JPS5941934B2 - Glass composition for light focusing lenses - Google Patents

Glass composition for light focusing lenses

Info

Publication number
JPS5941934B2
JPS5941934B2 JP17180780A JP17180780A JPS5941934B2 JP S5941934 B2 JPS5941934 B2 JP S5941934B2 JP 17180780 A JP17180780 A JP 17180780A JP 17180780 A JP17180780 A JP 17180780A JP S5941934 B2 JPS5941934 B2 JP S5941934B2
Authority
JP
Japan
Prior art keywords
refractive index
glass
lens
content
light focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17180780A
Other languages
Japanese (ja)
Other versions
JPS5795848A (en
Inventor
旭 赤沢
長治 前田
信男 柴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP17180780A priority Critical patent/JPS5941934B2/en
Publication of JPS5795848A publication Critical patent/JPS5795848A/en
Publication of JPS5941934B2 publication Critical patent/JPS5941934B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は屈折率分布をもつ光集束性レンズをイオン交換
法で製造するのに適したガラス組成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass composition suitable for producing a light-focusing lens with a refractive index distribution by an ion exchange method.

修飾酸化物を構成し得る特定の陽イオンを含むガラス体
を、修飾酸化物を構成し得る他の陽イオンを含む塩と接
触させてガラス中の前記陽イオンを塩中の前記陽イオン
と置換させる、つまりイオン交換することによりガラス
体中に中心から周辺部に向けて変化するに屈折率分布を
形成するようにした光集束性レンズの製造方法はよく知
られている。
A glass body containing a specific cation that can constitute a modified oxide is brought into contact with a salt containing other cations that can constitute a modified oxide to replace the cation in the glass with the cation in the salt. A method of manufacturing a light-focusing lens is well known, in which a refractive index distribution that changes from the center to the periphery is formed in a glass body by ion exchange.

この方法の特徴は一度に大量に処理できるため工業的に
適している。
This method is industrially suitable because it can process a large amount at once.

例えば、ガラス体中にTA 、Cs 、Li 、Rb等
のような比較的高温で動き易い一価の金属(イオン)を
含有させておき、これを連光な温度で例えば硝酸カリウ
ム、硝酸ナトリウム等のような熔融塩中に浸漬して当該
イオンの交換を行なうことによってガラス体の中心から
周辺に向って次第に屈折率は減少させうる。
For example, a glass body contains a monovalent metal (ion) such as TA, Cs, Li, Rb, etc. that is mobile at a relatively high temperature, and then it is exposed to a metal such as potassium nitrate, sodium nitrate, etc. at a continuous light temperature. By immersing the glass body in such a molten salt to exchange the ions, the refractive index can be gradually decreased from the center of the glass body toward the periphery.

特にこの屈折率勾配がn−no(1ar2) (no
:中心の屈折率、r:中心からの距離a:定数)で示さ
れる放物線に近い場合には光集束性レンズとして適して
いる。
In particular, this refractive index gradient is n-no(1ar2) (no
: refractive index of the center, r: distance from the center, a: constant) If it is close to a parabola, it is suitable as a light focusing lens.

特にTAを含むガラスを硝酸カリ熔融塩中でイオン交換
することにより、第1図に示すようにレンズ1の中心軸
線1Aに対する入射光線2の許容される最大入射角θm
axが20〜30度であるような非常に広い角度をもっ
た光集束性レンズが得られる。
In particular, by ion-exchanging glass containing TA in fused potassium nitrate, the maximum allowable incident angle θm of the incident light ray 2 with respect to the central axis 1A of the lens 1, as shown in FIG.
A light focusing lens with a very wide angle such that ax is 20 to 30 degrees is obtained.

しかし、欠点として非常に色収差が大きく、白色光での
使用は困難で単一波長での使用に限定される。
However, the drawback is that it has very large chromatic aberration, making it difficult to use with white light and limited to use with a single wavelength.

