JP3642250B2 - Method for judging polishing conditions of semiconductor substrate - Google Patents

Method for judging polishing conditions of semiconductor substrate Download PDF

Info

Publication number
JP3642250B2
JP3642250B2 JP2000049396A JP2000049396A JP3642250B2 JP 3642250 B2 JP3642250 B2 JP 3642250B2 JP 2000049396 A JP2000049396 A JP 2000049396A JP 2000049396 A JP2000049396 A JP 2000049396A JP 3642250 B2 JP3642250 B2 JP 3642250B2
Authority
JP
Japan
Prior art keywords
polishing
wavelength component
semiconductor substrate
polishing conditions
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049396A
Other languages
Japanese (ja)
Other versions
JP2001239459A (en
Inventor
健夫 加藤
秀樹 坂本
英之 近藤
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP2000049396A priority Critical patent/JP3642250B2/en
Publication of JP2001239459A publication Critical patent/JP2001239459A/en
Application granted granted Critical
Publication of JP3642250B2 publication Critical patent/JP3642250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハに代表される半導体基板の研磨条件の良否を判定する方法に関する。更に詳しくは半導体基板の表面の最終的な面質を決定する仕上げ研磨条件を判定する方法に関するものである。
【0002】
【従来の技術】
半導体デバイスの高集積化、高機能化及びウェーハの大口径化の要求に伴い、ウェーハ表面のマイクロラフネスや平坦度で評価されるシリコンウェーハの表面の面質は益々重要視されてきている。この最終的な面質を決定するプロセスとして、シリコンウェーハの研磨工程、特に仕上げ研磨工程が挙げられる。従ってシリコンウェーハの表面の面質を高めるためには、仕上げ研磨における研磨条件を最適にする必要がある。そのために摩耗した研磨パッドの交換時期、或いは新規な研磨パッドの慣らし運転時間、新規な研磨パッドや新規な研磨スラリーの適否等の研磨条件を的確に判定する方法が求められている。
【0003】
従来、研磨条件の良否は、主として研磨レートの大小により判定している。研磨レートは単位時間当りの研磨によるウェーハ表面の取り代(stock removal)である。この方法では研磨した取り代やそれに費やした研磨時間により研磨パッドの摩耗状態、研磨スラリーを評価している。
また仕上げ研磨の良否は、パーティクルカウンタを用いて研磨後の基板表面に光を照射し、そのヘイズ値の多寡により基板表面のマイクロラフネスを測定した後、或いは原子間力顕微鏡(Atomic Force Microscope、以下、AFMという。)を用いて基板表面のマイクロラフネスを測定した後、このマイクロラフネスに基づいて判定している。
更に別の方法としては、研磨後の基板表面に酸化膜を形成し、この酸化膜の耐圧特性から仕上げ研磨条件の良否を判定している。
【0004】
【発明が解決しようとする課題】
しかし、研磨レートにより研磨条件の良否を判定する方法では、この方法を仕上げ研磨に適用した場合、仕上げ研磨による取り代が小さいため、研磨レートを測定するのが困難であり、良否判定が難しい問題点があった。また、パーティクルカウンタやAFMを用いてマイクロラフネスを測定した後、この値から研磨条件の良否を判定する方法や、或いは基板表面の酸化膜耐圧特性から研磨条件の良否を判定する方法では、研磨条件の良否の要因を特定することが難しく、また研磨後の基板を加工する必要があり、時間とコストがかかる問題点があった。
本発明の目的は、半導体基板の研磨の最適な条件を見い出し得る半導体基板の研磨条件の判定方法を提供することにある。
本発明の別の目的は、仕上げ研磨不良に起因する問題を非破壊で迅速に評価する半導体基板の研磨条件の判定方法を提供することにある。
【0005】
【課題を解決するための手段】
請求項1に係る発明は、同一の工程を経て製造された複数の半導体基板を用意し、前記複数の半導体基板のそれぞれに対して研磨パッド又は研磨スラリーのいずれか一方又は双方を変えた異なる複数の研磨条件で研磨し、研磨したこれらの半導体基板の表面粗さを非接触法により測定し、その5μm〜1mmの空間波長成分領域の波長成分強度の大小により、上記複数の研磨条件のそれぞれの良否を判定する半導体基板の研磨条件の判定方法である。
請求項1に係る発明では、異なった複数の研磨条件で研磨した複数の半導体基板の表面粗さを非接触法により測定し、そのときの空間波長成分領域が5μm〜1mmの範囲の波長成分強度の値を各基板間で比較して波長成分強度の値が小さい研磨条件を良好な条件であると判定する。
【0006】
