimated by the polarization analysis method. This measured value is then contrasted with the reference value of the phase difference DELTA set by the previously determined correlation between the internal stress and phase difference DELTA of the sample, by which the internal strain of the work is relatively decided. A method for immersing the sample in HNO3 and treating the sample while oscillating the sample to prevent the generation of unequal etching is preferable as the method of precisely polishing the surface of this material to <=50Angstrom surface roughness. The rate of etching is controllable by the concn. of the NHO3 and the etching time.

Description

【発明の詳細な説明】 利用産業分野 この発明は、アルミナ系セラミックス材料の内部歪測定
方法に係り、偏光解析法を用いて該材料の鏡面加工面よ
り内部歪を非破壊で相対的に測定する方法に関する。
[Detailed Description of the Invention] Field of Application This invention relates to a method for measuring internal strain in alumina-based ceramic materials, in which internal strain is relatively measured non-destructively from a mirror-finished surface of the material using ellipsometry. Regarding the method.

背景技術 今日、コンピューター用を始め、オーディオ用VTR用
等の各種磁気ヘッドに、記録密度の高密度化並びに耐摩
耗性の改善が強く求められており、このため、ICテク
ノロジーを用いて製造する薄膜磁気ヘッドが最適と考え
られている。
BACKGROUND ART Today, there is a strong demand for higher recording density and improved wear resistance for various types of magnetic heads, including those for computers and audio VTRs. A magnetic head is considered optimal.

一般に、薄膜磁気ヘッド基板材料として、Mn −Zn
フェライト、Ni−Znフェライト、センダスト等の軟
磁性材料、あるいは、Al2O3−TiC系等のアルミ
ナ系セラミックス材料の如き耐摩耗性、精密加工性のす
ぐれた非磁性材料が基板として用いられている。
Generally, Mn-Zn is used as thin film magnetic head substrate material.
Nonmagnetic materials with excellent wear resistance and precision machinability, such as soft magnetic materials such as ferrite, Ni--Zn ferrite, and sendust, or alumina-based ceramic materials such as Al2O3-TiC, are used as substrates.

また、薄膜磁気ヘッド・スライダーの浮上量の減少化と
スライダー面の平面度は1 / 1100p程度の加工
精度が要求されており、かかる高精度平面を得るのに、
研削、ラッピング等の加工技術並びに平面度計測技術と
同様に、被加工材の内部歪についても十分考慮する必要
がある。
In addition, the reduction of the flying height of the thin film magnetic head slider and the flatness of the slider surface require processing accuracy of about 1/1100p, and in order to obtain such a high-precision flat surface, it is necessary to
As with processing techniques such as grinding and lapping, and flatness measurement techniques, it is also necessary to fully consider the internal strain of the workpiece.

かかる加工の際に、被加工材に発生するそりの原因は次
の2つに大別される。その1つは被加工材の表面加工歪
層の存在により、表裏面の歪差からそりが発生する場合
であり、もう1つは、被加工材に内在する内部歪が表面
加工によって開放されてそりが発生する場合である。
The causes of warpage that occurs in the workpiece during such processing can be broadly classified into the following two types. One is when warpage occurs due to the strain difference between the front and back surfaces due to the presence of a strained layer on the surface of the workpiece, and the other is when the internal strain inherent in the workpiece is released by surface treatment. This is a case where warping occurs.

上記のそり対策として、前者の場合はエツチングあるい
はメカノケミカルポリッシングなどにより、無歪な平面
に加工する方法や、材料面から高ヤング率の材料を開発
して対処している。
To counter the above warping, in the former case, methods are used to process the material into a distortion-free flat surface using etching or mechanochemical polishing, or by developing materials with a high Young's modulus.

しかし、後者の内部歪が基板に内在する場合は上記の処
理では除去できず、内部歪の程度を測定して対処す必要
がある。
However, if the latter internal strain is inherent in the substrate, it cannot be removed by the above process, and it is necessary to measure the degree of the internal strain and take measures.

一般にかかる内部歪の測定方法としては、直接法として
、被加工材の加工時に発生するそり量を測定する方法、
熱処理によるそりの変化を測定する方法、エツチング速
度やエッチビットにより内部欠陥や粒界子などに依存す
る転位やマイクロクラック、不純物等を観察する方法が
採用されている。
Generally, methods for measuring internal strain include a direct method, which measures the amount of warpage that occurs during machining of the workpiece;
Methods used include measuring changes in warpage due to heat treatment, and observing dislocations, microcracks, impurities, etc. that depend on internal defects and grain boundaries based on etching rate and etch bit.