工業的に生産されている光集束性レンズとしてCsをガ
ラス中に含んだものがよく知られている。
BACKGROUND ART A lens containing Cs in glass is well known as an industrially produced light focusing lens.

これは色収差が非常に小さい特徴はあるが、高濃度のC
sを含ませても必ずしも良好な屈折率分布が得られない
欠点があり、せいぜい最大入射角θmaX−6°程度の
ものが生産されているにすぎない。
This is characterized by very small chromatic aberration, but it has a high concentration of C.
Even if s is included, there is a drawback that a good refractive index distribution cannot necessarily be obtained, and only those having a maximum incident angle of about θmax-6° are produced.

又、Liをガラス中に含ませ硝酸ナトリウム熔融塩中で
イオン交換し、同様の屈折率分布を作ることも提案され
たが、必ずしも良好な屈折率分布を得るまでには至って
いない。
It has also been proposed to create a similar refractive index distribution by including Li in glass and ion-exchanging it in molten sodium nitrate, but this has not necessarily resulted in a good refractive index distribution.

すなわち厳密にいえば従来の光集束性レンズはイオン交
換されたままのレンズの周辺は第2図に破線にて示すよ
うに理想放物線形状から外れる。
That is, strictly speaking, in the conventional light focusing lens, the periphery of the lens, which has undergone ion exchange, deviates from the ideal parabolic shape as shown by the broken line in FIG.

そのためレンズの性能を充分発揮させるためにはその周
辺部を弗酸液等によって除去し、屈折率分布の良好な範
囲のみを使用せざるを得ない。
Therefore, in order to fully demonstrate the performance of the lens, it is necessary to remove the peripheral portion with a hydrofluoric acid solution or the like and use only the range with a good refractive index distribution.

このことは工程が繁雑になるばかりでなく大径のレンガ
が得難く、かつレンズの中心軸上と周縁部との屈折率差
を小さくし、結果として光の最大入射角θmaxが当初
よりも小さくなってレンズの明るさが低下するという問
題を発生する。
This not only complicates the process, but also makes it difficult to obtain large-diameter bricks, and also reduces the difference in refractive index between the central axis and the peripheral edge of the lens, resulting in the maximum angle of light incidence θmax being smaller than originally. This causes a problem in that the brightness of the lens decreases.

従って、できるだけ中心から周辺まで放物線に近い屈折
率分布を形成させることが望ましいことは明らかである
Therefore, it is clear that it is desirable to form a refractive index distribution as close to a parabola as possible from the center to the periphery.

又、従来屈折率分布形成イオンのガラス中での含有量と
屈折率差とは必ずしも直線関係を示さなG)。
Furthermore, conventionally, the content of refractive index distribution forming ions in a glass and the refractive index difference do not necessarily show a linear relationship (G).

例えば第3図中にbで示すようにリチウム含有量を増し
ていっても光集束性レンズとしての屈折率差は殆んど変
わらず明らかに飽和状態を示している。
For example, as shown by b in FIG. 3, even if the lithium content is increased, the refractive index difference as a light focusing lens hardly changes and clearly shows a saturated state.

本発明は光集束性レンズとしての屈折率分布をより理想
的な放物線形状に近づけることを目的としている。
The present invention aims to bring the refractive index distribution of a light focusing lens closer to an ideal parabolic shape.

このようにすることによって前記欠点を補うことにある
By doing so, the above-mentioned drawbacks are compensated for.

本発明はまた、できるだけガラス中での屈折率形成イオ
ンがその含有量に見合った屈折率差を生するようなガラ
ス組成を得ることを目的としている。
Another object of the present invention is to obtain a glass composition in which the refractive index-forming ions in the glass produce a difference in refractive index commensurate with the content thereof.

さらに本発明は、Liを屈折率形成イオンとするレンズ
はその色収差が小さいことに着目し、より長い棒状レン
ズを提供することを目的としている。
Furthermore, the present invention focuses on the fact that a lens using Li as a refractive index forming ion has small chromatic aberration, and aims to provide a longer rod-shaped lens.

