JPH0210857B2 - - Google Patents

Info

Publication number
JPH0210857B2
JPH0210857B2 JP21374083A JP21374083A JPH0210857B2 JP H0210857 B2 JPH0210857 B2 JP H0210857B2 JP 21374083 A JP21374083 A JP 21374083A JP 21374083 A JP21374083 A JP 21374083A JP H0210857 B2 JPH0210857 B2 JP H0210857B2
Authority
JP
Japan
Prior art keywords
weight
friction
coefficient
powder
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21374083A
Other languages
Japanese (ja)
Other versions
JPS60106932A (en
Inventor
Yoshitaka Tomyama
Kojiro Saito
Hideo Ooyabu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUNMATSU GOKIN KK
Original Assignee
NIPPON FUNMATSU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUNMATSU GOKIN KK filed Critical NIPPON FUNMATSU GOKIN KK
Priority to JP21374083A priority Critical patent/JPS60106932A/en
Publication of JPS60106932A publication Critical patent/JPS60106932A/en
Publication of JPH0210857B2 publication Critical patent/JPH0210857B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高摩擦係数を有する乾式焼結摩擦材
料に関し、更に詳しくは、自動車、産業用車両、
鉄道用車両等のブレーキライニング材、クラツチ
フエーシング材等として有用な摩擦材料に関す
る。 従来車両用特に二輪乃至四輪自動車用の摩擦材
料としては、石綿を含有するレジンモールドが使
用されて来たが、現今の公害防止の要望に対処す
べく、金属繊維を含有するセミメタリツクタイプ
の材料が広く使用される様になつている。しかし
ながら、このセミメタリツクタイプの摩擦材料に
も、降雨時に摩擦係数が低下する、高負荷等の苛
酷な条件下ではレジンの炭化によりやはり摩擦係
数が低下する等の欠点がある。従つて、最近では
焼結合金系の摩擦材料が次第に利用される様にな
つて来たが、これについても更に性能向上が求め
られている。即ち、自動車においては、省エネル
ギーの為の小型化及び軽量化が急速に進行してお
り、ブレーキ機構等に対しても小型化が要求され
ている。そして、ブレーキ機構の小型化を実現す
る為には、摩擦係数が高く、摩耗量の少ない新し
い焼結摩擦材料が必要となつている。 本発明は、この様な要求に応えるべくなされた
ものであり、(1)銅45〜65重量%、(2)錫3〜8重量
%、(3)黒鉛3〜15重量%、(4)二硫化モリブデン、
二硫化タングステン、ビスマス及びアンチモンの
少なくとも1種0.5〜5重量%、(5)アルミナ、シ
リカ、ムライト、窒化ケイ素及びジルコンサンド
の少なくとも1種2〜15重量%、及び(6)希土類元
素の弗化物及び酸化物の少なくとも1種5〜30重
量%からなることを特徴とする焼結摩擦材料に係
る。 本発明によれば、耐摩耗性に優れ、摩擦係数が
高く、降雨時にも摩擦係数の低下を実質的に生じ
ない焼結摩擦材料が得られる。 以下本発明焼結摩擦材料の各成分について説明
する。これ等の各成分は、相互に関連しつつ摩擦
材料としての物性に影響するので、夫々の限定理
由を個別に論ずることは必ずしも妥当ではない
が、一応の限定理由を併せて示す。 (1) 銅及び(2)錫 これ等は、摩擦材料の素地をなすものであ
り、焼結によつて合金化して、いわゆる青銅地
を形成し、素地の強度を高める。特に強度の観
点から、銅45〜65重量%に対し錫3〜8重量%
とする。錫が3重量%未満の場合には、黒鉛そ
の他の非金属を保持するに充分な強度が得られ
ず、一方8重量%を上回る場合には、摩擦材料
を脆化させ、強度を低下させる。 (3) 黒鉛 黒鉛の添加は、主として摩擦係数を安定させ
る。即ち、一般に相互に摺動する摩擦材料の二
面間に発生する摩擦力は、(イ)二面間の一部に生
ずる凝着を剪断するに要する力、及び(ロ)硬質粒
子による相手材への堀りおこし力によるといわ
れている。黒鉛は、この様な二面間に存在する
ことにより、二面間に生ずる凝着を制御する。
従つて、適当量の黒鉛の存在により、摩擦材料
の摩擦係数が向上するとともに安定化され、併
せて耐摩耗性も向上する。 黒鉛の量が3重量%未満では、上記の効果が
十分に奏されないのに対し、15重量%を上回る
場合には、材料強度が低下するとともに摩擦係
数が低下する。 (4) 二硫化モリブデン、二硫化タングステン、ビ
スマス及びアンチモンの少なくとも1種 二硫化モリブデン等は、黒鉛と同様の効果を
奏するのみならず、いわゆる“鳴き”の防止及
び高荷重時の潤滑性付与という顕著な効果をも
発揮する。二硫化モリブデン等の使用量は、
0.5〜5重量%とする。これ等の使用量が、0.5
%未満の場合には、添加の効果が十分に発揮さ
れず、一方5重量%を上回る場合には、材料強
度及び摩擦係数が低下する。 (5) アルミナ、シリカ、ムライト、窒化ケイ素及
びジルコンサンドの少なくとも1種 アルミナ等は、2〜15重量%の使用範囲にお
いて、前記の堀りおこし効果を奏するととも
に、摩擦熱により相手側摺動面に生成する酸化
皮膜を除去することにより摩擦材料間の凝着を
安定的に発生させて、安定的な摩擦力を発揮さ
せる。使用量が2重量%未満の場合には、上記
の効果が十分に発揮されず、一方15重量%を上
回る場合には、相手側摺動面を荒損させる傾向
がある。 (6) 希土類元素の弗化物及び酸化物の少なくとも
1種 これ等の化合物は、基本的にはアルミナ等と
同様の効果を奏する。しかしながら、これ等の
