JPH0210770B2 - - Google Patents

Info

Publication number
JPH0210770B2
JPH0210770B2 JP59052385A JP5238584A JPH0210770B2 JP H0210770 B2 JPH0210770 B2 JP H0210770B2 JP 59052385 A JP59052385 A JP 59052385A JP 5238584 A JP5238584 A JP 5238584A JP H0210770 B2 JPH0210770 B2 JP H0210770B2
Authority
JP
Japan
Prior art keywords
glass
wavelength
solution
antireflection film
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59052385A
Other languages
Japanese (ja)
Other versions
JPS60200842A (en
Inventor
Sadahiro Nakajima
Hisayoshi Toratani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP5238584A priority Critical patent/JPS60200842A/en
Publication of JPS60200842A publication Critical patent/JPS60200842A/en
Publication of JPH0210770B2 publication Critical patent/JPH0210770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はたとえばレーザ核融合に使用される
紫外線透過用ガラスに関するものである。 最近、レーザ核融合実験において、より短波長
のレーザ光ほど小さなエネルギで爆縮を起すこと
がわかり、これまで用いられていたネオジムガラ
スレーザの波長1.05μmの光を高調波変換した波
長0.35μm(3ω光)のレーザ光が使われつつあ
る。この場合に問題となるのは、従来レーザシス
テム中の光学素子ガラスとして用いられている
BK−7(西独シヨツト社製光学ガラス)が波長
0.35μmの光透過率が低く、ソーラリゼーシヨン
が生じるため使用できないことである。これに対
し、波長0.35μmの光透過率が高く、耐ソーラリ
ゼーシヨン特性にすぐれたガラスとして、重量%
でSiO260〜70、B2O315〜25、Al2O31〜5、R2O
(R=K、Na、Li)10〜20、R′O(R′=Mg、Ca、
Sr、Ba、Zn、Pb)0〜5の組成からなるホウケ
イ酸ガラスが知られている。 また、レーザ核融合等の大出力レーザシステム
においては、出力を効率良く取り出すために光学
ガラス表面の反射防止処理が必要不可欠である。
従来の真空蒸着法による多層反射防止コート膜は
レーザ光に対する損傷しきい値が低く、レーザシ
ステムの出力はこれにより制限されていた。これ
に対し、ガラス表面を多価カチオンを含む弱アル
カリ溶液中で処理することによりレーザ損傷しき
い値の高い反射防止膜を製造する方法が特開昭58
−69746号公報に報告されており、すくなくとも
5重量%以上のアルカリ金属を含有するケイ酸塩
ガラスについて任意の波長で反射率の低い膜を形
成し得ることが述べられている。 しかしながら、前記の組成からなるホウケイ酸
ガラスはAl2O3の含有量が多いため、前記公報に
示された処理方法では良好な反射防止膜が形成さ
れない。これは、Al2O3の含有量が多いガラスは
ガラス構造が強固なため浸食されにくく、充分な
多孔質膜が得られないためである。 この発明は上記のことから、波長0.35μmの光
透過率が高く、しかも表面に多孔質の反射防止膜
を形成し得る紫外線透過用ガラスを提供すること
を目的とするものである。 ここにおいて、この発明は発明者らは、前記の
組成からなるガラスに重量%で0.1〜6のF2を添
加すると、波長0.35μmの光透過率の高いガラス
が得られ、またこれをpH8.7〜10.0で多価金属イ
オンを含有しない緩衝性溶液で処理すると、F2
の作用によりガラス構造にゆるみが生じ浸食され
やすくなつて浸食を受け、溶液中に溶け出した
F-が浸食を促進させる一方、溶液中に溶け出し
たAl3+がガラスの浸食を制御し、それによりガ
ラス表面に光学的に均一で反射率が低く、レーザ
損傷しきい値の高い多孔質の反射防止膜が形成さ
れることを見い出した。なお、F2の含有量が重
量%で0.1以下では波長0.35μmの光透過率が向上
しないし良好な反射防止膜を形成することもでき
ず、一方10%以上ではガラスが失透しやすくな
る。 すなわち、この発明による紫外線透過用ガラス
は、重量%でSiO260〜70、Al2O31〜5、B2O315
〜25、R2O(R=K、Na、Li)10〜15、R′O
(R′=Mg、Ca、Sr、Ba、Zn、Pb)0〜5、外
割でF20.1〜6からなる組成を有している。また
この発明による紫外線透過用ガラスは、上記の組
成を有し、表面に多孔質の反射防止膜を形成して
なる。 次表に、この発明によるガラスの組成例(試料
No.2〜8)を、F2を含有しない従来のガラス
(試料No.1)とともに示し、また試料No.1〜8お
よびBK−7のいずれも10cm厚のガラスに対する
波長0.35μmの光透過率を示す。試料No.2〜8の
ガラスは、原料として、酸洗浄を行つて精製した
ケイ石粉、フツ化アルミニウム、水酸化アルミニ
ウム、無水硼砂、ホウ酸、炭酸カリウム、硝酸カ
リウム、炭酸リチウム、亜鉛華、酸性フツ化カリ
ウムを各々のガラスの組成となるよう精秤し、混
合したのち、白金るつぼ内で1450℃で3時間溶解
しながら溶解中に30分間撹拌し、1350℃に降温し
てから鋳鉄製の枠内に流し込み通常の方法で徐冷
後、冷間で研削・研磨を行つて10cm厚のガラスを
得たものである。なお、ガラス中の鉄分は波長
0.35μmの光透過に大きな影響を及ぼすため、原
料混合物いわゆるバツチ段階で2p.p.m.以下にし
た。
The present invention relates to ultraviolet transmitting glass used, for example, in laser fusion. Recently, in laser fusion experiments, it was found that the shorter the wavelength of laser light, the smaller the energy required to cause implosion. 3ω light) laser light is being used. The problem in this case is that the glass used as the optical element in conventional laser systems
BK-7 (optical glass manufactured by Schott, West Germany) has a wavelength
The light transmittance of 0.35 μm is low and solarization occurs, so it cannot be used. On the other hand, as a glass with high light transmittance at a wavelength of 0.35 μm and excellent solarization resistance,
SiO2 60~70, B2O3 15~25, Al2O3 1 ~ 5 , R2O
(R=K, Na, Li) 10-20, R′O (R′=Mg, Ca,
Borosilicate glass having a composition of 0 to 5 (Sr, Ba, Zn, Pb) is known. Furthermore, in high-output laser systems such as laser fusion, anti-reflection treatment on the surface of optical glass is essential in order to efficiently extract output.