さらに本発明は、従来のTV及びCsに比べその原料が
廉価であるLiを屈折率分布形成イオンとし、より安価
に工業的に光集束性レンズを供給することにある。
Furthermore, the present invention uses Li, which is a cheaper raw material than conventional TVs and Cs, as an ion for forming a refractive index distribution, and provides a light-focusing lens at a lower cost on an industrial scale.

本発明は屈折率分布形成イオンとして、Liを含むガラ
スにTiO2を適量含有させることによって光集束性レ
ンズとしての屈折率分布が中心から周辺まで極めて理想
分布に近くすることができることを見出したものである
The present invention is based on the discovery that by incorporating an appropriate amount of TiO2 into a glass containing Li as a refractive index distribution forming ion, the refractive index distribution of a light focusing lens can be made extremely close to the ideal distribution from the center to the periphery. be.

本発明に係るガラスの主要成分はモル%で、5i02:
25〜68 TiO2、: 2〜16 B203・・: 0〜25 A1203: 0〜10 SiO+TiO2+B2O3+Al2O3:58〜77
MgO:4〜22 pbo:o〜13 Mg0+PbO: 4〜22 Li20: 2〜18 Na20: 3〜22 で構成される。
The main components of the glass according to the present invention are 5i02 in mol%:
25-68 TiO2: 2-16 B203...: 0-25 A1203: 0-10 SiO+TiO2+B2O3+Al2O3: 58-77
It is composed of MgO: 4-22 pbo: o-13 Mg0+PbO: 4-22 Li20: 2-18 Na20: 3-22.

次に本発明のガラス組成限定範囲の理由について述べる
Next, the reason for the limited glass composition range of the present invention will be described.

SiO□はガラスの網目構造を形成する主要成分であり
、25 mo 1%未満では失透性、耐久性が著るしく
低下する。
SiO□ is a main component forming the network structure of glass, and when the content is less than 1%, devitrification and durability are significantly reduced.

又、68mo1%を越えると屈折率形成酸化物及びその
他の修飾酸化物等の含有量が限定され、屈折率差が小さ
くなり実用に充分な明るさのレンズを得ることができな
くなる。
If it exceeds 68 mo1%, the content of the refractive index forming oxide and other modifying oxides will be limited, and the difference in refractive index will become small, making it impossible to obtain a lens with sufficient brightness for practical use.

時には熔融温度の上昇をもたらし、ガラスの成型を困難
にする。
Sometimes it causes an increase in the melting temperature, making it difficult to mold the glass.

Al2O3,B2O3はそれぞれ10 mo 1%、2
5mo 1%まで含有させうるがこれを越えると失透性
が増大する。
Al2O3 and B2O3 are respectively 10 mo 1% and 2
5mo can be contained up to 1%, but if it exceeds this, devitrification increases.

TiO2は、適正な屈折率分布を形成する上で最も重要
な成分で、この含有量はLi含有量によって最適に調整
することが望ましく、一般的にはLi含有量が少ない場
合はT i02含有量も少なくてもよい。
TiO2 is the most important component in forming an appropriate refractive index distribution, and it is desirable to optimally adjust this content by adjusting the Li content. Generally, when the Li content is low, the TiO2 content is may also be less.

しかしLi含有量が2mo1%でもTiO2は最低2m
o1%は必要である。
However, even if the Li content is 2mo1%, the TiO2 is at least 2m
o1% is necessary.

Li含有量が増加してくると良好な屈折率分布が次第に
得られにくくなるのでそれに見合ってTiO2含有量を
増加させていくことが望ましい。
As the Li content increases, it becomes increasingly difficult to obtain a good refractive index distribution, so it is desirable to increase the TiO2 content accordingly.