化合物は、アルミナ等に比して硬度が低いの
で、堀りおこし効果は劣るものの、相手側摺動
面を著るしく荒損することなく酸化皮膜を除去
し得る。従つて、これ等化合物は、5〜30重量
%の範囲内で、アルミナ等との併用状態におい
て、摩擦材料に安定した適切な摩擦係数を付与
する。これ等の化合物の使用量が5重量%未満
の場合には、所望の効果が発揮され難いのに対
し、30重量%を上回る場合には、摩擦材料を脆
化させるとともに、摩耗を増大させる。これ等
化合物の具体例としては、弗化セリウム、弗化
ランタン、弗化イツトリウム、弗化サマリウム
等の弗化物、酸化ランタン、酸化イツトリウ
ム、酸化セリウム、酸化サマリウム等の酸化物
が例示される。 以下本発明の実施例を示し、本発明の特徴とす
るところをより一層明らかにする。 実施例 1 銅粉末57重量%、錫粉末5重量%、黒鉛粉末9
重量%、二硫化モリブデン粉末2重量%、シリカ
粉末4重量%、ムライト粉末3重量%及び弗化セ
リウム粉末20重量%を混合し、成形圧力5トン/
cm2で成形した後、銅メツキを予め施した低炭素鋼
板上に該成形体を重ね、窒素雰囲気中800℃で7
Kg/cm2で加圧しつつ焼結することにより、焼結と
鋼板への接合を同時に行なつて試料を得た。 かくして得た試料を慣性力1Kg・m・sec2、ブ
レーキ初速度50Km/hrの条件下に相手デイスク材
(13クローム鋼)に摺動接触させ(接触面積20
cm2)、乾燥状態及び湿潤状態(散水丈態)での摩
擦係数等を測定した。結果は、第1表に示す通り
である。 比較例 1 銅粉末75重量%、錫粉末7重量%、黒鉛粉末9
重量%、二硫化モリブデン粉末2重量%、シリカ
粉末4重量%及びムライト粉末3重量%からなる
混合粉体を使用する以外は、実施例1と同様にし
て焼結体と鋼板とを接合した試料を得た。 実施例1と同様にして測定した摩擦係数等の結
果を第1表に示す。
The present invention relates to a dry sintered friction material having a high coefficient of friction, and more particularly to a dry sintered friction material for automobiles, industrial vehicles,
This invention relates to friction materials useful as brake lining materials, clutch facing materials, etc. for railway vehicles, etc. Conventionally, resin molds containing asbestos have been used as friction materials for vehicles, particularly for two-wheeled and four-wheeled vehicles, but in order to meet the current demands for pollution prevention, semi-metallic type materials containing metal fibers have been used. materials are becoming more widely used. However, this semi-metallic type friction material also has drawbacks, such as a decrease in the coefficient of friction during rain, and a decrease in the coefficient of friction due to carbonization of the resin under severe conditions such as high loads. Therefore, although sintered alloy-based friction materials have recently come to be used more and more, there is also a need for further improvements in performance. That is, automobiles are rapidly becoming smaller and lighter to save energy, and brake mechanisms and the like are also required to be smaller. In order to downsize brake mechanisms, new sintered friction materials with high friction coefficients and low wear are needed. The present invention was made to meet these demands, and includes (1) 45 to 65% by weight of copper, (2) 3 to 8% by weight of tin, (3) 3 to 15% by weight of graphite, (4) molybdenum disulfide,
0.5 to 5% by weight of at least one of tungsten disulfide, bismuth, and antimony, (5) 2 to 15% by weight of at least one of alumina, silica, mullite, silicon nitride, and zircon sand, and (6) rare earth element fluoride. and 5 to 30% by weight of at least one of oxides. According to the present invention, it is possible to obtain a sintered friction material that has excellent wear resistance, a high coefficient of friction, and whose coefficient