請求項2に係る発明は、半導体基板の表面粗さを非接触法により測定し、その5μm〜1mmの空間波長成分領域の第1波長成分強度を測定し、上記半導体基板を所定の研磨条件で研磨し、この研磨した半導体基板の表面粗さを上記非接触法により測定し、その5μm〜1mmの空間波長成分領域の第2波長成分強度を測定し、第1波長成分強度と第2波長成分強度を比較することにより、上記研磨条件の良否を判定する半導体基板の研磨条件の判定方法である。
請求項2に係る発明では、ある研磨条件で単一の半導体基板を研磨し、その研磨前後における第1波長成分強度と第2波長成分強度の比較から、上記研磨条件が良好であったか否か判定する。
【0007】
【発明の実施の形態】
本発明の実施の形態について説明する。
本発明の判定する研磨条件は、半導体基板の表面の最終的な面質を決定する仕上げ研磨条件である。本発明ではこの研磨条件における研磨パッドの摩耗状態又は研磨スラリーの良否を判定する。
仕上げ研磨は通常、片面研磨方法によって行われる。図2に基づいて片面研磨方法について述べる。この研磨装置20は回転定盤21と基板保持具22を備える。回転定盤21は大きな円板であり、その底面中心に接続されたシャフト23によって回転する。回転定盤21の上面には研磨パッド24が貼付けられる。基板保持具22は加圧ヘッド22aとこれに接続して加圧ヘッド22aを回転させるシャフト22bからなる。加圧ヘッド22aの下面には研磨プレート26が取付けられる。研磨プレート26の下面には複数枚の半導体基板10が貼付けられる。回転定盤21の上部には研磨スラリー27を供給するための配管28が設けられる。この研磨装置20により半導体基板10を研磨する場合には、加圧ヘッド22aを下降して半導体基板10に所定の圧力を加えて基板10を押さえる。配管28から研磨スラリー27を研磨パッド24に供給しながら、加圧ヘッド22aと回転定盤21とを同一方向に回転させて、基板10の表面を平坦に研磨する。
【0008】
本発明の非接触表面粗さ測定法としては、前述のAFM以外に、マルチビーム干渉法(Multi-Beam Interferometry)、低出力光学顕微鏡(Low power optical Microscope)、高出力光学顕微鏡(High power optical Microscope)、微分干渉顕微鏡(Differential Interference Microscope)、位相差顕微鏡(Phase-Contrast Microscope)、円錐レーザ走査型光学顕微鏡(cone-focal laser Scanning Optical Microscope)、走査型電子顕微鏡(Scanning Electron Microscope)、透過型電子顕微鏡(Transmission Electron Microscope)、反射型電子顕微鏡(Reflection Electron Microscope)、電界イオン顕微鏡(Field Ion Microscope)、走査型トンネル顕微鏡(Scanning Tunneling Microscope)等が挙げられる。
【0009】
本実施の形態では微分干渉法に基づいた装置について説明する。
上記研磨装置で研磨したときの仕上げ研磨条件のうち、研磨パッドの摩耗状態と研磨スラリーの良否を図1に示す検査装置11で半導体基板10表面のマイクロラフネスの特定波長域成分を検査することにより判定する。この検査装置11は、レーザ発振器12と、基板10表面上を移動可能に形成された移動測定ヘッド13と、基板10に照射したレーザ光の反射偏光を検出する検出器14a、14bと、ノンポラライジングビームスプリッタ16と、ポラライジングビームスプリッタ17とを備える。レーザ発振器12より発振されたレーザ光は、図示しない偏光板、1/4波長板により光量の制御が行われ、円偏光となる。円偏光は実線矢印に示すように、ノンポラライジングビームスプリッタ16を通った後、移動測定ヘッド13のペンタプリズム13aに入射する。移動測定ヘッド13は100mmの範囲で移動可能に構成され、その位置情報は1μm又は0.2μmの分解能で図示しないコンピュータに取込まれる。入射光はペンタプリズム13aで90°下方に反射され、ノマルスキプリズム13bでP偏光、S偏光に分離され、対物レンズ13cを通って基板10表面で結像する。基板10表面で反射されたP偏光及びS偏光は再びノマルスキプリズム13bで合成され、破線矢印で示すように、ペンタプリズム13a、ノンポラライジングビームスプリッタ16を経て、ポラライジングビームスプリッタ17にて各偏光成分に分離され検出器14a、14bにより偏光成分の強度が電圧にて検出される。この検出された各偏光成分の強度から表面粗さプロファイルを測定し、更にプロファイルをフーリエ変換することにより波長成分強度(Power Spectral Density、以下、PSDという。)が算出される。
【0010】
請求項1に係る判定方法では、同一の工程を経て製造された、基板間に差異のないと考えられる複数の半導体基板に対して、上記研磨装置により異なった複数の研磨条件で研磨を行い、それぞれ研磨した半導体基板の表面に上記レーザ発振器より発振されたレーザ光を照射する。ここで異なった複数の研磨条件とは、材質の異なる研磨パッド、同一材質でも摩耗程度の異なる研磨パッド、性状の異なる研磨スラリーを用いた場合をいう。材質の異なる研磨パッド又は性状の異なる研磨スラリーとは、従来使用していた研磨パッド、研磨スラリーとは異なる新規に採用された研磨パッド、研磨スラリーをいう。同一材質でも摩耗程度の異なる研磨パッドとは、同一製品であっても新品の研磨パッド、摩耗程度が中位、或いは摩耗が極端に進んだ研磨パッドをいう。研磨条件が異なると、研磨前に同一の表面を有していた複数の半導体基板も研磨後には、各表面のマイクロラフネスや平坦度が変化する。
【0011】
