JPH02108491A - Solder alloy composition - Google Patents

Solder alloy composition

Info

Publication number
JPH02108491A
JPH02108491A JP26195388A JP26195388A JPH02108491A JP H02108491 A JPH02108491 A JP H02108491A JP 26195388 A JP26195388 A JP 26195388A JP 26195388 A JP26195388 A JP 26195388A JP H02108491 A JPH02108491 A JP H02108491A
Authority
JP
Japan
Prior art keywords
solder
solder alloy
melting point
weight
compsn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26195388A
Other languages
Japanese (ja)
Inventor
Kozo Shimizu
浩三 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26195388A priority Critical patent/JPH02108491A/en
Publication of JPH02108491A publication Critical patent/JPH02108491A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To produce the solder alloy compsn. of a high melting point suitable for assembly of semiconductor packages, etc., by using Pb contg. specific ratios of Ga, Sn and Ag to constitute a solder alloy used for joining of metallic members to each other. CONSTITUTION:The solder alloy used for joining of metallic members to each other is constituted of the compsn. ratio contg. 0.05 to 0.3wt.% Ga, 0.5 to 1.5wt.% Sn and 1.0 to 2.0wt.% Ag, and the balance Pb. This solder alloy compsn. is usable at about 300 deg.C, has an excellent thermal fatigue life and is adequate as the solder alloy compsn. for semiconductor devices having a large temp. difference between the temp. during use and the temp. during halt.

Description

【発明の詳細な説明】 〔概要〕 半導体パッケージなどの組み立てに使用する高融点の半
田合金に関し、 半田濡れ性および耐酸化性が優れ、且つ引張り試験にお
ける伸びの大きな半田合金を実用化することを目的とし
、 金属部材相互の接合に使用する半田合金が、ガリウム0
.05〜0.3重量%、錫0.5〜1.5重量%。
[Detailed Description of the Invention] [Summary] With regard to high melting point solder alloys used in the assembly of semiconductor packages, etc., the present invention aims to commercialize solder alloys that have excellent solder wettability and oxidation resistance, and have high elongation in tensile tests. For this purpose, the solder alloy used for joining metal parts is gallium 0
.. 05-0.3% by weight, tin 0.5-1.5% by weight.

111.0〜2.0重量%、残部器の組成比で半田合金
〔産業上の利用分野〕 本発明は耐酸化性を改良した半田合金組成物に関する。
Solder alloy with composition ratio of 111.0 to 2.0% by weight, remaining component [Field of Industrial Application] The present invention relates to a solder alloy composition with improved oxidation resistance.

大量の情報を迅速に処理するため情報処理装置の主体を
占める半導体装置は単位素子の小形化による集積化が進
んでLSIやVLSIなどの半導体集積回路が実用化さ
れているが、パフケージング構造や冷却構造なども改良
されており、これには凝固温度の異なる各種の半田が使
い分けられている。
Semiconductor devices, which are the mainstay of information processing equipment in order to quickly process large amounts of information, have become increasingly integrated through miniaturization of unit elements, and semiconductor integrated circuits such as LSI and VLSI have been put into practical use. The cooling structure has also been improved, and various types of solder with different solidification temperatures are used for this purpose.

すなわち、半導体チップ周辺部の半田バンプの形成、半
導体チップのセラミック基板への装着。
That is, forming solder bumps around the semiconductor chip and mounting the semiconductor chip on a ceramic substrate.

ハーメチックシールのための半田シートなど、半導体装
置の形成には凝固温度の異なる各種の半田が使用されて
おり、またセラミック多層回路基板上に搭載した半導体
装置を冷却するための冷却構造体の接合にも半田が使用
されている。
Various solders with different solidification temperatures are used to form semiconductor devices, such as solder sheets for hermetic seals, and are also used to join cooling structures for cooling semiconductor devices mounted on ceramic multilayer circuit boards. Solder is also used.

こ\で、半導体装置は使用時には発熱が大きいために使
用時と休止時での温度差が大きく、そのため機械的性質
に優れ、且つ熱疲労寿命に優れた半田材料の使用が必要
となる。
Semiconductor devices generate a large amount of heat when in use, resulting in a large temperature difference between when in use and when not in use. Therefore, it is necessary to use a solder material that has excellent mechanical properties and a long thermal fatigue life.