of friction does not substantially decrease even when it rains. Each component of the sintered friction material of the present invention will be explained below. Since each of these components is mutually related and affects the physical properties of the friction material, it is not necessarily appropriate to discuss the reasons for each limitation individually, but the reasons for the limitations will be shown together. (1) Copper and (2) Tin These make up the base of friction materials, and are alloyed by sintering to form what is called a bronze base, increasing the strength of the base. Especially from the viewpoint of strength, copper is 45 to 65% by weight and tin is 3 to 8% by weight.
shall be. When tin is less than 3% by weight, sufficient strength to hold graphite and other non-metals cannot be obtained, while when it is more than 8% by weight, the friction material becomes brittle and its strength is reduced. (3) Graphite The addition of graphite mainly stabilizes the coefficient of friction. That is, in general, the frictional force generated between two surfaces of friction materials that slide against each other is (a) the force required to shear the adhesion that occurs in a part of the two surfaces, and (b) the force required to shear the adhesion that occurs on a part of the two surfaces, and (b) the force caused by the hard particles of the opposing material. It is said that this is due to the ability to revitalize the moat. By existing between these two surfaces, graphite controls adhesion that occurs between the two surfaces.
Therefore, the presence of an appropriate amount of graphite improves and stabilizes the friction coefficient of the friction material, and also improves the wear resistance. If the amount of graphite is less than 3% by weight, the above effects will not be sufficiently exhibited, whereas if it exceeds 15% by weight, the material strength will decrease and the coefficient of friction will decrease. (4) At least one of molybdenum disulfide, tungsten disulfide, bismuth, and antimony Molybdenum disulfide not only has the same effect as graphite, but also prevents so-called "squeal" and provides lubricity under high loads. It also has remarkable effects. The amount of molybdenum disulfide, etc. used is
The amount should be 0.5 to 5% by weight. The usage amount of these is 0.5
If it is less than 5% by weight, the effect of addition will not be sufficiently exhibited, while if it exceeds 5% by weight, the material strength and friction coefficient will decrease. (5) At least one of alumina, silica, mullite, silicon nitride, and zircon sand Alumina, etc., in the range of 2 to 15% by weight, not only produces the above-mentioned excavation effect, but also generates frictional heat on the mating sliding surface. By removing the oxide film that forms on the surface