Conventional vacuum-deposited multilayer anti-reflection coatings have a low damage threshold against laser light, which limits the output of laser systems. On the other hand, Japanese Patent Laid-Open No. 58 (1982) proposed a method for manufacturing an antireflection film with a high laser damage threshold by treating the glass surface in a weak alkaline solution containing polyvalent cations.
It is reported in Japanese Patent No. 69746 that it is possible to form a film with low reflectance at any wavelength using silicate glass containing at least 5% by weight of alkali metal. However, since the borosilicate glass having the above composition has a high content of Al 2 O 3 , a good antireflection film cannot be formed by the treatment method disclosed in the above publication. This is because glass with a high content of Al 2 O 3 has a strong glass structure and is difficult to erode, making it impossible to obtain a sufficiently porous film. In view of the above, an object of the present invention is to provide a glass for transmitting ultraviolet rays which has a high light transmittance at a wavelength of 0.35 μm and can form a porous antireflection film on its surface. Here, the inventors of the present invention have discovered that by adding 0.1 to 6% by weight of F2 to the glass having the above composition, a glass with high light transmittance at a wavelength of 0.35 μm can be obtained, and this can be obtained at a pH of 8. When treated with a buffered solution containing no polyvalent metal ions between 7 and 10.0, F2
Due to the action of glass, the glass structure becomes loose and becomes susceptible to erosion, which causes it to dissolve into the solution.
F - promotes erosion, while Al 3+ leached into the solution controls the erosion of the glass, thereby creating a porous glass surface with optically uniform, low reflectance and high laser damage threshold. It was discovered that an antireflection film of Note that if the F2 content is less than 0.1% by weight, the light transmittance at a wavelength of 0.35 μm will not improve and a good antireflection film cannot be formed, while if it is more than 10%, the glass will easily devitrify. . That is, the ultraviolet transmitting glass according to the present invention contains SiO 2 60 to 70, Al 2 O 3 1 to 5, and B 2 O 3 15 in weight percent.
~25, R2O (R=K, Na, Li) 10~15, R′O
(R'=Mg, Ca, Sr, Ba, Zn, Pb) has a composition of 0 to 5 and F2 of 0.1 to 6 in terms of outer division. Further, the ultraviolet transmitting glass according to the present invention has the above composition and has a porous antireflection film formed on its surface. The following table shows composition examples of glasses according to the present invention (sample
Nos. 2 to 8) are shown together with conventional glass that does not contain F 2 (sample No. 1), and both samples Nos. 1 to 8 and BK-7 transmit light at a wavelength of 0.35 μm through 10 cm thick glass. Show rate. The glasses of Samples No. 2 to 8 are made of silica powder purified by acid washing, aluminum fluoride, aluminum hydroxide, anhydrous borax, boric acid, potassium carbonate, potassium nitrate, lithium carbonate, zinc white, and acid fluoride. After accurately weighing and mixing the potassium chloride so that it has the composition of each glass, it was melted in a platinum crucible at 1450℃ for 3 hours and stirred for 30 minutes during the melting, and after cooling to 1350℃, it was placed in a cast iron frame. The glass was poured into a glass container, slowly cooled using the usual method, and then ground and polished in the cold to obtain a 10cm thick glass. In addition, the iron content in glass has a wavelength
Since it has a large effect on the light transmission of 0.35 μm, the raw material mixture was kept at a so-called batch stage to 2 p.pm or less.