本発明は300℃程度の温度で使用される高融点半田に
関するものである。
The present invention relates to a high melting point solder used at a temperature of about 300°C.

〔従来の技術〕[Conventional technology]

使用温度が300℃程度の高融点半田として代表的なも
のとしては融点が280℃の金(Au)−20%錫(S
n)半田が挙げられる。
A typical high melting point solder with a usage temperature of about 300℃ is gold (Au)-20% tin (S) with a melting point of 280℃.
n) Solder.

この半田は経時的には安定な材料ではあるが、材質が非
常に硬いために、接合部に柔軟性が必要な用途には使用
することができない。
Although this solder is a stable material over time, it is extremely hard and cannot be used in applications that require flexibility in the joint.

また、Auの組成比が大きいためにコストが高いことも
問題である。
Another problem is that the cost is high due to the high composition ratio of Au.

また、安価で且つ強度に優れている半田材料として鉛(
Pb)−9%錫(Sn)合金がある。
In addition, lead (
Pb)-9% tin (Sn) alloy.

然し、この材料の液相線温度は310℃、固相線温度は
280℃と凝固時の温度幅が広いために析出した結晶が
発達して組織が粗大化し、柔軟性の目安となる引張り試
験で伸びが少ない。
However, because the liquidus temperature of this material is 310°C and the solidus temperature is 280°C, which is a wide temperature range during solidification, the precipitated crystals develop and the structure becomes coarse, making it impossible to perform a tensile test, which is a measure of flexibility. There is little elongation.

そのため、半田接合部に高い熱疲労寿命が必要な用途に
は不適当である。
Therefore, it is unsuitable for applications requiring a high thermal fatigue life for solder joints.

そこで、pb系の共晶半田のうちで、機械的性質に優れ
、また熱疲労寿命に優れた半田材料として鉛(Pb)−
2,5%銀(Ag)とPb−1%5n−1,5%Agが
ある。
Therefore, among Pb-based eutectic solders, lead (Pb) is a solder material with excellent mechanical properties and excellent thermal fatigue life.
There are 2,5% silver (Ag) and Pb-1%5n-1,5% Ag.

然し、前者のPb−2,5%Agは半田濡れ性が不充分
なことが問題であり、また後者のPb−1%5n−1,
5%Agは融点が309℃と高温であるために半田付は
温度が高く、ロジン系のフラックスが炭化すると云う問
題があった。
However, the former Pb-2,5%Ag has a problem of insufficient solder wettability, and the latter Pb-1%5n-1,
Since 5% Ag has a high melting point of 309° C., the soldering temperature is high and there is a problem in that the rosin-based flux carbonizes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したように、使用温度が300℃付近の半田とし
て数種の半田があるが、半導体装置は使用時には素子の
発熱による温度上昇を伴うために接合部に柔軟性が要求
されている。
As described above, there are several types of solder that can be used at temperatures around 300° C., but when semiconductor devices are used, the temperature rises due to heat generation of the elements, so flexibility is required in the joints.

そこで、熱疲労寿命の優れた材料が必要で、pb−1%
5n−1,5%Agの共晶半田はこの目的に適している
が、半田付は温度が高く、フラックスが炭化することが
問題である。
Therefore, a material with excellent thermal fatigue life is required, and pb-1%
A 5n-1,5%Ag eutectic solder is suitable for this purpose, but the problem is that the soldering temperature is high and the flux carbonizes.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は金属部材相互の接合に使用する半田合金と
して、ガリウム(Ga)0.05〜0.3重量%。
The above-mentioned problem requires 0.05 to 0.3% by weight of gallium (Ga) as a solder alloy used for joining metal members together.

錫(Sn)0.5〜1.5重量%、銀(Ag)1.0〜
2.0重景%9残部鉛(Pb)の組成比で半田合金組成
物を構成することにより解決することができる。
Tin (Sn) 0.5~1.5% by weight, silver (Ag) 1.0~
This problem can be solved by forming the solder alloy composition at a composition ratio of 2.0% weight and 9% lead (Pb).