このように異なった複数の研磨条件でそれぞれ研磨した複数の半導体基板の表面にレーザ光を照射すると、研磨後のウェーハ表面特性であるマイクロラフネスや平坦度の程度に応じて異なった反射偏光を生ずる。この反射偏光より検出された各偏光成分から表面粗さプロファイルを測定し、更にプロファイルをフーリエ変換して5μm〜1mmの空間波長成分領域のPSDを測定し、その大小を比較することにより、複数の研磨条件毎にその研磨パッド、研磨スラリーの良否を判定する。空間波長成分領域を5μm〜1mmにするのはこの領域では波長成分が緩やかに減少していき、研磨状態を評価するのに適しているからである。5μm未満の波長成分は、研磨後表面に対する短時間の化学的エッチングによって左右されるため、研磨パッド、研磨スラリーの良否判定には向かず、1mmを越えると仕上げ研磨では殆ど粗さ成分が変化せず、他の要因で粗さ成分が決まるためである。この空間波長成分領域は好ましくは10μm〜100μmである。
【0012】
請求項2に係る判定方法では、単一の半導体基板の研磨前後における第1PSD及び第2PSDをそれぞれ測定し、両PSDの比較により当該研磨条件の良否を判定する。この方法は異なった研磨条件の判定のみならず、同一条件で大量に半導体基板を研磨しているときの抜取り検査にも適する。即ち、仕上げ研磨が良好な場合のPSDと、不良な場合のPSDを予め測定しておき、これらのPSDに対して、サンプリングした半導体基板から得られたPSDを比較することにより、当該研磨条件を半導体基板を破壊することなく、迅速に評価することができる。仕上げ研磨後にこの方法を用いれば、従来仕上げ研磨不良に起因した、基板表面に残存するスクラッチ、酸化膜耐圧不良などの種々の問題を未然に防止することができる。
【0013】
【実施例】
次に本発明の実施例を比較例とともに説明する。
<実施例1>
通常の粗研磨を終えた半導体基板であるシリコンウェーハを4枚用意し、シリコンウェーハ毎に同一の研磨スラリーを用いて研磨パッドを変えて仕上げ研磨を行った。この仕上げ研磨に用いた研磨スラリーはSiO2の研磨粒子が分散した市販されている仕上げ研磨用スラリー原液を純水で30倍に希釈して調製した(これを研磨スラリーAという。)また研磨パッドにはそれぞれ同一製品であるが、使用履歴の異なる4種類を用意した(これらを研磨パッドA、研磨パッドB、研磨パッドC及び研磨パッドDという。)。研磨パッドAは一度も使用されていないパッド、研磨パッドBは10時間使用されたパッド、研磨パッドCは150時間使用されたパッド、研磨パッドDは10時間使用されているが何らかの理由で仕上げ研磨がうまく行われないパッドである。4枚のシリコンウェーハの仕上げ研磨を各研磨パッド毎に図2に示す研磨装置により研磨圧力1.18×104Paで各10分間行った。仕上げ研磨を終えた4枚のシリコンウェーハの表面を図1に示す微分干渉式表面プロファイラを用いて、表面粗さプロファイルを測定し、空間波長成分領域が10〜100μmの範囲のPSDを求めた。このPSDの積分した値を表1に示す。単位は任意単位(a.u.:arbitary unit)であって、次に述べる実施例及び比較例も同じである。
【0014】
<比較例1>
実施例1の仕上げ研磨を終えたシリコンウェーハ表面を光散乱式パーティクルカウンタによりヘイズ値を測定した。その結果を表1に示す。
<比較例2>
実施例1の仕上げ研磨を終えたシリコンウェーハ表面をAFMにより10μm×10μmの領域の平均マイクロラフネス(average microroughness、以下、Raという。)を測定した。その結果を表1に示す。
【0015】
【表1】

Figure 0003642250
【0016】
表1から明らかなように、比較例1及び2の測定結果に比較して実施例1の測定結果は、各研磨条件の差が顕著に現れ、仕上げ研磨の良否を良く反映していた。特に、10時間使用した研磨パッドBによる研磨は通常良好な研磨が行われるという事実が比較例1及び2に比べて実施例1で最も良く示され、実施例1の測定方法が研磨パッドの摩耗状態、良否状態を的確に判定していた。
【0017】
<実施例2>
実施例1と同じシリコンウェーハを更に4枚用意した。シリコンウェーハ毎に同一の研磨パッドを用いて研磨スラリーを変えて仕上げ研磨を行った。研磨パッドは実施例1の研磨パッドBを用い、研磨スラリーは種類の異なる市販されている仕上げ研磨用スラリー原液を純水で30倍に希釈して調製した(以下、これらを研磨スラリーA、B及びCという。)。4枚のシリコンウェーハの仕上げ研磨を各研磨スラリー毎に実施例1と同様に行った。仕上げ研磨を終えた4枚のシリコンウェーハの表面を微分干渉式表面プロファイラを用いて、表面粗さプロファイルを測定し、空間波長成分領域が10〜100μmの範囲のPSDを求めた。このPSDの積分した値を表2に示す。
【0018】
<比較例3>
実施例2の仕上げ研磨を終えたシリコンウェーハ表面を光散乱式パーティクルカウンタによりヘイズ値を測定した。その結果を表2に示す。
<比較例4>
実施例2の仕上げ研磨を終えたシリコンウェーハ表面をAFMにより10μm×10μmの領域のRaを測定した。その結果を表2に示す。
【0019】
【表2】
Figure 0003642250
【0020】
表2から明らかなように、比較例3及び4の測定結果に比較して実施例2の測定結果は、各研磨条件の差が顕著に現れ、研磨スラリーによる仕上げ研磨の良否を良く反映していた。
【0021】
【発明の効果】
以上述べたように、本発明では、研磨に用いる研磨パッドの摩耗状態や研磨スラリーに基づく研磨条件の良否を半導体基板表面のマイクロラフネスの特定波長域成分により判定することにより、研磨条件を最適化することができ、研磨パッド、研磨スラリーの最適な組合わせを迅速に決定することができる。また、仕上げ研磨の状態を研磨前後のPSD値の変化によって評価し、研磨布やスラリーの性質等の研磨条件を変化させることでスラリーや研磨パッドの開発に役立てることもできる。