of the friction material, adhesion between the friction materials is stably generated and stable frictional force is exerted. If the amount used is less than 2% by weight, the above effects will not be fully exhibited, while if it exceeds 15% by weight, there is a tendency for the mating sliding surface to become rough. (6) At least one of rare earth element fluorides and oxides These compounds basically have the same effects as alumina, etc. However, these compounds have lower hardness than alumina and the like, so although their digging effect is inferior, they can remove the oxide film without significantly damaging the mating sliding surface. Therefore, in the range of 5 to 30% by weight, these compounds impart a stable and appropriate coefficient of friction to the friction material when used in combination with alumina or the like. If the amount of these compounds used is less than 5% by weight, it is difficult to achieve the desired effect, whereas if it exceeds 30% by weight, the friction material becomes brittle and wear increases. Specific examples of these compounds include fluorides such as cerium fluoride, lanthanum fluoride, yttrium fluoride, and samarium fluoride, and oxides such as lanthanum oxide, yttrium oxide, cerium oxide, and samarium oxide. Examples of the present invention will be shown below to further clarify the characteristics of the present invention. Example 1 57% by weight of copper powder, 5% by weight of tin powder, 9% by weight of graphite powder
% by weight, molybdenum disulfide powder 2% by weight, silica powder 4% by weight, mullite powder 3% by weight and cerium fluoride powder 20% by weight, and a molding pressure of 5 tons/
cm 2 , the molded body was stacked on a low carbon steel plate that had been previously plated with copper, and heated at 800°C in a nitrogen atmosphere for 7 days.
A sample was obtained by sintering while applying pressure at Kg/cm 2 to simultaneously perform sintering and bonding to a steel plate. The thus obtained sample was brought into sliding contact with the mating disk material (13 chrome steel) under the conditions of an inertia force of 1 Kg m sec 2 and an initial braking speed of 50 Km/hr (contact area 20 Km/hr).
cm 2 ), friction coefficient in dry state and wet state (water sprayed height), etc. were measured. The results are shown in Table 1. Comparative example 1 75% by weight of copper powder, 7% by weight of tin powder, 9% by weight of graphite powder
A sample in which a sintered body and a steel plate were joined in the same manner as in Example 1, except that a mixed powder consisting of 2% by weight of molybdenum disulfide powder, 4% by weight of silica powder, and 3% by weight of mullite powder was used. I got it. Table 1 shows the results of friction coefficients, etc., measured in the same manner as in Example 1.