〔作用〕[Effect]

本発明は熱疲労寿命特性に優れた従来のpb−1%5n
−1,5%Agの共晶半田からなる合金組成に微量のG
aを添加することにより目的を達成するものである。
The present invention is a conventional pb-1%5n with excellent thermal fatigue life characteristics.
-A trace amount of G in the alloy composition consisting of 1.5%Ag eutectic solder
The purpose is achieved by adding a.

発明者は従来のPb−1%5n−1,5%Agの共晶半
田を用いる場合にロジン系フラックスが炭化し、外観を
損なう問題について調査した結果、半田付は温度を僅か
数℃下げるだけで炭化を防げることが判った。
The inventor investigated the problem of rosin-based flux carbonizing and damaging the appearance when using conventional Pb-1%5n-1,5%Ag eutectic solder, and found that soldering only lowers the temperature by a few degrees Celsius. It was found that carbonization can be prevented.

そこで、この組成物にGaを少量添加することによって
融点を下げるものである。
Therefore, by adding a small amount of Ga to this composition, the melting point is lowered.

こ\で、Gaを選んだ理由は、Gaは融点が29.7℃
と低い金属であり、金属に添加した場合、少量の添加で
融点を大きく下げることができ、そのため例えばインジ
ウム(In)−Ga系半田が実用化されている。
The reason why I chose Ga is that the melting point of Ga is 29.7℃.
It is a metal with a low melting point, and when added to a metal, the melting point can be significantly lowered by adding a small amount, and for this reason, for example, indium (In)-Ga based solder has been put into practical use.

さて、GaをPb−1%5n−1,5%Agの共晶半田
に添加する場合に問題となるのは共晶組成からずれるた
めに液相線温度と固相線温度との温度幅(凝固温度幅)
を生ずることであり、温度幅が大きいと先に記したよう
に析出した結晶が成長して組織が粗大化し、引張り試験
における伸びが小さくなって熱疲労寿命が低下してしま
う。
Now, when adding Ga to Pb-1%5n-1,5%Ag eutectic solder, the problem is that the temperature width between the liquidus temperature and the solidus temperature ( solidification temperature range)
If the temperature range is large, as mentioned above, the precipitated crystals will grow and the structure will become coarser, resulting in less elongation in the tensile test and a reduced thermal fatigue life.

事実、Pb−1%5n−1,5%Agの組成にGaを添
加する場合、Gaの添加量が0.3重量%より多いと凝
固温度幅が大きくなり、Gaの偏析によって凝固組織が
針状となって疲労寿命が低下することが判った。
In fact, when Ga is added to a composition of Pb-1%5n-1.5%Ag, if the amount of Ga added is more than 0.3% by weight, the solidification temperature range becomes large, and the solidification structure becomes acicular due to the segregation of Ga. It was found that the fatigue life was reduced as a result.

一方、Gaの添加量が0.05重量%未満では融点を下
げる効果が無いことが判った。
On the other hand, it has been found that if the amount of Ga added is less than 0.05% by weight, there is no effect of lowering the melting point.

そこで、本発明はPb−1%5n−1,5%Agの共晶
組成を中心としてGaを0.05〜0.3%添加するこ
とにより半田合金組成物の融点を下げ、これによりロジ
ン系のフラックスが炭化すると云う問題を解決するもの
である。
Therefore, the present invention lowers the melting point of the solder alloy composition by adding 0.05 to 0.3% of Ga to a eutectic composition of Pb-1%5n-1.5%Ag, thereby reducing the melting point of the solder alloy composition. This solves the problem of carbonization of the flux.