Li含有量が10−10−l2%では10mo1%のT
iO2を含ませることが望ましい。
When the Li content is 10-10-l2%, 10 mo1% T
It is desirable to include iO2.

最高16mo1%のT t 02を含有させることがで
き、良好な屈折率分布を得ることができるが、それを越
えると失透しやすくなり、ガラスの成型が困難となる。
A maximum of 16 mo1% of T t 02 can be contained and a good refractive index distribution can be obtained, but if it exceeds this, devitrification tends to occur and glass molding becomes difficult.

T 102の好ましい範囲は6〜10mo1%である。The preferred range of T102 is 6-10 mo1%.

MgO,PbOはガラスの修飾酸化物として含有させる
が、中心と周辺の屈折率差を最も大きくする点において
他のRO酸化物より優れている。
MgO and PbO are contained as glass modifying oxides, and are superior to other RO oxides in that they maximize the difference in refractive index between the center and the periphery.

Mg0 4mo1%未満では屈折率差が小さくなり、又
22mo1%を越えると良好な分布が得られなくなる。
If Mg0 is less than 4 mo1%, the refractive index difference becomes small, and if it exceeds 22 mo1%, a good distribution cannot be obtained.

PbOは、屈折率差を小さくすることなく、失透性を改
善する上で最も優れており、O〜13mo 1%の範囲
で含みうる。
PbO is the most excellent for improving devitrification without reducing the refractive index difference, and can be included in the range of O to 13mo 1%.

これ以上含有させるとイオン交換速度の低下及びイオン
交換中の変形、化学的耐久性を低下させる。
If more than this is contained, the ion exchange rate will decrease, deformation during ion exchange, and chemical durability will decrease.

従って、MgO+PbOは4〜22mo1%、望ましく
は5〜20mo1%の範囲内に抑える。
Therefore, MgO+PbO is suppressed within the range of 4 to 22 mo1%, preferably 5 to 20 mo1%.

屈折率分布形成イオンとしてのLiはLi2Oとして2
〜18mo1%の範囲まで含有させることができる。
Li as a refractive index distribution forming ion is 2 as Li2O.
It can be contained up to a range of 18 mo1%.

しかし、Liの含有量が多くなっても屈折率差は直線的
には向上せず過剰のLiを含有させることは必ずしも好
ましくない。
However, even if the Li content increases, the refractive index difference does not improve linearly, and it is not necessarily preferable to include excessive Li.

Li2Oが2mo1%未満ではイオン交換によって得ら
れる屈折率差も小さく、実用に供し得えない。
If Li2O is less than 2 mo1%, the difference in refractive index obtained by ion exchange will be too small and it cannot be put to practical use.

L 120の好ましい含有量範囲は8〜16mo1%で
ある。
The preferred content range of L120 is 8 to 16 mo1%.

N a 20はガラスの熔融、成型及びイオン交換速度
を上げるために必要な成分である。
Na 20 is a necessary component to increase the melting, molding and ion exchange rates of glass.

3mo1%未満ではイオン交換速度を著るしく低下させ
る。
If it is less than 3 mo1%, the ion exchange rate is significantly reduced.

又、22mo1%を越えると化学的耐久性が低下する。Moreover, if it exceeds 22 mo1%, chemical durability decreases.

従って本発明では、3〜22mo1%に限定するもので
あり好ましくは4〜13mo1%の範囲である。
Therefore, in the present invention, the content is limited to 3 to 22 mo1%, preferably 4 to 13 mo1%.

本発明では、その他安定化剤として光集束性レンズとし
ての特性を失わせない範囲でLa2O3:0〜5、Y2
O3:0〜5、ZrO2:0〜3、ZnO:0〜5、C
aO:0〜3、SrO:0〜3、Bad:0〜3、K2
O:0〜3、As2O3:0〜0.5.5b203 :
0−0.5各モル%を加えることができる。
In the present invention, as other stabilizers, La2O3:0-5, Y2
O3: 0-5, ZrO2: 0-3, ZnO: 0-5, C
aO: 0-3, SrO: 0-3, Bad: 0-3, K2
O: 0-3, As2O3: 0-0.5.5b203:
0-0.5 mole % each can be added.