【表】 この表から明らかなように、F2を含有しない
従来のガラス(試料No.1)はBK−7より波長
0.35μmの光透過率が高く、この発明によるガラ
ス(試料No.2〜8)は試料No.1のガラスよりも波
長0.35μmの光透過率がさらに高い。 つぎに反射防止膜の形成方法について実施例に
従つて説明する。 実施例 1 上記表の試料No.4のガラスを厚さ5mmで50mm×
50mmに光学研磨し、これを0.05M Na2CO3
0.1M NaHCO3溶液とを1:9の容積比で混合し
た60℃の溶液中に16時間浸漬した後、60℃の温水
で水洗し、さらに室温のエタノール中に浸漬して
から室温で乾燥して反射率測定試料とした。その
反射率の測定結果を図中aに示す。反射率測定に
は光透過率測定と同様、島津製作所製の島津マル
チパーパス自記分光光度計MPS−5000型を使用
した。なお、この混合溶液調整時のpHは8.7であ
り、ガラス試料を16時間浸漬後も変化なかつた。 実施例 2 実施例1と同一のガラスを、0.03M Na2HPO4
の溶液に60℃で16時間浸漬後、実施例1と同様の
洗浄、乾燥を行つて反射防止膜付のガラスを得
た。その反射率の測定結果を図中bに示す。な
お、この溶液の調整時のpHは9.8で、ガラス試料
を16時間浸漬後も変化なかつた。 実施例 3 実施例1と同一のガラスを、0.03M
Na2HAsO4の溶液に60℃で16時間浸漬後、実施
例1と同様の方法で反射防止膜付のガラスを得
た。その反射率の測定結果を図中Cに示す。な
お、この溶液の調整時のpHは9.2で、16時間ガラ
スを浸漬後も変化なかつた。 なお、図中dは従来の試料No.1のガラスを実施
例3の方法で処理したものの反射率の測定結果で
ある。 図から明らかなように、この発明によるF2
含有するガラスは反射防止膜が形成され、その結
果従来のものより低い反射率を有することがわか
る。さらに、反射防止膜を形成させるための処理
液は弱酸性液の酸性塩であり、ガラス処理後も
pHの変化がなく、緩衝作用をもつことがわかる。 この発明は上記のように構成したので、波長
0.35μmの光透過率が高く、そのためたとえばレ
ーザ核融合実験において従来の波長1.05μmのも
のより波長が短く小さなエネルギで爆縮を起す
0.35μmのレーザシステム中の光学素子ガラスと
して好適である等のすぐれた効果を有するもので
ある。また表面に多孔質の反射防止膜を形成した
この発明による紫外線透過用ガラスは、上記の効
果に加えて、従来の真空蒸着法による多層反射防
止コート膜よりもレーザ光に対する損傷しきい値
が高く、そのためレーザシステムにおいて出力を
効率よく取り出すことができて出力の向上を図る
ことができる等の効果がある。
[Table] As is clear from this table, conventional glass that does not contain F2 (sample No. 1) has a higher wavelength than BK-7.
The glasses according to the present invention (Samples Nos. 2 to 8) have higher light transmittance at a wavelength of 0.35 μm than the glass of Sample No. 1. Next, a method for forming an antireflection film will be described according to examples. Example 1 Glass of sample No. 4 in the above table was 5mm thick and 50mm×
Optically polished to 50mm and mixed with 0.05M Na 2 CO 3 .
After immersing for 16 hours in a solution at 60°C mixed with 0.1M NaHCO 3 solution at a volume ratio of 1:9, it was washed with warm water at 60°C, further immersed in ethanol at room temperature, and then dried at room temperature. This was used as a reflectance measurement sample. The measurement results of the reflectance are shown in a in the figure. Similar to the light transmittance measurement, the Shimadzu multi-purpose self-recording spectrophotometer model MPS-5000 manufactured by Shimadzu Corporation was used for the reflectance measurement. Note that the pH at the time of preparing this mixed solution was 8.7, and did not change even after the glass sample was immersed for 16 hours. Example 2 The same glass as Example 1 was treated with 0.03M Na 2 HPO 4
After being immersed in the solution at 60° C. for 16 hours, the glass was washed and dried in the same manner as in Example 1 to obtain a glass with an antireflection film. The measurement results of the reflectance are shown in b in the figure. The pH of this solution at the time of preparation was 9.8, and did not change even after the glass sample was immersed for 16 hours. Example 3 The same glass as Example 1 was used at 0.03M.
After immersing in a solution of Na 2 HAsO 4 at 60° C. for 16 hours, a glass with an antireflection film was obtained in the same manner as in Example 1. The measurement results of the reflectance are shown in C in the figure. The pH of this solution at the time of preparation was 9.2, and did not change even after immersing the glass in the solution for 16 hours. Note that d in the figure is the measurement result of the reflectance of the conventional glass sample No. 1 treated by the method of Example 3. As is clear from the figure, the F 2 -containing glass according to the present invention has an antireflection coating formed thereon, and as a result has a lower reflectance than the conventional glass. Furthermore, the treatment liquid used to form the anti-reflection film is an acid salt of a weakly acidic liquid, and even after glass treatment,
It can be seen that there is no change in pH and that it has a buffering effect. Since this invention is configured as described above, the wavelength
It has a high light transmittance at 0.35 μm, so in laser fusion experiments, for example, it has a shorter wavelength than the conventional wavelength of 1.05 μm and causes implosion with less energy.
It has excellent effects such as being suitable as an optical element glass in a 0.35 μm laser system. In addition to the above-mentioned effects, the ultraviolet transmitting glass of the present invention, which has a porous anti-reflection coating formed on its surface, has a higher damage threshold against laser light than the conventional multilayer anti-reflection coating made by vacuum evaporation. Therefore, the output can be extracted efficiently in the laser system, and the output can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明によるガラスを各処理液で処理し
た場合の反射率の測定結果をa,b,cに示す図
であり、参考のため従来のガラスを同様の処理液
で処理したものの反射率の測定結果をdに示して
ある。
Figures a, b, and c show the results of measuring the reflectance when glass according to the present invention was treated with each treatment liquid.For reference, the reflectance of conventional glass treated with the same treatment liquid is shown. The measurement results are shown in d.