また、間接法としては、X線応力測定装置により被加工
材の格子間隔の変化量により内部歪を測定する方法があ
る。
Further, as an indirect method, there is a method of measuring internal strain based on the amount of change in the lattice spacing of the workpiece using an X-ray stress measuring device.

かかる測定方法は破壊検査が主であり、実操業や量産体
制下においては品質管理上の全数検査は不可能である。
Such measurement methods mainly involve destructive testing, and 100% testing for quality control purposes is not possible during actual operations or mass production.

また、予め被測定部材に孔を有する板状の光弾性体を接
着固定して、この部材に外圧が負荷された状態において
、光弾性体に光を照射し、その反射光の干渉縞像を複数
の基準となる干渉縞像と比較することにより、前記部材
の応力を測定する方法が提案(特開昭58−22372
5号公報)されている。
In addition, a plate-shaped photoelastic body with holes is adhesively fixed to the member to be measured in advance, and while an external pressure is applied to this member, light is irradiated onto the photoelastic body, and an interference fringe image of the reflected light is obtained. A method of measuring the stress of the member by comparing it with a plurality of reference interference fringe images was proposed (Japanese Patent Laid-Open No. 58-22372).
Publication No. 5).

上記測定方法は、前記部材の応力を外圧が負荷された状
態において光弾性体を介して間接的に測定する方法であ
り、外圧を負荷する以前の被測定部材の内部歪を測定で
きない。
The above measurement method is a method in which the stress of the member is indirectly measured via a photoelastic body in a state where an external pressure is applied, and it is not possible to measure the internal strain of the member to be measured before the external pressure is applied.

発明の目的 この発明は、Al2O3−TiC,Al203−Ti0
2やこれらに添加物を加えたものなどのアルミナ系セラ
ミックス材料の内部歪を非接触で直接測定できる内部歪
の測定方法を目的とし、特に、磁気ヘッドの量産化にお
いて有効に活用し得る内部歪の測定方法を目的としてい
る。
Purpose of the Invention The present invention provides Al2O3-TiC, Al203-Ti0
The purpose is to develop an internal strain measurement method that can directly measure the internal strain of alumina-based ceramic materials such as 2 and those with additives added, without contact. The purpose is to measure the

発明の概要 この発明は、 表面粗度50A以下に精密研摩したアルミナ系セラミッ
クス試料を、偏光解析法によりその位相差Δを測定し、 前記測定値と予め求めた試料の内部歪と位相差Δとの相
関により設定された位相差Δの基準値を対比して、被加
工材の内部歪を相対的に判定することを特徴とするアル
ミナ系セラミックス材料の内部歪測定方法である。
Summary of the Invention This invention measures the phase difference Δ of an alumina ceramic sample that has been precisely polished to a surface roughness of 50A or less by ellipsometry, and compares the measured value with the predetermined internal strain of the sample and the phase difference Δ. This is a method for measuring internal strain in an alumina-based ceramic material, which is characterized in that internal strain in a workpiece is relatively determined by comparing a reference value of a phase difference Δ set based on the correlation.

この発明において、アルミナ系セラミックス材料の表面
を50A以下の表面粗度で精密研摩する方法として、例
えば、ダイヤモンドポリッシング、メカノケミカルポリ
ッシングがあり、エツチングする方法としては多種方法
があり適宜採用できるが、HNO3中に試料を浸漬し、
揺動運動させてエツチングのむらの発生を防止しながら
処理する方法が好ましく、エツチング量はHNO3の濃
度、エツチング温度、エツチング時間により調節できる
In this invention, methods for precision polishing the surface of the alumina ceramic material to a surface roughness of 50A or less include, for example, diamond polishing and mechanochemical polishing, and there are various methods for etching, which can be adopted as appropriate. Immerse the sample in
It is preferable to use a method in which etching is performed by rocking motion to prevent uneven etching, and the amount of etching can be adjusted by adjusting the concentration of HNO3, etching temperature, and etching time.

発明の図面に基づく開示 第1図は偏光解析法の原理を示す光学経路図である。Disclosure based on drawings of the invention FIG. 1 is an optical path diagram showing the principle of ellipsometry.

以下に偏光解析法を説明する。偏光解析法は試料(Sa
)表面に偏光を投射し、反射の際に生じる偏光状態の変
化を観測するものである。
The ellipsometry method will be explained below. The ellipsometry method uses a sample (Sa
) Polarized light is projected onto a surface and the change in polarization state that occurs upon reflection is observed.