実施例 I S i0250モル%、TiO□10モル%、Mg02
0モル%で一定とし、N a 20を(18−X)モル
%、L i20を(2+X)モル%としてXを0から1
4まで変化させた本発明範囲内の各組成のガラス棒を試
料として準備し1、各試料ガラス棒を硝酸すl−’Jウ
ムの溶融塩浴中でイオン交換した後、試料の中心部と周
辺部の屈折率差△nを測定してL l 20の含有量と
△nとの関係を調べた。
Example I Si0250 mol%, TiO□10 mol%, Mg02
Constant at 0 mol%, Na20 is (18-X) mol%, Li20 is (2+X) mol%, and X is 0 to 1.
Glass rods having various compositions within the range of the present invention, which have been changed up to 4, are prepared as samples.1.After each sample glass rod is ion-exchanged in a molten salt bath of l-'Jium nitrate, the central part of the sample and The refractive index difference Δn in the peripheral area was measured to examine the relationship between the content of L l 20 and Δn.

その結果を第3図中にaで示す。The results are shown as a in FIG.

また比較例として、TiO2を含まず5iO260モル
%、Mg020モル%で一定でNa2 o□ (18−
X)モル%、Li2Oを(2+X)モル%としてXを0
〜14の範囲で変化させた各組成のガラス棒を用意し、
これを上記実施例試料と同様にしてイオン交換を行ない
、中心と周辺との屈折率差△nを測定した。
In addition, as a comparative example, Na2 o□ (18-
X) mol%, Li2O is (2+X) mol% and X is 0
Prepare glass rods with each composition changed in the range of ~14,
This was subjected to ion exchange in the same manner as the above example sample, and the refractive index difference Δn between the center and the periphery was measured.

その結果を第3図中にbで示す。The results are shown as b in FIG.

同図からL 120の屈折率への寄与がTiO□の存在
で著しく助長されることがわかる。
It can be seen from the figure that the contribution of L 120 to the refractive index is significantly enhanced by the presence of TiO□.

実施例 2 所定の原料をガラスとして7kg得られるよう秤量・混
合し、白金ルツボを用い1200°Cで16時間泡、脈
理が発生しないよう溶融した後金型1こ流し出し徐冷し
た。
Example 2 Specified raw materials were weighed and mixed to obtain 7 kg of glass, melted at 1200° C. for 16 hours using a platinum crucible so as not to generate bubbles or striae, and then poured out of a mold and allowed to cool slowly.

徐冷終了後約2011171Lφの丸棒を切り出し、’
Jynmφのファイバーに熱延伸し、このファイバーを
硝酸ナトIJウム溶融塩中に所定時間浸漬しイオン交換
した後、所定長さに切断してその両端面を研磨してレン
ズとし、ガラス組成を種々変えて作成した各々のレンズ
の中心部での屈折率、中心部と周辺部の屈折率差、有効
視野面積率を測定した。
After slow cooling, cut out a round bar with a diameter of approximately 2011171Lφ.
The fibers were hot drawn into Jynmφ fibers, immersed in molten salt of sodium nitrate for a predetermined period of time for ion exchange, cut into predetermined lengths, and both end faces polished to form lenses, with various glass compositions. The refractive index at the center, the difference in refractive index between the center and the periphery, and the effective visual field area ratio of each lens prepared were measured.

その結果を第1表に示す。The results are shown in Table 1.

表中で「実施例−」は本発明範囲内のガラスであり、「
比較例」は本発明外のガラスである。
In the table, "Example-" is a glass within the scope of the present invention, and "
"Comparative Example" is a glass other than the present invention.