更に、酸化膜耐圧特性による研磨条件の判定と異なり、仕上げ研磨不良に起因する問題を非破壊で迅速に防止して、低コストで研磨条件を判定することができる。
【図面の簡単な説明】
【図1】半導体基板表面の検査装置の構成図。
【図2】半導体基板の片面研磨装置の構成図。
【符号の説明】
10 半導体基板
11 検査装置
12 レーザ発振器
13 移動測定ヘッド
13a ペンタプリズム
13b ノマルスキプリズム
13c 対物レンズ
14a、14b 検出器
16 ノンポラライジングビームスプリッタ
17 ポラライジングビームスプリッタ
20 片面研磨装置
21 回転定盤
22 基板保持具
22a 加圧ヘッド
22b シャフト
23 シャフト
24 研磨パッド
26 研磨プレート
27 研磨スラリー
28 配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for determining the quality of polishing conditions for a semiconductor substrate typified by a silicon wafer. More specifically, the present invention relates to a method for determining final polishing conditions for determining the final surface quality of a semiconductor substrate.
[0002]
[Prior art]
With the demand for higher integration and higher functionality of semiconductor devices and larger wafer diameters, the surface quality of silicon wafers evaluated by the microroughness and flatness of the wafer surface has become increasingly important. As a process for determining the final surface quality, a silicon wafer polishing step, particularly a finish polishing step, may be mentioned. Therefore, in order to improve the surface quality of the surface of the silicon wafer, it is necessary to optimize the polishing conditions in the final polishing. Therefore, there is a need for a method for accurately judging the polishing conditions such as the replacement timing of a worn polishing pad, the running-in time of a new polishing pad, the suitability of a new polishing pad and a new polishing slurry, and the like.
[0003]
Conventionally, the quality of polishing conditions is mainly determined by the magnitude of the polishing rate. The polishing rate is the stock removal of the wafer surface by polishing per unit time. In this method, the abrasion state of the polishing pad and the polishing slurry are evaluated based on the polishing allowance and the polishing time spent on it.
In addition, the quality of final polishing is determined by irradiating the polished substrate surface with light using a particle counter and measuring the microroughness of the substrate surface based on the haze value, or by atomic force microscope (hereinafter referred to as atomic force microscope). , AFM)), and the microroughness of the substrate surface is measured, and then the determination is made based on the microroughness.
As yet another method, an oxide film is formed on the surface of the substrate after polishing, and the quality of the final polishing conditions is judged from the pressure resistance characteristics of the oxide film.