試料(Sa)の位相差(Δ)を求めるには、まず補償板
(C)のfastt’lllをn/4傾け、偏光子(P
I)と検光子(A1)を共に回転させ、いわゆるクロス
ニコルの状態トなって検光子透過光が零となるようにし
、この時の偏光子方位角(P方位)θを測定し、下記(
1)より試料(Sa)の位相差(Δ)を得る。
To find the phase difference (Δ) of the sample (Sa), first tilt the compensator (C) fastt'llll by n/4, and then tilt the polarizer (P
I) and the analyzer (A1) are rotated together so that the light transmitted through the analyzer becomes zero in a so-called crossed nicol state, and the polarizer azimuth (P azimuth) θ at this time is measured, and the following (
Obtain the phase difference (Δ) of the sample (Sa) from 1).

Δ= n/2−20 ・・・・・・・・・・・・(1)
また、偏光子方位角(S方位)Φは、反射係数比を得る
のに必要な観測値である。
Δ=n/2-20 ・・・・・・・・・・・・(1)
Further, the polarizer azimuth (S azimuth) Φ is an observed value necessary to obtain the reflection coefficient ratio.

次に、偏光解析法によって得られた試料の位相差(Δ)
を基準に、設定した位相差(Δ)と対比させて試料の内
部歪を相対的に測定する方法を、この発明による実施例
に基づいて詳述する。
Next, the phase difference (Δ) of the sample obtained by ellipsometry
A method for relatively measuring the internal strain of a sample by comparing it with a set phase difference (Δ) based on the reference will be described in detail based on an embodiment of the present invention.

供試材には、Al2O362wt%、TiC37wt%
、MgO1wt%の組成からなるAl2O3−TiC材
を用いた。
The sample materials include Al2O362wt%, TiC37wt%
, an Al2O3-TiC material having a composition of 1 wt% MgO was used.

上記試料はホットプレスにより焼成されるが、その内部
歪は焼成条件、熱処理条件により異なるため、次の3種
の試料を準備した。
The above samples are fired by hot pressing, but the internal strain varies depending on the firing conditions and heat treatment conditions, so the following three types of samples were prepared.

まず、A試料は、1700℃でのホットプレス後130
0℃で焼なましなものであり、B試料は、1700℃で
ホットプレスしたままであり、C試料は、!700℃で
ホットプレスした後1400℃で焼なましを施したもの
である。
First, sample A was heated at 130°C after hot pressing at 1700°C.
The B sample was as-hot pressed at 1700°C, and the C sample was annealed at 0°C. It was hot pressed at 700°C and then annealed at 1400°C.

上記の3種の試料を幅25mm、厚み5mm、長さ25
mmの所定寸法に切断し、さらに各焼成品の表面層を2
mm以上研削し、粒径05¥1mのダヤモンドパウダ7
を使用するダイヤモンドポリッシングを施した。
The above three types of samples are 25 mm wide, 5 mm thick, and 25 mm long.
The surface layer of each fired product was cut into 2 mm.
Diamond powder 7 with a particle size of 05 yen 1 m, ground over mm
Diamond polished using.

この際、各試料の表面層に生じる加工変質層を同一にす
るため、同一ラップ基板に貼着して同一加工条件で、表
面粗度50人となるまでラッピングした。
At this time, in order to make the process-affected layer formed on the surface layer of each sample the same, each sample was attached to the same lap substrate and lapped under the same processing conditions until the surface roughness was 50 mm.

その後、各試料を偏光解析装置にかけ、各試料のθ、Φ
値を観測した。なお、観測条件は、偏光入射角70°、
測定波長5461Aであった。
After that, each sample was subjected to a polarimeter and the θ and Φ of each sample were measured.
Observed value. The observation conditions were a polarized light incident angle of 70°,
The measurement wavelength was 5461A.

以上の各試料の観測値並びに表面段差測定器による表面
粗度とともに第1表に示す。
Table 1 shows the observed values of each sample and the surface roughness measured by a surface step measuring device.

作用効果 従って上述した対比により、ラッピング加工試料及びエ
ツチング処理試料の位相差と内部歪との相関関係をもと
めて、位相差の基準値を設定し、この基準値と製造量産
工程でのラッピング加工及びエツチング処理した被加工
材との位相差(Δ−Δ2)とを対比させることにより、
被加工材の内部歪を相対的に判別することができ、品質
管理上、製品ロフトの良否判定に極めて有効となり、量
産上歩留向上効果等が期待できる。
Accordingly, by comparing the above-mentioned effects, we determined the correlation between the phase difference and internal distortion of the lapped sample and the etched sample, set a reference value for the phase difference, and used this reference value to compare the lapping and internal distortions in the mass production process. By comparing the phase difference (Δ−Δ2) with the etched workpiece,
It is possible to relatively determine the internal strain of the workpiece, which is extremely effective in determining the quality of product lofts in terms of quality control, and is expected to improve yields in mass production.