Claims (1)

【特許請求の範囲】 1 重量%で SiO2 60〜70 Al2O3 1〜5 B2O3 15〜25 R2O(R=K、Na、Li) 10〜15 R′O(R′=Mg、Ca、Sr、Ba、Zn、Pb) 0〜5 外割で F2 0.1〜6 からなる組成を有する紫外線透過用ガラス。 2 重量%で SiO2 60〜70 Al2O3 1〜5 B2O3 15〜25 R2O(R=K、Na、Li) 10〜15 R′O(R′=Mg、Ca、Sr、Ba、Zn、Pb) 0〜5 外割で F2 0.1〜6 からなる組成を有し、表面に多孔質の反射防止膜
を形成してなる紫外線透過用ガラス。 3 前記反射防止膜は前記組成を有するガラスを
pH8.7〜10.0の溶液で表面処理することにより形
成される特許請求の範囲第2項記載の紫外線透過
用ガラス。 4 前記溶液はpH8.7〜10.0の緩衝作用をもつ特
許請求の範囲第3項記載の紫外線透過用ガラス。
[Claims] 1% by weight SiO 2 60-70 Al 2 O 3 1-5 B 2 O 3 15-25 R 2 O (R=K, Na, Li) 10-15 R'O (R' = Mg, Ca, Sr, Ba, Zn, Pb) 0 to 5 Ultraviolet transmitting glass having a composition consisting of F 2 0.1 to 6 in terms of outer division. 2% by weight SiO 2 60-70 Al 2 O 3 1-5 B 2 O 3 15-25 R 2 O (R = K, Na, Li) 10-15 R'O (R' = Mg, Ca, Sr , Ba, Zn, Pb) 0 to 5 F 2 0.1 to 6 in terms of outer fraction, and has a porous antireflection film formed on its surface. 3 The antireflection film is made of glass having the above composition.
The ultraviolet transmitting glass according to claim 2, which is formed by surface treatment with a solution having a pH of 8.7 to 10.0. 4. The ultraviolet transmitting glass according to claim 3, wherein the solution has a buffering effect at pH 8.7 to 10.0.
JP5238584A 1984-03-21 1984-03-21 Glass for transmitting ultraviolet rays Granted JPS60200842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5238584A JPS60200842A (en) 1984-03-21 1984-03-21 Glass for transmitting ultraviolet rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5238584A JPS60200842A (en) 1984-03-21 1984-03-21 Glass for transmitting ultraviolet rays