〔実施例〕〔Example〕

Pb−1%5n−1,5%Agの共晶組成を中心として
Gaを0.05〜0.3%添加することを目的とし、第
1表に示すように組成比を16種類に変えて半田合金を
作り、これを用いて第1図に示すアルミナ(α−A I
t zo3”)よりなるセラミック基板1と鉄(Fe)
−ニッケル(Ni)合金からなるフランジ2との半田接
合3を行い、接合部の半田付は性と気密性とを調べ、ま
た半田合金の機械的性質を調べるためにJIS規格規格
1註 加工により作り、引張り試験を行った。
The aim was to add 0.05 to 0.3% Ga to a eutectic composition of Pb-1%5n-1.5%Ag, and the composition ratio was changed to 16 types as shown in Table 1. A solder alloy is made and used to produce alumina (α-A I) as shown in Figure 1.
Ceramic substrate 1 made of tzo3'') and iron (Fe)
- Solder joint 3 with the flange 2 made of nickel (Ni) alloy is performed, and the soldering of the joint is examined for properties and airtightness, and in order to examine the mechanical properties of the solder alloy, JIS standard standard 1 note processing is performed. was made and subjected to a tensile test.

すなわち、アルゴン(Ar)ガス雰囲気中でGa,Sn
That is, Ga, Sn in an argon (Ar) gas atmosphere
.

八gを所定の組成に溶解鋳造し、この合金とpbを大気
中において溶解炉を用いて溶解合金化して16種類の半
田合金を作り、圧延加工して厚さが0.2 0の板材と
した。
This alloy and PB are melted and alloyed in the atmosphere using a melting furnace to create 16 types of solder alloys, which are then rolled into plates with a thickness of 0.20. did.

変、験1;4欠用しに高1半田の組べ也毛 炙 こ\で、引張り試験における歪み速度は0.5鶴/分で
ある。
For example, test 1; 4, the strain rate in the tensile test is 0.5 Tsuru/min with a high-1 solder assembly.

第1表において、L.T.とS.T.はそれぞれ液相線
温度と固相線温度を示しており、また濡れ性の評価法と
しては半田が接着面に回っている場合を○、また一部欠
けている場合を△とした。
In Table 1, L. T. and S. T. indicate the liquidus temperature and the solidus temperature, respectively, and the wettability was evaluated as ○ if the solder covered the adhesive surface, and △ if the solder was partially chipped.

次に、気密性はプローブ法Heリーク試験によりI X
 10−”atll・cc/sec以下を気密性が良好
と評価した。 また、酸化防止効果は溶融時の半田の表
面と半田付は後の接合部を母合金と比較することにより
評価した。
Next, the airtightness was determined by a probe method He leak test.
The airtightness was evaluated to be good when it was 10-''atll.cc/sec or less.The anti-oxidation effect was evaluated by comparing the surface of the solder during melting and the joint after soldering with the mother alloy.

綜合判定として、NO39〜No. 16の試験試料が
不良であり、この内N009は濡れ性,伸び,気密性な
どは良好であるが、Gaの添加量が0.01重量%と少
ないために融点が309℃と従来の共晶半田(Pb−1
.5%Ag−1%Sn)と同じであり、半田付は温度が
高く、表面が酸化し不良となっている。
As a comprehensive judgment, No. 39 to No. 16 test samples were defective, and among these, N009 had good wettability, elongation, airtightness, etc., but because the amount of Ga added was small at 0.01% by weight, the melting point was 309°C, which was a conventional eutectic. Solder (Pb-1
.. 5%Ag-1%Sn), and the soldering temperature is high and the surface is oxidized, resulting in defects.

この第1表から判るように、Gaの組成比が0.05〜
0.3重量%, Snの組成比が0.5〜1.5重量%
As can be seen from Table 1, the composition ratio of Ga is from 0.05 to
0.3% by weight, Sn composition ratio is 0.5-1.5% by weight
.