以下余白 第1表Margin below Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は偏光解析法の原理を示す光学経路図である。 図中、A1・・・検光子、C・・・補償板、Pl・・・
偏光子、Sa・・・試料、θ・・・偏光子方位角、φ・
・・偏光子方位角。
FIG. 1 is an optical path diagram showing the principle of ellipsometry. In the figure, A1... analyzer, C... compensator, Pl...
Polarizer, Sa...sample, θ...polarizer azimuth, φ・
...Polarizer azimuth.

Claims (1)

【特許請求の範囲】 1 表面粗度50Å以下に精密研摩したアルミナ系セラミッ
クス試料を、偏光解析法によりその位相差Δを測定し、
前記測定値と予め求めた試料の内部歪と位相差Δとの相
関により設定された位相差Δの基準値を対比して、被加
工材の内部歪を相対的に判定することを特徴とするアル
ミナ系セラミックス材料の内部歪測定方法。
[Claims] 1. Measure the phase difference Δ of an alumina ceramic sample that has been precisely polished to a surface roughness of 50 Å or less by ellipsometry,
The method is characterized in that the internal strain of the workpiece is relatively determined by comparing the measured value with a reference value of the phase difference Δ set based on the correlation between the internal strain of the sample and the phase difference Δ determined in advance. Method for measuring internal strain in alumina ceramic materials.
JP21771289A 1989-08-23 1989-08-23 Method for measuring internal strain of alumina ceramics material Granted JPH02118426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21771289A JPH02118426A (en) 1989-08-23 1989-08-23 Method for measuring internal strain of alumina ceramics material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21771289A JPH02118426A (en) 1989-08-23 1989-08-23 Method for measuring internal strain of alumina ceramics material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14388782A Division JPS5932805A (en) 1982-08-18 1982-08-18 Method for measuring inner strain in alumina ceramics material

Publications (2)

Publication Number Publication Date
JPH02118426A true JPH02118426A (en) 1990-05-02
JPH0515974B2 JPH0515974B2 (en) 1993-03-03

Family

ID=16708557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21771289A Granted JPH02118426A (en) 1989-08-23 1989-08-23 Method for measuring internal strain of alumina ceramics material

Country Status (1)

Country Link
JP (1) JPH02118426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120432A (en) * 1990-09-12 1992-04-21 Koito Mfg Co Ltd Apparatus and method for measuring stress of vessel of
JP2007127435A (en) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd Stress measuring method and device, and quality control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120432A (en) * 1990-09-12 1992-04-21 Koito Mfg Co Ltd Apparatus and method for measuring stress of vessel of
JP2007127435A (en) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd Stress measuring method and device, and quality control method

Also Published As

Publication number Publication date
JPH0515974B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US5400548A (en) Process for manufacturing semiconductor wafers having deformation ground in a defined way
US4352016A (en) Method and apparatus for determining the quality of a semiconductor surface
US4225892A (en) Wear resistant magnetorestrictive head
US4604670A (en) Magnetic head
King et al. Ellipsometry applied to films on dielectric substrates
JPH02118426A (en) Method for measuring internal strain of alumina ceramics material
Lakhdari et al. Relationship between subsurface damage depth and breaking strength for brittle materials
JPS5932805A (en) Method for measuring inner strain in alumina ceramics material
Griffiths Ferro-magnetic resonance in thin ni-films
Gamarts et al. Characterization of stress in semiconductor wafers using birefringence measurements
Zanzucchi et al. Optical Reflectance Method for Determining the Surface uality of Sapphire (Al2 O 3)
JPS63167207A (en) Measuring method for surface working affected layer of insb semiconductor wafer
JPS5912962B2 (en) Measuring method of mirror-finishing altered layer of ferrite
JP3642250B2 (en) Method for judging polishing conditions of semiconductor substrate
JP3085623B2 (en) Non-magnetic ceramics for recording / reproducing head and method for producing the same
JPS5947822A (en) Manufacture of substrate for surface acoustic wave
SU921385A1 (en) Method of producing standard measure of thickness of semiconductor layers
JPS6334404B2 (en)
JPH0671557A (en) Polishing method of crystal and polishing jig
Wu et al. Experimental Investigation of Ultra-Thin Silicon Wafers Warpage
JPS61213611A (en) Polishing method for crystal
JPS58201007A (en) Method for measuring layer degenerated by surface processing of al2o3 composite material
Dancygier et al. Investigation of ferrite surface treatments by spectroscopic ellipsometry
Golini et al. Effects of crystal orientation in deterministic microgrinding of sapphire
JPS6048253A (en) Fine polishing of crystallized glass