【表】 第1表に示す結果から明らかな如く、本発明に
よる焼結摩擦材料は、高い摩擦係数を有してお
り、湿潤状態においても摩擦係数の低下は認めら
れず、更に耐摩耗性にも優れている。 実施例 2〜6 第2表に示す原料を使用する以外は実施例1と
同様にして焼結体と鋼板とを接合した試料を得た
後、実施例1と同様の測定を行なつた。結果を第
2表に併せて示す。但し、摩擦係数の測定に当つ
ては、押付力を14.1Kg/cm2とした。
[Table] As is clear from the results shown in Table 1, the sintered friction material according to the present invention has a high coefficient of friction, and no decrease in the coefficient of friction is observed even in wet conditions, and it has excellent wear resistance. is also excellent. Examples 2 to 6 Samples in which a sintered body and a steel plate were bonded were obtained in the same manner as in Example 1 except that the raw materials shown in Table 2 were used, and then the same measurements as in Example 1 were performed. The results are also shown in Table 2. However, when measuring the friction coefficient, the pressing force was 14.1 Kg/cm 2 .

【表】【table】

Claims (1)

【特許請求の範囲】 1 (1) 銅45〜65重量%、 (2) 錫3〜8重量%、 (3) 黒鉛3〜15重量%、 (4) 二硫化モリブデン、二硫化タングステン、ビ
スマス及びアンチモンの少なくとも1種0.5〜
5重量%、 (5) アルミナ、シリカ、ムライト、窒化ケイ素及
びジルコンサンドの少なくとも1種2〜15重量
%、及び (6) 希土類元素の弗化物及び酸化物の少なくとも
1種5〜30重量% からなることを特徴とする焼結摩擦材料。
[Claims] 1 (1) 45-65% by weight of copper, (2) 3-8% by weight of tin, (3) 3-15% by weight of graphite, (4) molybdenum disulfide, tungsten disulfide, bismuth and At least one type of antimony 0.5~
(5) 2-15% by weight of at least one of alumina, silica, mullite, silicon nitride and zircon sand, and (6) 5-30% by weight of at least one of rare earth element fluorides and oxides. A sintered friction material characterized by:
JP21374083A 1983-11-14 1983-11-14 Sintered friction material Granted JPS60106932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21374083A JPS60106932A (en) 1983-11-14 1983-11-14 Sintered friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21374083A JPS60106932A (en) 1983-11-14 1983-11-14 Sintered friction material

Publications (2)

Publication Number Publication Date
JPS60106932A JPS60106932A (en) 1985-06-12
JPH0210857B2 true JPH0210857B2 (en) 1990-03-09

Family

ID=16644222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21374083A Granted JPS60106932A (en) 1983-11-14 1983-11-14 Sintered friction material

Country Status (1)

Country Link
JP (1) JPS60106932A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2512477B2 (en) * 1987-06-17 1996-07-03 大豊工業株式会社 Copper-based sliding material
JP5716494B2 (en) 2011-03-30 2015-05-13 新日鐵住金株式会社 Sintered friction material for high-speed railway
CN103045971B (en) * 2013-01-15 2015-04-22 合肥工业大学 Copper-graphite-tungsten disulfide nanotube self-lubricating composite material and preparation method thereof
CN103464767A (en) * 2013-09-09 2013-12-25 中南大学 Brush-slip-ring system of copper-tungsten-disulfide composite materials
RU2627138C1 (en) * 2016-06-27 2017-08-03 Государственное научное учреждение "Институт порошковой металлургии" Copper-based sintered friction material
BR112019020384A2 (en) 2017-04-07 2020-04-22 Fine Sinter Co Ltd sintered friction material
RU2666203C1 (en) * 2017-07-04 2018-09-06 Государственное научное учреждение "Институт порошковой металлургии" Copper-based sintered friction material
AT522255B1 (en) * 2019-03-13 2022-01-15 Miba Frictec Gmbh friction lining

Also Published As

Publication number Publication date
JPS60106932A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
CA1211304A (en) Sintered iron base friction material
US6110268A (en) Sintered brake lining and method for its manufacture
US2408430A (en) Friction composition product
WO2012133513A1 (en) Sintered friction material for high-speed rail
JPH0210857B2 (en)
JP7078359B2 (en) Manufacturing method of sintered friction material and sintered friction material
JP3129787B2 (en) Dry friction material
EP0166435A2 (en) Resin-reinforced, nodular plated wet friction materials
JPS63109131A (en) Friction material of sintered alloy
JP3855125B2 (en) Friction material
JPH05179232A (en) Sintered metallic friction material for brake
JPS62260030A (en) Sintered-alloy friction material
JPH0368091B2 (en)
JP4197751B2 (en) Metallic friction material and method for manufacturing the same
JPH0826303B2 (en) Friction material
JPS58147481A (en) Heavy-duty sintered friction material
JP3485270B2 (en) Wet friction material
JP2000355685A (en) Friction material
KR102047849B1 (en) Brake friction material composition comprising cast iron powder
JPH07207253A (en) Metal-based composite friction material
KR100190324B1 (en) Cu sintering alloy
JPS60200932A (en) Friction material
JPS597343B2 (en) Iron-based sintered composite
JPH08188767A (en) Dry abrasive material
KR910003898B1 (en) Rubbing material for cu