また、「有効視野面積率」とは、レンズの一端の前方に
格子状のパターンを置きその像をレンズの他端面に結像
させ、この像を約30倍の光学顕微鏡で拡大観察し、レ
ンズ断面積に対し有効に結像された面積の比を%で示し
たものである。
In addition, "effective field of view area ratio" is calculated by placing a grid-like pattern in front of one end of the lens, focusing its image on the other end surface of the lens, and observing this image under magnification using an optical microscope with a magnification of about 30 times. The ratio of the area effectively imaged to the cross-sectional area is expressed in %.

同表の結果から、本発明に係る組成のガラスを使用した
場合、従来のガラスに比べて2倍以上の大きい屈折率差
をもつレンズが得られるとともに、広範囲の屈折率差に
おいて常に有効視野面積率が100%近い安定した性能
のレンズが得られることがわかる。
From the results in the same table, when using the glass with the composition according to the present invention, a lens with a refractive index difference that is more than twice as large as that of conventional glass can be obtained, and the effective viewing area is always constant over a wide range of refractive index differences. It can be seen that a lens with stable performance with a ratio close to 100% can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光集束性レンズにおける光線の軌跡を模式的に
示す縦断面図、第2図は同レンズの横断面内の屈折率分
布を示すグラフ、第3図は光集束性レンズのガラス中の
Li2O含有量及び中心部と周辺部との屈折率差△nの
関係を、本発明範囲内のガラス(a)と本発明外のガラ
ス(b)で比較したグラフである。
Figure 1 is a vertical cross-sectional view schematically showing the trajectory of light rays in a light-focusing lens, Figure 2 is a graph showing the refractive index distribution in the cross-section of the lens, and Figure 3 is a graph showing the inside of the glass of the light-focusing lens. 2 is a graph comparing the relationship between the Li2O content and the refractive index difference Δn between the center and the periphery between glass (a) within the scope of the present invention and glass (b) outside the scope of the present invention.

Claims (1)

【特許請求の範囲】[Claims] I SiO□25〜68、TiO22〜16、B20
30〜25、A12030〜10、S t 02 +
T s 02 +B2O3+Al20358〜77、M
g04〜22、pboo〜13、MgO+Pb04〜2
2、Li2O2〜18、Na2O3〜22各モル%の主
要成分と、La2030〜5、¥2030〜5、Z r
020〜3、K2O0〜3、Zn0O〜5、Ca00
−3.5r00〜3、BaO’0−3.5nO20〜1
、As2030〜0.5各モル%の安定化剤とからなる
光集束性レンズの製造に適したガラス組成物。
I SiO□25~68, TiO22~16, B20
30-25, A12030-10, S t 02 +
T s 02 + B2O3 + Al20358~77, M
g04~22, pboo~13, MgO+Pb04~2
2, Li2O2~18, Na2O3~22 each mole% main components, La2030~5, ¥2030~5, Z r
020~3, K2O0~3, Zn0O~5, Ca00
-3.5r00~3, BaO'0-3.5nO20~1
, As2030 to 0.5 mol % each of a stabilizer and a glass composition suitable for producing a light focusing lens.
JP17180780A 1980-12-05 1980-12-05 Glass composition for light focusing lenses Expired JPS5941934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17180780A JPS5941934B2 (en) 1980-12-05 1980-12-05 Glass composition for light focusing lenses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17180780A JPS5941934B2 (en) 1980-12-05 1980-12-05 Glass composition for light focusing lenses

Publications (2)

Publication Number Publication Date
JPS5795848A JPS5795848A (en) 1982-06-14
JPS5941934B2 true JPS5941934B2 (en) 1984-10-11

Family

ID=15930080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17180780A Expired JPS5941934B2 (en) 1980-12-05 1980-12-05 Glass composition for light focusing lenses

Country Status (1)