[0004]
[Problems to be solved by the invention]
However, in the method of judging the quality of the polishing conditions based on the polishing rate, when this method is applied to finish polishing, it is difficult to measure the polishing rate because the machining allowance by finish polishing is small, and it is difficult to judge pass / fail There was a point. In addition, after measuring the microroughness using a particle counter or AFM, the method for judging the quality of the polishing conditions from this value, or the method for judging the quality of the polishing conditions from the oxide film pressure resistance characteristics of the substrate surface, It is difficult to specify the quality factor, and it is necessary to process the polished substrate, which requires time and cost.
An object of the present invention is to provide a method for determining the polishing conditions of a semiconductor substrate that can find the optimum conditions for polishing the semiconductor substrate.
Another object of the present invention is to provide a method for determining a polishing condition for a semiconductor substrate, which can quickly and non-destructively evaluate a problem caused by defective final polishing.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is provided with a plurality of different semiconductor substrates prepared through the same process, wherein one or both of a polishing pad and a polishing slurry are changed for each of the plurality of semiconductor substrates. The surface roughness of these polished semiconductor substrates was measured by a non-contact method, and each of the plurality of polishing conditions was determined by the magnitude of the wavelength component intensity in the spatial wavelength component region of 5 μm to 1 mm. This is a method for determining the polishing conditions of a semiconductor substrate for determining pass / fail.
In the invention according to claim 1, the surface roughness of a plurality of semiconductor substrates polished under a plurality of different polishing conditions is measured by a non-contact method, and the wavelength component intensity in which the spatial wavelength component region is in the range of 5 μm to 1 mm. Is compared between the substrates, and the polishing condition with a small value of the wavelength component intensity is determined to be a good condition.
[0006]
In the invention according to claim 2, the surface roughness of the semiconductor substrate is measured by a non-contact method, the first wavelength component intensity in the spatial wavelength component region of 5 μm to 1 mm is measured, and the semiconductor substrate is subjected to predetermined polishing conditions. Polishing, measuring the surface roughness of the polished semiconductor substrate by the non-contact method, measuring the second wavelength component intensity of the spatial wavelength component region of 5 μm to 1 mm, the first wavelength component intensity and the second wavelength component This is a method for determining the polishing conditions of a semiconductor substrate for determining the quality of the polishing conditions by comparing strengths.
In the invention according to claim 2, a single semiconductor substrate is polished under a certain polishing condition, and it is determined whether or not the polishing condition is good by comparing the first wavelength component intensity and the second wavelength component intensity before and after the polishing. To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
The polishing conditions determined by the present invention are finish polishing conditions that determine the final surface quality of the surface of the semiconductor substrate. In the present invention, the abrasion state of the polishing pad or the quality of the polishing slurry is determined under these polishing conditions.
Final polishing is usually performed by a single-side polishing method. A single-side polishing method will be described with reference to FIG. The polishing apparatus 20 includes a rotating surface plate 21 and a substrate holder 22. The rotating surface plate 21 is a large disk and is rotated by a shaft 23 connected to the center of the bottom surface. A polishing pad 24 is affixed to the upper surface of the rotating surface plate 21. The substrate holder 22 includes a pressure head 22a and a shaft 22b that is connected to the pressure head 22a and rotates the pressure head 22a. A polishing plate 26 is attached to the lower surface of the pressure head 22a. A plurality of semiconductor substrates 10 are attached to the lower surface of the polishing plate 26. A pipe 28 for supplying the polishing slurry 27 is provided on the upper part of the rotating surface plate 21. When the semiconductor substrate 10 is polished by the polishing apparatus 20, the pressure head 22 a is lowered and a predetermined pressure is applied to the semiconductor substrate 10 to hold the substrate 10. While supplying the polishing slurry 27 from the pipe 28 to the polishing pad 24, the pressure head 22a and the rotating surface plate 21 are rotated in the same direction to polish the surface of the substrate 10 flatly.
[0008]
In addition to the above-mentioned AFM, the non-contact surface roughness measurement method of the present invention includes a multi-beam interferometry, a low power optical microscope, and a high power optical microscope. ), Differential Interference Microscope, Phase-Contrast Microscope, cone-focal laser Scanning Optical Microscope, Scanning Electron Microscope, Transmission Electron A microscope (Transmission Electron Microscope), a reflection electron microscope (Reflection Electron Microscope), a field ion microscope (Field Ion Microscope), a scanning tunneling microscope (Scanning Tunneling Microscope), etc. are mentioned.
[0009]
In this embodiment, an apparatus based on differential interference is described.