Publications (2)

Publication Number Publication Date
JPS60200842A JPS60200842A (en) 1985-10-11
JPH0210770B2 true JPH0210770B2 (en) 1990-03-09

Family

ID=12913336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5238584A Granted JPS60200842A (en) 1984-03-21 1984-03-21 Glass for transmitting ultraviolet rays

Country Status (1)

Country Link
JP (1) JPS60200842A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801840A1 (en) * 1988-01-20 1989-08-03 Schott Glaswerke UV-transparent glass
JPH0455337A (en) * 1990-06-21 1992-02-24 Ohara Inc Ultraviolet ray transmitting glass
DE4335204C1 (en) * 1993-10-15 1995-04-06 Jenaer Glaswerk Gmbh Reductively produced borosilicate glass having high transmission in the UV region and good hydrolytic resistance, and the use thereof
ATE352526T1 (en) * 2000-06-05 2007-02-15 Ohara Kk OPTICAL GLASSES THAT ARE MOST STABLE UNDER OPERATING CONDITIONS WITH UV EXPOSURE IN RESPECT OF THEIR REFRACTIVE INDEX
JP2011251903A (en) * 2000-06-05 2011-12-15 Ohara Inc Optical glass suffering little change in refractive index by radiation of light
JP6489411B2 (en) * 2014-03-19 2019-03-27 日本電気硝子株式会社 UV transmitting glass
DE202020107534U1 (en) 2020-12-03 2021-07-14 Schott Ag Borosilicate glass articles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021830A (en) * 1983-07-15 1985-02-04 Nippon Electric Glass Co Ltd Ultraviolet ray transmissive glass useful for sealing alumina
JPS6077144A (en) * 1983-10-03 1985-05-01 Hoya Corp Ultraviolet light transmitting glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021830A (en) * 1983-07-15 1985-02-04 Nippon Electric Glass Co Ltd Ultraviolet ray transmissive glass useful for sealing alumina
JPS6077144A (en) * 1983-10-03 1985-05-01 Hoya Corp Ultraviolet light transmitting glass

Also Published As

Publication number Publication date
JPS60200842A (en) 1985-10-11

Similar Documents

Publication Publication Date Title
US4055703A (en) Ion exchange strengthened glass containing P2 O5
JP2747964B2 (en) Manufacturing method of optical glass
US4053679A (en) Chemically strengthened opal glass
US4849002A (en) Ion-exchangeable germanate method for strengthened germanate glass articles
US3843228A (en) Production of light-conducting glass structures with refractive index distribution
CA1064973A (en) Glass composition
JPS6140617B2 (en)
KR100752904B1 (en) High silver borosilicate glasses
US3703388A (en) High refractive index photochromic glasses
JPH04104918A (en) Near infrared absorbing glass
US4495299A (en) Thallium-containing optical glass composition
JPS62270439A (en) Glass for chemical reinforcement
US4177319A (en) Glass for the production of optical elements with refractive index gradients
JPH0210770B2 (en)
US4875920A (en) Ion-exchangeable phosphate glass compositions and strengthened optical quality glass articles
US5705273A (en) Method for strengthening dental restorative materials
JPS6311292B2 (en)
US4108621A (en) Process of producing soft aperture filter
JP7092135B2 (en) Glass
US5053360A (en) Ion-exchangeable phosphate glass compositions and strengthened optical quality glass articles
JPS5941934B2 (en) Glass composition for light focusing lenses
US5164343A (en) Ion-exchangeable phosphate glass compositions and strengthened optical quality glass articles
JPS6364941A (en) Glass composition for light-collecting lens
US3826661A (en) High index optical glass
JPH0365521A (en) Near infrared absorbing glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term