Agの組成比が1.0〜2.0重量%,残部pbからな
る高融点半田合金は従来のPb−1.5%Ag−1%S
n共晶合金と比較して同様の濡れ性,気密性1機械的性
質を保持しつ\溶融温度を僅かではあるが低下させるこ
とができ、これにより接合部の酸化やフラックスの炭化
を防ぐことができる。
The high melting point solder alloy with a composition ratio of 1.0 to 2.0% by weight of Ag and the balance being PB is the conventional Pb-1.5%Ag-1%S.
Compared to n-eutectic alloys, it maintains the same wettability and airtightness 1 while maintaining the same mechanical properties and can lower the melting temperature, albeit slightly, thereby preventing oxidation of the joint and carbonization of the flux. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により母合金の特性を損
なわずに半田の融点を下げることが可能となり、これに
より耐酸化性が改善されるので、良好な半田接合部を形
成でき、半導体装置の品質を向上することができる。
As described above, by carrying out the present invention, it is possible to lower the melting point of solder without impairing the properties of the master alloy, and this improves oxidation resistance, making it possible to form good solder joints and improve semiconductor devices. quality can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半田接合部の状態を示す断面図である。 図において、 1はセラミック基板、   2はフランジ、3は半田接
合、
FIG. 1 is a sectional view showing the state of the solder joint. In the figure, 1 is a ceramic substrate, 2 is a flange, 3 is a solder joint,

Claims (1)

【特許請求の範囲】[Claims] 金属部材相互の接合に使用する半田合金が、ガリウム0
.05〜0.3重量%、錫0.5〜1.5重量%、銀1
.0〜2.0重量%、残部鉛の組成比で構成されている
ことを特徴とする半田合金組成物。
The solder alloy used to join metal parts is gallium-0.
.. 05-0.3% by weight, tin 0.5-1.5% by weight, silver 1
.. 1. A solder alloy composition characterized by having a composition ratio of 0 to 2.0% by weight, and the balance being lead.
JP26195388A 1988-10-18 1988-10-18 Solder alloy composition Pending JPH02108491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26195388A JPH02108491A (en) 1988-10-18 1988-10-18 Solder alloy composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26195388A JPH02108491A (en) 1988-10-18 1988-10-18 Solder alloy composition

Publications (1)

Publication Number Publication Date
JPH02108491A true JPH02108491A (en) 1990-04-20

Family

ID=17368957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26195388A Pending JPH02108491A (en) 1988-10-18 1988-10-18 Solder alloy composition

Country Status (1)

Country Link
JP (1) JPH02108491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070303A (en) * 2013-03-28 2014-10-01 北京康普锡威科技有限公司 Anti-oxidation high-temperature soft-solder solid wire and manufacturing method thereof
EP3452241A4 (en) * 2016-05-06 2019-11-13 Honeywell International Inc. High quality, void and inclusion free alloy wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070303A (en) * 2013-03-28 2014-10-01 北京康普锡威科技有限公司 Anti-oxidation high-temperature soft-solder solid wire and manufacturing method thereof
EP3452241A4 (en) * 2016-05-06 2019-11-13 Honeywell International Inc. High quality, void and inclusion free alloy wire

Similar Documents

Publication Publication Date Title
KR970010891B1 (en) High temperature lead-free tin based solder composition
US6689488B2 (en) Lead-free solder and solder joint
JPS6187396A (en) Manufacture of electronic circuit device
JPH06297185A (en) Dynamic solder paste composition
JPH11179586A (en) Lead-free soldered structure, and electronic unit
Shimizu et al. Solder joint reliability of indium-alloy interconnection
TW200538225A (en) Lead-free solder alloy and preparation thereof
JP4135268B2 (en) Lead-free solder alloy
JPH05228685A (en) High-temperature solder
US5308578A (en) Fatigue resistant lead-tin eutectic solder
JP3446517B2 (en) Pb-free solder material and electronic equipment using the same
JP3991788B2 (en) Solder and mounted product using it
JP2008080392A (en) Joining body and joining method
US6742248B2 (en) Method of forming a soldered electrical connection
JPH02108491A (en) Solder alloy composition
JP2008221330A (en) Solder alloy
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JPH0985484A (en) Lead-free solder and packaging method using the same and packaged articles
US5361966A (en) Solder-bonded structure
JPH0146228B2 (en)
JPH0422595A (en) Cream solder
JPH0845940A (en) Solder wire and solder bump electrode
JP2001244622A (en) Electronic circuit device
JP2001358458A (en) Electronic equipment having lead-free solder connection
JP2003200288A (en) Pb-FREE SOLDER MATERIAL AND ELECTRONIC APPARATUS USING THE SAME