Country Link
JP (1) JPS5941934B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664346U (en) * 1993-02-19 1994-09-09 春日電機株式会社 Movable arc runner-fixed structure of electromagnetic contactor
DE19917921C1 (en) * 1999-04-20 2000-06-29 Schott Glas High specific elasticity moduli aluminosilicate glasses or glass-ceramics, for hard disk substrates, contain boron, alkali and alkaline earth metal, magnesium, phosphorus and titanium oxides
EP1099670A1 (en) 1999-11-11 2001-05-16 Nippon Sheet Glass Co., Ltd. Mother glass composition for graded index lens
US7858546B2 (en) 2007-02-19 2010-12-28 Nippon Sheet Glass Company, Limited Mother glass composition for gradient-index lens, gradient-index lens, manufacturing method thereof, optical product, and optical device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145343A (en) * 1998-05-02 2000-11-14 Westinghouse Savannah River Company Low melting high lithia glass compositions and methods
JP4507135B2 (en) * 1998-09-11 2010-07-21 Hoya株式会社 Glass composition, substrate for information recording medium and information recording medium using the same
CN100354221C (en) * 2001-01-11 2007-12-12 日本板硝子株式会社 Mother material glass composition for refractive index distribution lens glass
JP4013913B2 (en) 2004-04-05 2007-11-28 日本板硝子株式会社 Lead-free glass composition for refractive index distribution type lens, refractive index distribution type lens, method of manufacturing refractive index distribution type lens, optical product and optical apparatus
EP2953176A1 (en) * 2014-06-02 2015-12-09 Swarovski Energy GmbH Lighting device
CN112010552A (en) * 2020-09-04 2020-12-01 彩虹集团(邵阳)特种玻璃有限公司 Aluminosilicate glass and strengthening method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664346U (en) * 1993-02-19 1994-09-09 春日電機株式会社 Movable arc runner-fixed structure of electromagnetic contactor
DE19917921C1 (en) * 1999-04-20 2000-06-29 Schott Glas High specific elasticity moduli aluminosilicate glasses or glass-ceramics, for hard disk substrates, contain boron, alkali and alkaline earth metal, magnesium, phosphorus and titanium oxides
EP1099670A1 (en) 1999-11-11 2001-05-16 Nippon Sheet Glass Co., Ltd. Mother glass composition for graded index lens
US7858546B2 (en) 2007-02-19 2010-12-28 Nippon Sheet Glass Company, Limited Mother glass composition for gradient-index lens, gradient-index lens, manufacturing method thereof, optical product, and optical device

Also Published As

Publication number Publication date
JPS5795848A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4612295A (en) Glass for eye glass lens
US5744409A (en) Optical glass
CN101107202A (en) Glass
US3877953A (en) Niobium pentoxide-containing borosilicate glasses
JPS63170247A (en) Production of glass having distributed refractive index
JPS58135151A (en) Optical and ophthalmic glass
US4495299A (en) Thallium-containing optical glass composition
US6764972B2 (en) Mother glass composition for graded index lens
JPS605037A (en) Optical glass
JPS5941934B2 (en) Glass composition for light focusing lenses
EP1099670B1 (en) Mother glass composition for graded index lens
JPH01133956A (en) Glass composition for distributed refractive index lens
US4469800A (en) Moldable fluoroborate optical glasses
JPH11157868A (en) Lead-free heavy crown or especially heavy crown optical glass
JPS6341860B2 (en)
JP3130245B2 (en) Optical glass
JPS6212633A (en) Glass composition suitable for producing transparent material of refractive index distribution type
EP0105670B1 (en) Lead aluminoborofluorosilicate moldable glasses
JPS63230536A (en) Thallium-containing optical glass
JPS61168551A (en) Glass for glasses having high refractive index
JPS6364941A (en) Glass composition for light-collecting lens
US4385128A (en) Germanium-containing glass of high infrared transmission and low density
JPH01148726A (en) Optical glass
JPS6270245A (en) Optical fiber having environmental resistance
JP2002211947A (en) Matrix glass composition for gradient index lens