Among the final polishing conditions when the polishing is performed by the polishing apparatus, the wear state of the polishing pad and the quality of the polishing slurry are inspected by inspecting the specific wavelength region component of the microroughness on the surface of the semiconductor substrate 10 with the inspection apparatus 11 shown in FIG. judge. This inspection apparatus 11 includes a laser oscillator 12, a moving measurement head 13 formed so as to be movable on the surface of the substrate 10, detectors 14a and 14b for detecting reflected polarized light of the laser light irradiated on the substrate 10, and a non-polarizer. A rising beam splitter 16 and a polarizing beam splitter 17 are provided. The laser light oscillated from the laser oscillator 12 is controlled in light quantity by a polarizing plate and a quarter wavelength plate (not shown), and becomes circularly polarized light. As indicated by the solid line arrow, the circularly polarized light passes through the non-polarizing beam splitter 16 and then enters the pentaprism 13 a of the moving measurement head 13. The moving measurement head 13 is configured to be movable within a range of 100 mm, and its position information is taken into a computer (not shown) with a resolution of 1 μm or 0.2 μm. Incident light is reflected 90 ° downward by the pentaprism 13a, separated into P-polarized light and S-polarized light by the Nomarski prism 13b, and forms an image on the surface of the substrate 10 through the objective lens 13c. The P-polarized light and the S-polarized light reflected by the surface of the substrate 10 are again synthesized by the Nomarski prism 13b, passed through the pentaprism 13a, the non-polarizing beam splitter 16, and each polarized beam splitter 17 as shown by the broken line arrows. Separated into polarized components, the detectors 14a and 14b detect the intensity of the polarized components with voltage. A surface roughness profile is measured from the detected intensity of each polarization component, and the profile is further subjected to Fourier transform to calculate a wavelength component intensity (hereinafter referred to as PSD).
[0010]
In the determination method according to claim 1, a plurality of semiconductor substrates manufactured through the same process and considered to have no difference between the substrates are polished under a plurality of polishing conditions by the polishing apparatus, The surface of the polished semiconductor substrate is irradiated with laser light oscillated from the laser oscillator. Here, the plurality of different polishing conditions means a case where polishing pads made of different materials, polishing pads made of the same material but having different wear levels, and polishing slurries having different properties are used. The polishing pad having a different material or the polishing slurry having a different property refers to a polishing pad and a polishing slurry which are newly employed and are different from the polishing pad and the polishing slurry which have been conventionally used. A polishing pad having the same material but having a different degree of wear refers to a new polishing pad, even if it is the same product, a polishing pad having a middle degree of wear, or an extremely advanced wear. If the polishing conditions are different, the microroughness and flatness of each surface also change after polishing even for a plurality of semiconductor substrates having the same surface before polishing.
[0011]
When laser light is irradiated onto the surfaces of a plurality of semiconductor substrates that have been polished under a plurality of different polishing conditions in this way, different reflected polarized light is produced depending on the degree of microroughness and flatness, which are wafer surface characteristics after polishing. . A surface roughness profile is measured from each polarization component detected from this reflected polarized light, and the profile is further subjected to Fourier transform to measure a PSD of a spatial wavelength component region of 5 μm to 1 mm. The quality of the polishing pad and polishing slurry is determined for each polishing condition. The reason why the spatial wavelength component region is set to 5 μm to 1 mm is that the wavelength component gradually decreases in this region, which is suitable for evaluating the polishing state. Wavelength components of less than 5 μm are affected by short-time chemical etching on the surface after polishing, so they are not suitable for judging the quality of polishing pads and polishing slurries. This is because the roughness component is determined by other factors. This spatial wavelength component region is preferably 10 μm to 100 μm.
[0012]
In the determination method according to the second aspect, the first PSD and the second PSD before and after polishing of a single semiconductor substrate are respectively measured, and the quality of the polishing condition is determined by comparing both PSDs. This method is suitable not only for determining different polishing conditions but also for sampling inspection when a large number of semiconductor substrates are polished under the same conditions. That is, the PSD when the final polishing is good and the PSD when the final polishing is poor are measured in advance, and the PSD obtained from the sampled semiconductor substrate is compared with these PSDs to determine the polishing conditions. It is possible to evaluate quickly without destroying the semiconductor substrate. If this method is used after finish polishing, various problems such as scratches remaining on the substrate surface and defective oxide film breakdown voltage due to conventional finish polishing failure can be prevented.
[0013]
【Example】
Next, examples of the present invention will be described together with comparative examples.
<Example 1>
Four silicon wafers, which are semiconductor substrates that have undergone normal rough polishing, were prepared, and finish polishing was performed by changing the polishing pad using the same polishing slurry for each silicon wafer. The polishing slurry used for the final polishing was prepared by diluting a commercially available final polishing slurry stock solution in which SiO 2 abrasive particles were dispersed 30 times with pure water (this is called polishing slurry A). Are the same products, but four types having different usage histories were prepared (referred to as polishing pad A, polishing pad B, polishing pad C, and polishing pad D). The polishing pad A is a pad that has never been used, the polishing pad B is a pad that has been used for 10 hours, the polishing pad C is a pad that has been used for 150 hours, and the polishing pad D has been used for 10 hours. Is a pad that does not work well. Final polishing of four silicon wafers was performed for each polishing pad with a polishing apparatus shown in FIG. 2 at a polishing pressure of 1.18 × 10 4 Pa for 10 minutes. The surface roughness profile was measured on the surface of the four silicon wafers after the finish polishing using the differential interference type surface profiler shown in FIG. 1, and the PSD having a spatial wavelength component region in the range of 10 to 100 μm was obtained. Table 1 shows the integrated values of this PSD. The unit is an arbitrary unit (au), and the same applies to Examples and Comparative Examples described below.
[0014]
<Comparative Example 1>
The haze value was measured on the surface of the silicon wafer after finishing polishing in Example 1 using a light scattering particle counter. The results are shown in Table 1.
<Comparative example 2>
The average microroughness (hereinafter referred to as Ra) of an area of 10 μm × 10 μm was measured on the surface of the silicon wafer after the finish polishing in Example 1 by AFM. The results are shown in Table 1.
[0015]
[Table 1]
Figure 0003642250
[0016]
As is clear from Table 1, the measurement results of Example 1 compared with the measurement results of Comparative Examples 1 and 2 showed a significant difference in each polishing condition, and well reflected the quality of finish polishing. In particular, the fact that the polishing with the polishing pad B used for 10 hours usually shows good polishing is best shown in Example 1 as compared with Comparative Examples 1 and 2, and the measurement method of Example 1 shows the abrasion of the polishing pad. The state and the pass / fail state were accurately determined.
[0017]
<Example 2>
Four more silicon wafers as in Example 1 were prepared. The final polishing was performed by changing the polishing slurry using the same polishing pad for each silicon wafer. As the polishing pad, the polishing pad B of Example 1 was used, and the polishing slurry was prepared by diluting commercially available final polishing slurry stocks of different types 30 times with pure water (hereinafter referred to as polishing slurries A and B). And C). Final polishing of four silicon wafers was performed in the same manner as in Example 1 for each polishing slurry. The surface roughness profile was measured on the surface of the four silicon wafers after finishing polishing using a differential interference type surface profiler, and a PSD having a spatial wavelength component region in the range of 10 to 100 μm was obtained. Table 2 shows the integrated values of this PSD.
[0018]
<Comparative Example 3>
The haze value was measured on the surface of the silicon wafer after finishing polishing in Example 2 using a light scattering type particle counter. The results are shown in Table 2.
<Comparative example 4>
Ra of the region of 10 μm × 10 μm was measured by AFM on the surface of the silicon wafer after finishing polishing in Example 2. The results are shown in Table 2.
[0019]
[Table 2]
Figure 0003642250
[0020]
As is clear from Table 2, the measurement results of Example 2 are significantly different from the measurement results of Comparative Examples 3 and 4 and reflect the quality of the final polishing with the polishing slurry. It was.
[0021]
【The invention's effect】
As described above, in the present invention, the polishing conditions are optimized by determining the wear state of the polishing pad used for polishing and the quality of the polishing conditions based on the polishing slurry based on the specific wavelength region component of the microroughness of the semiconductor substrate surface. And the optimum combination of polishing pad and polishing slurry can be quickly determined. Further, the state of final polishing can be evaluated by changing the PSD value before and after polishing, and the polishing conditions such as the properties of the polishing cloth and slurry can be changed, which can be used for the development of slurry and polishing pad.
Further, unlike the determination of the polishing conditions based on the oxide film pressure resistance characteristics, the problem caused by the final polishing failure can be quickly prevented in a non-destructive manner, and the polishing conditions can be determined at a low cost.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a semiconductor substrate surface inspection apparatus.
FIG. 2 is a configuration diagram of a single-side polishing apparatus for a semiconductor substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Semiconductor substrate 11 Inspection apparatus 12 Laser oscillator 13 Moving measurement head 13a Penta prism 13b Nomarski prism 13c Objective lens 14a, 14b Detector 16 Non-polarizing beam splitter 17 Polarizing beam splitter 20 Single-side polishing apparatus 21 Rotating surface plate 22 Holding substrate Tool 22a Pressure head 22b Shaft 23 Shaft 24 Polishing pad 26 Polishing plate 27 Polishing slurry 28 Piping

Claims (2)

同一の工程を経て製造された複数の半導体基板を用意し、前記複数の半導体基板のそれぞれに対して研磨パッド又は研磨スラリーのいずれか一方又は双方を変えた異なる複数の研磨条件で研磨し、前記研磨した複数の半導体基板の表面粗さを非接触法により測定し、その5μm〜1mmの空間波長成分領域の波長成分強度の大小により、前記複数の研磨条件のそれぞれの良否を判定する半導体基板の研磨条件の判定方法。Preparing a plurality of semiconductor substrates manufactured through the same process, polishing each of the plurality of semiconductor substrates under a plurality of different polishing conditions by changing either one or both of a polishing pad and a polishing slurry, The surface roughness of a plurality of polished semiconductor substrates is measured by a non-contact method, and the quality of each of the plurality of polishing conditions is determined based on the magnitude of the wavelength component intensity in the spatial wavelength component region of 5 μm to 1 mm. A method for judging polishing conditions. 半導体基板の表面粗さを非接触法により測定し、その5μm〜1mmの空間波長成分領域の第1波長成分強度を測定し、前記半導体基板を所定の研磨条件で研磨し、前記研磨した半導体基板の表面粗さを前記非接触法により測定し、その5μm〜1mmの空間波長成分領域の第2波長成分強度を測定し、前記第1波長成分強度と前記第2波長成分強度を比較することにより、前記研磨条件の良否を判定する半導体基板の研磨条件の判定方法。The surface roughness of the semiconductor substrate is measured by a non-contact method, the first wavelength component intensity in the spatial wavelength component region of 5 μm to 1 mm is measured, the semiconductor substrate is polished under predetermined polishing conditions, and the polished semiconductor substrate By measuring the surface roughness of the film by the non-contact method, measuring the second wavelength component intensity in the spatial wavelength component region of 5 μm to 1 mm, and comparing the first wavelength component intensity and the second wavelength component intensity A method for determining polishing conditions of a semiconductor substrate for determining whether or not the polishing conditions are good.
JP2000049396A 2000-02-25 2000-02-25 Method for judging polishing conditions of semiconductor substrate Expired - Fee Related JP3642250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049396A JP3642250B2 (en) 2000-02-25 2000-02-25 Method for judging polishing conditions of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049396A JP3642250B2 (en) 2000-02-25 2000-02-25 Method for judging polishing conditions of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2001239459A JP2001239459A (en) 2001-09-04
JP3642250B2 true JP3642250B2 (en) 2005-04-27

Family

ID=18571350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049396A Expired - Fee Related JP3642250B2 (en) 2000-02-25 2000-02-25 Method for judging polishing conditions of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP3642250B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507157B2 (en) * 2003-06-17 2010-07-21 信越半導体株式会社 Wafer manufacturing process management method
JP5867359B2 (en) * 2012-10-04 2016-02-24 信越半導体株式会社 Wafer evaluation method and wafer polishing method
KR102253519B1 (en) 2013-09-27 2021-05-18 호야 가부시키가이샤 Substrate provided with multilayer reflective film, mask blank, transfer mask, and semiconductor device production method

Also Published As

Publication number Publication date
JP2001239459A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US6690473B1 (en) Integrated surface metrology
TW495605B (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor
US7175503B2 (en) Methods and systems for determining a characteristic of polishing within a zone on a specimen from combined output signals of an eddy current device
US9063093B2 (en) Surface inspection method and surface inspection apparatus
JPH0851090A (en) Method of grinding patterned layer on semiconductor substrate
US10180316B2 (en) Method and device for the contactless assessment of the surface quality of a wafer
US9052190B2 (en) Bright-field differential interference contrast system with scanning beams of round and elliptical cross-sections
Haapalinna et al. Rotational grinding of silicon wafers—sub-surface damage inspection
US6609946B1 (en) Method and system for polishing a semiconductor wafer
JP3642250B2 (en) Method for judging polishing conditions of semiconductor substrate
JP4400331B2 (en) Wafer shape evaluation method and management method
US6853873B1 (en) Enhanced throughput of a metrology tool
Wuttig et al. Surface roughness and subsurface damage characterization of fused silica substrates
Lindsey et al. Production and assessment of supersmooth optical surfaces
Steinert et al. Advanced methods for surface and subsurface defect characterization of optical components
Dojima et al. 4H-SiC Full Wafer Mapping Image of CMP-Finished Sub-Surface Damage by Laser Light Scattering
JPH0496247A (en) Measurement of semiconductor wafer and particles thereof
Takahashi et al. New optical measurement technique for Si wafer surface defects using annular illumination with crossed nicols
MIYOSHI Laser Applied Nano-inprocess Measurement Technology
Xiao et al. Analysis of subsurface damage during fabrication process and its removal
Schmitt Characterization of high-quality surfaces by Nomarski microscopy and light scattering
Jungling et al. Float Polishing Studies of Fused Silica
Brown Use of the WYKO and Sommargren profilers in polishing research
Jungling et al. 93 Nov 22 Final Technical 01Feb90 Lhiru.^ OSep93
Ives et al. Subsurface damage profiling system for semiconductors materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3642250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees