JP2011251903A - Optical glass suffering little change in refractive index by radiation of light - Google Patents
Optical glass suffering little change in refractive index by radiation of light Download PDFInfo
- Publication number
- JP2011251903A JP2011251903A JP2011171685A JP2011171685A JP2011251903A JP 2011251903 A JP2011251903 A JP 2011251903A JP 2011171685 A JP2011171685 A JP 2011171685A JP 2011171685 A JP2011171685 A JP 2011171685A JP 2011251903 A JP2011251903 A JP 2011251903A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- component
- refractive index
- amount
- optical glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Glass Compositions (AREA)
Abstract
Description
本発明は近紫外光線領域で用いられる光学ガラスにおいて、光線照射による劣化の小さい光学ガラスに関し、特に光線波長が300〜400nmの強い光線(たとえば、超高圧水銀灯、紫外線レーザー)の照射による屈折率変化の小さい光学ガラスに関する。 The present invention relates to an optical glass that is less deteriorated by light irradiation in an optical glass used in the near-ultraviolet light region, and in particular, changes in the refractive index due to irradiation with a strong light beam having a light wavelength of 300 to 400 nm (for example, an ultrahigh pressure mercury lamp or an ultraviolet laser). Of small optical glass.
近紫外領域光線を用いる光学系の一つとして、シリコン等のウエファ上に集積回路の微細パターンを露光・転写する光リソグラフィー技術、すなわち、超高圧水銀灯のi線(365nm)を用いる露光装置(i線ステッパー)が知られている。この露光装置は、近年LSIの高集積化と共に露光面積の拡大が進められており、一般にi線ステッパーの光学系には、直径200mm以上の大きさのレンズが用いられ、しかも、そのレンズに用いられるi線用光学ガラスは、屈折率の均質性が非常に高く、ガラスの厚さ=10mmにおけるi線の内部透過率が99%以上であると共に紫外線照射による透過率の劣化(ソーラリゼーション)がないことが必要である。
そのためi線用光学ガラスは、不純物の少ない高純度原料の採用、原料調合および熔解工程のクリーン化、高均質熔解および精密アニールによる除歪等の技術の確立の中で製造されている。
しかしながら、i線ステッパーには、さらなる高集積化と共に露光・転写の処理能力および長期耐久性が望まれており、これに使用される光学ガラスレンズには、高均質性、高透過率、耐ソーラリゼーションと共に高出力のi線光線照射への耐性、すなわち、i線照射による屈折率変化の小さいことが要望されるようになってきた。
As one of optical systems using near-ultraviolet rays, an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, that is, an exposure apparatus (i) using i-line (365 nm) of an ultra-high pressure mercury lamp. Line stepper) is known. In recent years, the exposure area of this exposure apparatus has been increased with the high integration of LSI, and in general, a lens having a diameter of 200 mm or more is used for the optical system of the i-line stepper, and the lens is used for the lens. The optical glass for i-line has very high refractive index homogeneity, and the internal transmittance of i-line at the glass thickness = 10 mm is 99% or more and the deterioration of the transmittance due to ultraviolet irradiation (solarization). It is necessary that there is no.
Therefore, the optical glass for i-line is manufactured in the establishment of technologies such as adoption of high-purity raw materials with less impurities, preparation of raw materials and cleaning of the melting process, high-homogeneous melting, and strain removal by precision annealing.
However, the i-line stepper is required to have higher integration, exposure / transfer processing capability and long-term durability, and the optical glass lens used for it has high homogeneity, high transmittance, and solar resistance. It has been demanded that resistance to high-power i-ray light irradiation, that is, a change in refractive index due to i-ray irradiation is small, along with the characterization.
光照射による屈折率の変化は、合成石英ガラスで高出力の紫外域のエキシマレーザー光線の長時間照射により、透過率変化と共に密度変化を生じ、屈折率やガラス面形状の変化を生ずる、いわゆるコンパクション現象が知られている。
合成石英ガラスは、四塩化珪素を酸水素炎で燃焼して酸化珪素微粉を合成し、この酸化珪素微粉を高温で加熱し固めることにより作られる。
すなわち、
SiCl4+2O2+4H2 → SiO2+4HCl+2H2O
の反応により合成される。
合成石英ガラスにおけるコンパクション現象は、合成の際、合成石英ガラス中に残る水分起因のイオン(OH-やH+などのイオン)や反応の不完全さによるSi−O結合の切断等が原因とされている。
The so-called compaction phenomenon in which the refractive index changes due to light irradiation is a synthetic quartz glass that is irradiated with high-power ultraviolet excimer laser light for a long period of time, causing a change in density along with a change in transmittance, resulting in a change in refractive index and glass surface shape. It has been known.
Synthetic quartz glass is produced by burning silicon tetrachloride with an oxyhydrogen flame to synthesize silicon oxide fine powder, and heating and solidifying the silicon oxide fine powder at a high temperature.
That is,
SiCl 4 + 2O 2 + 4H 2 → SiO 2 + 4HCl + 2H 2 O
It is synthesized by the reaction of
The compaction phenomenon in synthetic quartz glass is caused by moisture-induced ions (ions such as OH - and H + ) remaining in the synthetic quartz glass during synthesis and the breakage of Si-O bonds due to incomplete reaction. ing.
また、i線照射に供されるi線用光学ガラスにおいては、上記コンパクション現象が生じることは具体的には知られていなかった。
しかし、意外にも、従来合成石英ガラスで知られていたのと同様にi線用光学ガラスにおいても、波長300〜400nm領域の高出力の紫外光線やレーザー光線を照射した部分で、屈折率の変化による均質性の劣化を生じたり、歪みが増大したり、またガラス表面形状の変形を生じたりすることが見いだされ、i線用光学ガラスが十分な耐光線性を有していないことが分かった。従って、このようなガラスを使用した光学系は、結像性能を悪化させる原因になり、LSIの従来に増しての高集積化および露光・転写の処理能力向上に問題を生ずることがある。
Further, it has not been specifically known that the compaction phenomenon occurs in the optical glass for i-line used for i-line irradiation.
However, surprisingly, in the optical glass for i-line as well as conventionally known for synthetic quartz glass, the refractive index changes in the portion irradiated with high-power ultraviolet light or laser light in the wavelength region of 300 to 400 nm. It has been found that the homogeneity is deteriorated due to the above, the distortion is increased, and the glass surface shape is deformed, and the optical glass for i-line does not have sufficient light resistance. Therefore, such an optical system using glass causes deterioration in imaging performance, and may cause problems in higher integration of LSI and improvement in processing capability of exposure / transfer than in the past.
そこで、本発明は、波長300〜400nm領域の高出力の紫外光線やレーザー光線の照射により生じる屈折率変化を抑制した、耐光線性の優れた光学ガラスを提供することを目的とする。 Accordingly, an object of the present invention is to provide an optical glass excellent in light resistance, in which a change in refractive index caused by irradiation with high-power ultraviolet light or laser light in the wavelength region of 300 to 400 nm is suppressed.
本発明者らは、上記目的を達成するため鋭意試験研究を行った結果、ガラス成分として、フッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有させることにより、意外にも光線照射による屈折率変化を小さくさせることを見いだし、具体的には、(1)SiO2−PbO−アルカリ金属酸化物系ガラスにおいては、比較的少量のフッ素成分の含有および/または、ガラスの清澄剤としてSb2O3成分に換えてAs2O3成分の含有および/または、透過率への影響を無視できる程度の極少量のTiO2成分の含有、(2)SiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスにおいては、フッ素成分および/または、ガラスの清澄剤としてSb2O3成分に換えてAs2O3成分の含有および/または、透過率への影響を無視できる程度の極少量のTiO2成分の含有、(3)P2O5−Al2O3−アルカリ土類弗化物系ガラスにおいては、清澄剤およびTiO2成分の無含有、またはこれらの成分の少なくとも一方の極少量添加、により紫外光線照射による屈折率変化の小さいガラスが得られることを見いだし本発明をなすに至った。 As a result of intensive studies and research to achieve the above object, the present inventors have unexpectedly caused light irradiation by containing a fluorine component and / or a titanium oxide component and / or an arsenic oxide component as a glass component. It has been found that the refractive index change is reduced. Specifically, in (1) SiO 2 -PbO-alkali metal oxide glass, a relatively small amount of fluorine component and / or Sb is used as a glass refining agent. containing the As 2 O 3 component in place of the 2 O 3 component and / or the content of TiO 2 component of very small amounts of negligible influence on the transmission, (2) SiO 2 -B 2 O 3 - alkali metal In the oxide and / or alkaline earth metal oxide glass, As 2 O 3 component is used instead of Sb 2 O 3 component as a fluorine component and / or glass refining agent. Containing and / or containing a very small amount of TiO 2 component with negligible influence on transmittance, (3) In P 2 O 5 -Al 2 O 3 -alkaline earth fluoride glass, a refining agent and It has been found that a glass having a small refractive index change by ultraviolet light irradiation can be obtained by containing no TiO 2 component or adding a very small amount of at least one of these components.
すなわち、前記目的を達成するための請求項1に記載の本発明の光学ガラスの特徴は、ガラスに、波長=351nmのパルスレーザー光(平均出力(Average Output Power)=0.43W,パルス繰り返し数(Pulse Repetition Rate)=5kHz,パルス幅(Pulse Width)=400ns)を1時間照射した後の屈折率の変化量(Δn:照射前後の屈折率の差)が5ppm以下であり、
質量%で、
SiO2 30〜70%、B2O3 3〜20%、
Al2O3 0〜6%、Li2O 0〜5%、
Na2O 0〜13%、K2O 0〜12%、
BaO 0〜42%、ZnO 0〜7%、
ただし、Na2O、K2O、BaOおよびZnOの一種または二種以上の合計量10〜45%、
PbO 0〜2%、TiO2 0〜0.5%、
As2O3 0〜1%、Sb2O3 0〜1%、
および、一種または二種以上の上記酸化物の一部または全部を置換したフッ化物のFの合計量0〜11%を含有るところにある。
That is, the optical glass of the present invention according to claim 1 for achieving the above object is characterized in that a pulse laser beam having a wavelength = 351 nm (Average Output Power = 0.43 W, pulse repetition number) (Pulse Repetition Rate) = 5 kHz, pulse width (Pulse Width = 400 ns) after 1 hour irradiation, the amount of change in refractive index (Δn: difference in refractive index before and after irradiation) is 5 ppm or less,
% By mass
SiO 2 30~70%, B 2 O 3 3~20%,
Al 2 O 3 0-6%, Li 2 O 0-5%,
Na 2 O 0-13%, K 2 O 0-12%,
BaO 0-42%, ZnO 0-7%,
However, the total amount of one or more of Na 2 O, K 2 O, BaO and ZnO is 10 to 45%,
PbO 0~2%, TiO 2 0~0.5% ,
As 2 O 3 0 to 1%, Sb 2 O 3 0 to 1%,
And it exists in the place which contains the total amount 0-11% of F of the fluoride which substituted a part or all of the said oxide of 1 type, or 2 or more types.
請求項2に記載の本発明の光学ガラスの特徴は、請求項1に記載の光学ガラスおいて、フッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有するところにある。 The optical glass of the present invention according to claim 2 is characterized in that the optical glass according to claim 1 contains a fluorine component and / or a titanium oxide component and / or an arsenic oxide component.
請求項3に記載の本発明の光学ガラスの特徴は、請求項2に記載の光学ガラスおいて、質量%で、フッ素成分として一種または二種以上のフッ化物のFの合計量0.1〜45%および/または酸化チタン成分としてTiO2 0.001〜0.5%および/または酸化砒素成分としてAs2O3 0.001〜1%を含有するところにある。 The optical glass of the present invention according to claim 3 is characterized in that, in the optical glass according to claim 2, the total amount of F of one or two or more fluorides as a fluorine component is 0.1% by mass. 45% and / or TiO 2 0.001 to 0.5% as a titanium oxide component and / or As 2 O 3 0.001 to 1% as an arsenic oxide component.
請求項4に記載の本発明の光学ガラスの特徴は、請求項1に記載の光学ガラスおいて、質量%で、
CaO 0〜2%、SrO 0〜2%、
ZrO2 0〜2%、
ただし、上記各成分の一種または二種以上の合計量2%以下を含有するところにある。
The optical glass of the present invention according to claim 4 is characterized in that, in the optical glass according to claim 1, in mass%,
CaO 0-2%, SrO 0-2%,
ZrO 2 0-2%,
However, the total amount of one or more of the above components is 2% or less.
請求項5に記載の本発明の光学ガラスの特徴は、ガラスに、波長=351nmのパルスレーザー光(平均出力(Average Output Power)=0.43W,パルス繰り返し数(Pulse Repetition Rate)=5kHz,パルス幅(Pulse Width)=400ns)を1時間照射した後の屈折率の変化量(Δn:照射前後の屈折率の差)が5ppm以下であり、
質量%で、
P2O5 4〜39%、Al2O3 0〜9%、
MgO 0〜5%、CaO 0〜6%、
SrO 0〜9%、BaO 0〜10%、
Y2O3 0〜 10%、La2O3 0〜10%
Gd2O3 0〜 20%、Yb2O3 0〜10%、
ただし、Y2O3、La2O3、Gd2O3およびYb2O3の一種または二種以上の合計量0〜20%、
TiO2 0〜0.1%、SnO2 0〜1%、
As2O3 0〜0.5%、Sb2O3 0〜0.5%、
AlF3 0〜29%、MgF2 0〜8%、
CaF2 0〜27%、SrF2 0〜27%、
BaF2 10〜47%、YF3 0〜10%、
LaF3 0〜10%、GdF3 0〜10%、
LiF 0〜3%、NaF 0〜1%、
KF 0〜1%、
ただし、フッ素成分として、一種または二種以上の上記フッ化物のFの合計量が10〜45%であり、かつ、MgF2、CaF2、SrF2およびBaF2の一種または二種以上の合計量が30〜70%を含有するところにある。
The optical glass of the present invention according to claim 5 is characterized in that a pulse laser beam having a wavelength of 351 nm (Average Output Power = 0.43 W, Pulse Repetition Rate = 5 kHz, pulse The amount of change in the refractive index after irradiation for 1 hour with a width (Pulse Width) = 400 ns) (Δn: difference in refractive index before and after irradiation) is 5 ppm or less,
% By mass
P 2 O 5 4~39%, Al 2 O 3 0~9%,
MgO 0-5%, CaO 0-6%,
SrO 0-9%, BaO 0-10%,
Y 2 O 3 0~ 10%, La 2 O 3 0~10%
Gd 2 O 3 0-20%, Yb 2 O 3 0-10%,
However, the total amount of one or more of Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and Yb 2 O 3 is 0 to 20%,
TiO 2 0-0.1%, SnO 2 0-1%,
As 2 O 3 0-0.5%, Sb 2 O 3 0-0.5%,
AlF 3 0-29%, MgF 2 0-8%,
CaF 2 0-27%, SrF 2 0-27%,
BaF 2 10 to 47%, YF 3 0 to 10%,
LaF 3 0-10%, GdF 3 0-10%,
LiF 0-3%, NaF 0-1%,
KF 0-1%,
However, as the fluorine component, the total amount of F of one or more of the above fluorides is 10 to 45%, and the total amount of one or more of MgF 2 , CaF 2 , SrF 2 and BaF 2 is used. Contains 30 to 70%.
上述のとおり、本発明にかかる光学ガラスは、波長=351nmのパルスレーザー光(平均出力(Average Output Power)=0.43W,パルス繰り返し数(Pulse Repetition Rate)=5kHz,パルス幅(Pulse Width)=400ns)を1時間照射した後の屈折率の変化量(Δn:照射前後の屈折率の差)が5ppm以下である光学ガラスであり、また、フッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有する光学ガラスであり、また、特定の組成範囲のフッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有するSiO2−PbO−アルカリ金属酸化物系ガラス、または特定の組成範囲のフッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有するSiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラス、または特定の組成範囲のフッ素成分および/または酸化チタン成分および/または酸化砒素成分を含有するP2O5−Al2O3−アルカリ土類フッ化物系ガラスであるから、波長300〜400nm領域の高出力の紫外光線やレーザー光線をガラスに照射した部分の屈折率の変化量(Δn)が小さい。したがって、波長300〜400nm領域の高出力の紫外光線やレーザー光線等のエネルギー密度の高い光線を使用する高精度の光学系に、本発明の光学ガラスを使用したところ、ガラスの均質性の劣化、ガラスの歪みの増大やガラス表面形状の変形をほとんど生じないため、画像の歪みやにじみを生じることがなかった。このように本発明のガラスは非常に有用であり、例えば、本発明の光学ガラスをi線ステッパーの光学系や照明系のレンズとして使用すると、高集積度LSIのパターンの露光・転写を高解像度で行うことができる。 As described above, the optical glass according to the present invention has a pulse laser beam having a wavelength of 351 nm (Average Output Power = 0.43 W, pulse repetition rate = 5 kHz, pulse width = Pulse Width = 400 ns) is an optical glass having a refractive index change amount (Δn: difference in refractive index before and after irradiation) of 5 ppm or less after irradiation for 1 hour, and also a fluorine component and / or a titanium oxide component and / or an arsenic oxide SiO 2 —PbO-alkali metal oxide glass containing a fluorine component and / or a titanium oxide component and / or an arsenic oxide component in a specific composition range, or a specific composition range containing a fluorine component and / or titanium oxide component and / or arsenic oxide ingredient SiO 2 -B 2 O 3 - alkali metal P 2 O 5 -Al 2 O 3 containing a fluorine component and / or titanium oxide component and / or arsenic oxide ingredient compound and / or alkaline earth metal oxide glass or a specific composition range, - an alkaline earth fluoride Since it is a compound glass, the amount of change (Δn) in the refractive index of the portion of the glass irradiated with high-power ultraviolet light or laser light in the wavelength region of 300 to 400 nm is small. Therefore, when the optical glass of the present invention is used in a high-precision optical system that uses light beams with a high energy density such as high-power ultraviolet light and laser light in the wavelength region of 300 to 400 nm, the glass homogeneity deteriorates, the glass The distortion of the image and the deformation of the glass surface shape hardly occur, so that the image is not distorted or blurred. As described above, the glass of the present invention is very useful. For example, when the optical glass of the present invention is used as an i-line stepper optical system or illumination system lens, high-resolution LSI pattern exposure / transfer can be performed at a high resolution. Can be done.
まず、本発明の光学ガラスにおいて、ガラスに、波長=351nmのパルスレーザー光(平均出力(Average Output Power)=0.43W,パルス繰り返し数(Pulse Repetition Rate)=5kHz,パルス幅(Pulse Width)=400ns)を1時間照射した後の屈折率の変化量(Δn:照射前後の屈折率の差)が5ppm以下とする理由についてであるが、本発明者らが各種試験研究を行ったところ、この条件を満足するガラスについて、波長300〜400nm領域の高出力の紫外光線や連続レーザー光を照射した場合においても、屈折率の変化による均質性の劣化、歪み、ガラス表面形状の変形を生じることなく、i線用光学ガラスとして十分な耐光線性を有しており、このようなガラスを使用した光学系は、結像性能を悪化させることなく、前述のような高集積化および露光・転写において、処理能力向上に対応し得ることが判明した。 First, in the optical glass of the present invention, a pulse laser beam having a wavelength = 351 nm (Average Output Power = 0.43 W, Pulse Repetition Rate = 5 kHz, Pulse Width = Pulse Width = 400ns) is the reason why the amount of change in refractive index after irradiation for 1 hour (Δn: difference in refractive index before and after irradiation) is set to 5 ppm or less. For glass that satisfies the conditions, even when irradiated with high-power ultraviolet light or continuous laser light in the wavelength region of 300 to 400 nm, there is no deterioration in homogeneity due to changes in refractive index, distortion, or deformation of the glass surface shape. Have sufficient light resistance as an optical glass for i-line, and an optical system using such glass does not deteriorate the imaging performance as described above. In high integration and exposure and transfer, it has been found, which may correspond to the processing capabilities improve.
次に、各成分を前記組成範囲に限定した理由は以下のとおりである。すなわち、SiO2−PbO−アルカリ金属酸化物系ガラスにおいては、SiO2成分は、ガラス形成上不可欠の成分であり、PbO成分との組み合わせでSiO2−PbO系ガラスの独特な特性を導き出すことができる。しかし、その量が40%未満では、屈折率が高くなりすぎると共に短波長域において光線透過率が十分でなく、i線露光装置のようなi線を用いる光学系には不向きになる。また、70%を超えると、ガラスの粘度が高くなりすぎ、均質なガラスを得にくくなる。 Next, the reason why each component is limited to the composition range is as follows. That is, in the SiO 2 -PbO-alkali metal oxide glass, the SiO 2 component is an indispensable component for glass formation, and the unique characteristics of the SiO 2 -PbO glass can be derived in combination with the PbO component. it can. However, if the amount is less than 40%, the refractive index becomes too high and the light transmittance is not sufficient in a short wavelength region, which makes it unsuitable for an optical system using i-line such as an i-line exposure apparatus. Moreover, when it exceeds 70%, the viscosity of glass will become high too much and it will become difficult to obtain homogeneous glass.
PbO成分は、ガラスを高屈折、高分散にし、ガラスの粘度を適度に降下させるのに有効な成分である。しかし、その量が14%未満では、ガラスが固く、均質なガラスを得にくくなり、また50%を超えると屈折率が高くなりすぎると共に、短波長域における十分に高い光線透過率が得にくくなる。 The PbO component is an effective component for making the glass highly refracted and highly dispersed and appropriately reducing the viscosity of the glass. However, if the amount is less than 14%, the glass is hard and it is difficult to obtain a homogeneous glass, and if it exceeds 50%, the refractive index becomes too high and it is difficult to obtain a sufficiently high light transmittance in the short wavelength region. .
Na2O成分およびK2O成分は、ガラス原料中のSiO2成分やPbO成分の溶融を促進し、ガラスの粘度を調整するのに有効である。しかし、それらの量がNa2O成分は14%を超え、K2O成分は15%を超えるとガラスの耐候性や耐酸性等の化学的性質が劣化しやすくなるため好ましくない。また、両成分の合計量が8%未満であると、上記効果が不十分であるため、ガラスの粘度が高くなりすぎて均質なガラスが得にくくなり、両成分の合計量が17%を超えると、ガラスの耐候性や耐酸性等の化学的性質が劣化しやすくなる。 The Na 2 O component and the K 2 O component are effective for promoting the melting of the SiO 2 component and the PbO component in the glass raw material and adjusting the viscosity of the glass. However, if the amount of Na 2 O component exceeds 14% and that of K 2 O component exceeds 15%, chemical properties such as weather resistance and acid resistance of the glass are liable to deteriorate, which is not preferable. Further, if the total amount of both components is less than 8%, the above effect is insufficient, so that the viscosity of the glass becomes too high to obtain a homogeneous glass, and the total amount of both components exceeds 17%. Then, chemical properties such as weather resistance and acid resistance of the glass easily deteriorate.
B2O3成分は、任意成分としてガラスに添加することができ、SiO2成分と同様にガラス形成成分として働くが、SiO2−PbO−アルカリ金属酸化物系ガラスに多く含有させると化学的性質の劣化を起こしやすいため、その量は5%以下が良い。 The B 2 O 3 component can be added to the glass as an optional component and works as a glass forming component in the same manner as the SiO 2 component. However, when it is contained in a large amount in the SiO 2 -PbO-alkali metal oxide glass, the chemical properties Therefore, the amount is preferably 5% or less.
As2O3成分およびSb2O3成分は、ガラスの清澄助剤としての効果があり、さらにAs2O3成分は、ガラスのコンパクション現象を抑制する効果があるため、それぞれ任意に添加しうるが、上記効果を得るためには、それぞれ1%以下までで十分である。また、SiO2−PbO−アルカリ金属酸化物系ガラスに、フッ素成分およびTiO2成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするためにAs2O3成分を0.001〜1%添加すべきである。 The As 2 O 3 component and the Sb 2 O 3 component have an effect as a glass refining aid, and further, the As 2 O 3 component has an effect of suppressing the compaction phenomenon of the glass, and can be arbitrarily added respectively. However, in order to obtain the above effects, each up to 1% or less is sufficient. Further, when the fluorine component and the TiO 2 component are not present in the SiO 2 -PbO-alkali metal oxide glass, the As 2 O 3 component is added in an amount of 0.001 to 1% in order to reduce the refractive index change due to the compaction phenomenon. Should be added.
TiO2成分は、ガラスの屈折率やアッベ数の調整および高出力の紫外域光線やレーザー光線の照射によるガラスのコンパクション現象やソーラリゼーションの抑制に効果を有するが、多く添加すると、短波長域における光線透過率を劣化させるので、その量は0.2%以下が良い。また、SiO2−PbO−アルカリ金属酸化物系ガラスに、フッ素成分およびAs2O3成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするためにTiO2成分を0.001〜0.2%添加すべきである。 The TiO 2 component is effective in adjusting the refractive index and Abbe number of the glass, and suppressing the compaction phenomenon and solarization of the glass due to the irradiation of high-power ultraviolet light and laser light. Since the light transmittance is deteriorated, the amount is preferably 0.2% or less. When the fluorine component and the As 2 O 3 component are not present in the SiO 2 —PbO-alkali metal oxide glass, the TiO 2 component is added in an amount of 0.001 to 0.001 in order to reduce the refractive index change due to the compaction phenomenon. 2% should be added.
フッ素成分は、一種または二種以上の上記酸化物の一部または全部と置換した弗化物として任意に添加することができ、高出力の紫外域光線やレーザー光線の照射によるガラスのコンパクション現象の抑制、屈折率および粘度の調整に効果がある。しかし、上記フッ化物の合計量が2%を超えると、フッ素成分の揮発が大きくなりすぎ、均質なガラスを得にくくなる。また、SiO2−PbO−アルカリ金属酸化物系ガラスに、As2O3成分およびTiO2成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするために上記フッ化物の合計量を0.1〜2%とすべきである。 The fluorine component can be optionally added as a fluoride substituted with one or two or more of the above oxides, suppressing the compaction phenomenon of glass due to irradiation with high-power ultraviolet light or laser light, Effective for adjusting refractive index and viscosity. However, if the total amount of the fluoride exceeds 2%, the volatilization of the fluorine component becomes too large and it becomes difficult to obtain a homogeneous glass. Further, when the As 2 O 3 component and the TiO 2 component are not present in the SiO 2 —PbO—alkali metal oxide glass, the total amount of the fluorides is set to 0.00% in order to reduce the refractive index change due to the compaction phenomenon. It should be 1-2%.
さらに、本発明のSiO2−PbO−アルカリ金属酸化物系ガラスには、ガラスの粘度、屈折率、化学的性質、安定性等の調整のために、任意成分としてLi2O成分、CaO成分、SrO成分およびAl2O3成分をそれぞれ2%まで、BaO成分を5%まで含有させることができる。ただし、Li2O成分、CaO成分、SrO成分、Al2O3成分およびBaO成分の一種または二種以上の合計量は5%以下とすべきである。 Further, the SiO 2 —PbO-alkali metal oxide glass of the present invention includes Li 2 O component, CaO component as optional components for adjusting the viscosity, refractive index, chemical properties, stability, etc. of the glass. Each of the SrO component and the Al 2 O 3 component can be contained up to 2%, and the BaO component can be contained up to 5%. However, the total amount of one or more of the Li 2 O component, CaO component, SrO component, Al 2 O 3 component and BaO component should be 5% or less.
次に、SiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスにおいては、SiO2成分は、SiO2−PbO−アルカリ金属酸化物系ガラスと同様にガラス形成上不可欠の成分である。しかし、その量が30%未満では、比較的多くB2O3やBaO等の成分を必要とし、屈折率が高くなりすぎたり、化学的性質の劣化を招いたりするので好ましくない。また、70%を超えると、ガラスの粘度が高くなりすぎ、均質なガラスを得にくくなる。
B2O3成分は、SiO2成分と同様にガラス形成酸化物であり、ガラスを低分散にしたり、ガラスの粘性を調節するのに有効である。しかし、その量が3%未満では、その効果は不十分であり、20%を超えると、化学的性質が劣化するので好ましくない。Al2O3成分は、ガラスの化学的耐久性の向上、粘度や屈折率の調整に有効である。しかし、その量が6%を超えると、ガラスの粘性が高くなりすぎる。
Next, in the SiO 2 -B 2 O 3 -alkali metal oxide and / or alkaline earth metal oxide glass, the SiO 2 component is formed in the same manner as the SiO 2 -PbO-alkali metal oxide glass. It is an essential ingredient. However, if the amount is less than 30%, a relatively large amount of components such as B 2 O 3 and BaO are required, and the refractive index becomes too high or the chemical properties are deteriorated, which is not preferable. Moreover, when it exceeds 70%, the viscosity of glass will become high too much and it will become difficult to obtain homogeneous glass.
The B 2 O 3 component is a glass-forming oxide like the SiO 2 component, and is effective for reducing the dispersion of the glass and adjusting the viscosity of the glass. However, if the amount is less than 3%, the effect is insufficient, and if it exceeds 20%, the chemical properties deteriorate, which is not preferable. The Al 2 O 3 component is effective in improving the chemical durability of the glass and adjusting the viscosity and refractive index. However, if the amount exceeds 6%, the viscosity of the glass becomes too high.
Li2O成分は、ガラス原料の溶融を促進する効果があり、しかも他のアルカリ金属酸化物と比べて屈折率の低下や、化学的性質の劣化を招きにくいので有効である。しかしその量が5%を超えるとガラスの失透性が増大するので好ましくない。 The Li 2 O component is effective because it has an effect of accelerating melting of the glass raw material, and is less likely to cause a decrease in refractive index and chemical properties as compared with other alkali metal oxides. However, if the amount exceeds 5%, the devitrification of the glass increases, which is not preferable.
Na2O成分およびK2O成分は、ガラス原料の溶融促進に有効であり、多量にガラス中に含有させても安定なガラスをつくる。しかし、Na2O成分およびK2O成分の量が、それぞれ13%および12%を超えると化学的性質を悪化させるので好ましくない。 The Na 2 O component and the K 2 O component are effective for accelerating melting of the glass raw material, and even if a large amount is contained in the glass, a stable glass is produced. However, if the amount of Na 2 O component and K 2 O component exceeds 13% and 12%, respectively, the chemical properties are deteriorated, which is not preferable.
BaO成分は、ガラスの分散をあまり大きくすることなく(アッベ数をあまり小さくすることなく)、屈折率を向上させ、広い組成範囲において耐失透性の大きい安定なガラスを得ることができる。しかし、その量が42%を超えるとガラスの化学的耐久性が極度に劣化する。 The BaO component can improve the refractive index without significantly increasing the dispersion of the glass (without reducing the Abbe number too much), and can provide a stable glass having high devitrification resistance in a wide composition range. However, when the amount exceeds 42%, the chemical durability of the glass is extremely deteriorated.
ZnO成分は、屈折率の向上、粘性の調整、耐失透性の向上等に有効な成分である、しかしその量が7%を超えると、短波長域における光線透過率の低下を招くことがあるので、好ましくない。 The ZnO component is an effective component for improving the refractive index, adjusting the viscosity, and improving the devitrification resistance. However, if the amount exceeds 7%, the light transmittance in the short wavelength region may be lowered. Because there is, it is not preferable.
また、安定で化学的性質が優れ、かつ、短波長域まで光線透過率の良いガラスを得るためには、Na2O成分、K2O成分、BaO成分およびZnO成分の1種または2種以上の合計量の範囲は10%から45%までが好ましい。 In addition, in order to obtain a glass that is stable and excellent in chemical properties and has good light transmittance up to a short wavelength region, one or more of Na 2 O component, K 2 O component, BaO component and ZnO component are used. The total amount of is preferably 10% to 45%.
PbO成分およびTiO2成分は、SiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスにおいて、ガラスのソーラリゼーションを防止するのに有効である。さらに、TiO2成分は、いわゆるコンパクション現象を抑制するのにも有効である。しかしこれらの成分は必要以上に多く含有させると短波長域の光線透過率を劣化させる原因になるので、これらの成分の量は、それぞれ2%および0.5%までとすることが好ましい。また、SiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスに、フッ素成分およびAs2O3成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするためにTiO2成分を0.001〜0.5%添加すべきである。 The PbO component and the TiO 2 component are effective in preventing glass solarization in SiO 2 —B 2 O 3 —alkali metal oxide and / or alkaline earth metal oxide glass. Furthermore, the TiO 2 component is effective in suppressing the so-called compaction phenomenon. However, if these components are contained in an excessive amount, the light transmittance in the short wavelength region is deteriorated. Therefore, the amount of these components is preferably up to 2% and 0.5%, respectively. In addition, when the fluorine component and the As 2 O 3 component are not present in the SiO 2 —B 2 O 3 —alkali metal oxide and / or alkaline earth metal oxide glass, the refractive index change due to the compaction phenomenon is reduced. Therefore, 0.001 to 0.5% of TiO 2 component should be added.
As2O3成分およびSb2O3成分は、ガラスの清澄助剤としての効果があり、さらにAs2O3成分は、ガラスのコンパクション現象を抑制する効果があるため、それぞれ任意に添加しうるが、上記効果を得るためには、それぞれ1%以下までで十分である。また、SiO2−PbO−アルカリ酸化物および/またはアルカリ土類金属酸化物系ガラスに、フッ素成分およびTiO2成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするためにAs2O3成分を0.001〜1%添加すべきである。 The As 2 O 3 component and the Sb 2 O 3 component have an effect as a glass refining aid, and further, the As 2 O 3 component has an effect of suppressing the compaction phenomenon of the glass, and can be arbitrarily added respectively. However, in order to obtain the above effects, each up to 1% or less is sufficient. In addition, when the fluorine component and the TiO 2 component are not present in the SiO 2 -PbO-alkali oxide and / or alkaline earth metal oxide glass, As 2 O 3 is used to reduce the refractive index change due to the compaction phenomenon. Ingredients should be added from 0.001 to 1%.
フッ素成分は、一種または二種以上の上記酸化物の一部または全部と置換した弗化物として任意に添加することができ、高出力の紫外域光線やレーザー光線の照射によるガラスのコンパクション現象の抑制、屈折率および粘度の調整に効果がある。しかし、上記フッ化物の合計量が11%を超えると、ガラスが乳白化したり、屈折率が小さくなりすぎたり、溶融の際にフッ素成分の揮発が大きくなりすぎて、均質なガラスを得がたくなったりするので好ましくない。また、SiO2−PbO−アルカリ酸化物系ガラスに、As2O3成分およびTiO2成分が存在しない場合は、コンパクション現象による屈折率変化を小さくするために上記フッ化物の合計量を0.1〜11%とすべきである。 The fluorine component can be optionally added as a fluoride substituted with one or two or more of the above oxides, suppressing the compaction phenomenon of glass due to irradiation with high-power ultraviolet light or laser light, Effective for adjusting refractive index and viscosity. However, if the total amount of the fluoride exceeds 11%, the glass becomes milky, the refractive index becomes too small, or the volatilization of the fluorine component becomes too large at the time of melting, so that it is difficult to obtain a homogeneous glass. It is not preferable because it becomes. When the As 2 O 3 component and the TiO 2 component are not present in the SiO 2 -PbO-alkali oxide glass, the total amount of the fluoride is set to 0.1 to reduce the refractive index change due to the compaction phenomenon. Should be ~ 11%.
また、上記各成分の他に、屈折率の調整や、ガラスの化学的性質の向上等の目的のために、任意成分として、CaO成分、SrO成分およびZrO2成分から選ばれる1種または2種以上を合計で2%まで添加しても差し支えない。 In addition to the above components, one or two selected from a CaO component, a SrO component and a ZrO 2 component are optionally used for the purpose of adjusting the refractive index and improving the chemical properties of the glass. The above may be added up to 2% in total.
次に、P2O5−Al2O3−アルカリ土類フッ化物系ガラスにおいては、P2O5成分は、ガラス形成成分であり、その量が4%未満では、耐失透性に優れた安定なガラスを得にくい、また39%を超えるとガラスのアッベ数が小さくなりすぎ、本組成系のメリット(低分散性)が得難くなる。 Next, in the P 2 O 5 —Al 2 O 3 —alkaline earth fluoride glass, the P 2 O 5 component is a glass forming component, and if the amount is less than 4%, the devitrification resistance is excellent. It is difficult to obtain a stable glass, and if it exceeds 39%, the Abbe number of the glass becomes too small, and the merit (low dispersibility) of this composition system is difficult to obtain.
Al2O3成分は、P2O5成分と共に存在することにより、ガラスの構造を形成する成分であり、またガラスの化学的性質の向上に有効である。しかしその量が9%を越えると失透性の増大につながる。 The Al 2 O 3 component is a component that forms a glass structure when present together with the P 2 O 5 component, and is effective in improving the chemical properties of the glass. However, if the amount exceeds 9%, devitrification increases.
MgO、CaO、SrOおよびBaOの各成分は、通常燐酸塩としてガラスに含有させられ、ガラスの安定性や化学的耐久性の向上、屈折率およびアッベ数の調整等に役立つ。しかし、これら各成分の量が、それぞれ5%、6%、9%およびび10%を超えると、かえってガラスが失透しやすくなるため好ましくない。また、失透が生じにくいガラスにするためには、これらの成分の1種または2種以上の合計量を20%以下とすることがより好ましい。 Each component of MgO, CaO, SrO and BaO is usually contained in the glass as a phosphate, which is useful for improving the stability and chemical durability of the glass, adjusting the refractive index and the Abbe number, and the like. However, if the amount of each of these components exceeds 5%, 6%, 9% and 10%, respectively, the glass tends to be devitrified, which is not preferable. Moreover, in order to make glass which does not easily cause devitrification, the total amount of one or more of these components is more preferably 20% or less.
Y2O3、La2O3、Gd2O3およびYb2O3の各成分は、アッベ数を低下させずに屈折率を高め、ガラスの失透を防止し、さらにガラスの化学的耐久性を向上させる効果がある。しかし、これら各成分の量が、それぞれ10%,10%、20%および10%を超えると逆に耐失透性が劣化するので好ましくない。また、これらの成分の1種または2種以上の合計量が20%を超えるとガラスの耐失透性が劣化するので好ましくない。 Each component of Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and Yb 2 O 3 increases the refractive index without lowering the Abbe number, prevents the glass from devitrifying, and further improves the chemical durability of the glass. Has the effect of improving the performance. However, if the amount of each of these components exceeds 10%, 10%, 20% and 10%, respectively, devitrification resistance is deteriorated. Further, if the total amount of one or more of these components exceeds 20%, the devitrification resistance of the glass deteriorates, which is not preferable.
TiO2成分は、ガラスの屈折率を向上させ、ソーラリゼーションを防止し、かつ、コンパクション現象による屈折率変化を小さくする効果があるため、必要に応じて任意に添加することができるが、その量は0.1%以下で十分であり、0.1%を超えて含有させるとガラスの短波長域の光線透過率が劣化させるので好ましくない。 The TiO 2 component has the effect of improving the refractive index of the glass, preventing solarization, and reducing the refractive index change due to the compaction phenomenon. Therefore, the TiO 2 component can be optionally added as necessary. An amount of 0.1% or less is sufficient, and if it exceeds 0.1%, the light transmittance in the short wavelength region of the glass deteriorates, which is not preferable.
SnO2成分は、ガラスの屈折率を向上させたり、失透防止に効果がある。しかしその量は1%以下で十分である。 The SnO 2 component is effective for improving the refractive index of glass and preventing devitrification. However, an amount of 1% or less is sufficient.
As2O3およびSb2O3成分は、ガラスの清澄助剤としての効果があり、さらにAs2O3成分は、ガラスのコンパクション現象を抑制する効果があるため、それぞれ任意に添加しうるが、その量はそれぞれ0.5%以下で十分である。 The As 2 O 3 and Sb 2 O 3 components have an effect as a glass refining aid, and further, the As 2 O 3 component has an effect of suppressing the compaction phenomenon of the glass. The amount of each is 0.5% or less.
AlF3成分は、ガラスの分散を小さくし、失透防止に効果がある。しかしその量が29%を超えるとかえってガラスが不安定になり、ガラス中に結晶が生じやすくなる。 The AlF 3 component reduces the dispersion of the glass and is effective in preventing devitrification. However, if the amount exceeds 29%, the glass becomes unstable and crystals tend to be formed in the glass.
MgF2、CaF2、SrF2およびBaF2の各成分は、ガラスの失透を抑制するのに有効であり、BaF2の量が10%未満では、化学的に安定なガラスが得難くなる。また、MgF2は8%、CaF2は27%、SrF2は27%およびBaF2は47%をそれぞれ超えると、かえって失透が発生しやすくなる。また、MgF2、CaF2、SrF2およびBaF2成分の1種または2種以上の合計量は30〜70%が適当である。 Each component of MgF 2 , CaF 2 , SrF 2 and BaF 2 is effective for suppressing devitrification of the glass. If the amount of BaF 2 is less than 10%, it becomes difficult to obtain a chemically stable glass. If MgF 2 exceeds 8%, CaF 2 exceeds 27%, SrF 2 exceeds 27% and BaF 2 exceeds 47%, devitrification tends to occur. Further, the total amount of one or more of MgF 2 , CaF 2 , SrF 2 and BaF 2 components is suitably 30 to 70%.
YF3,LaF3およびGdF3の各成分は、ガラスの屈折率を高め、耐失透性の向上に効果があるが、これらの量はそれぞれ10%以下が適当である。 Each component of YF 3 , LaF 3 and GdF 3 is effective in increasing the refractive index of the glass and improving the devitrification resistance, but these amounts are each suitably 10% or less.
LiF、NaFおよびKFの各成分は、ガラスの耐失透性を向上させる効果があるが、しかしこれらの量が、それぞれ3%、1%および1%を超えるとかえって失透しやすくなり適当でない。 Each component of LiF, NaF and KF has the effect of improving the devitrification resistance of the glass, but when these amounts exceed 3%, 1% and 1%, respectively, they tend to devitrify and are not suitable. .
さらに、P2O5−Al2O3−アルカリ土類フッ化物系ガラスにおいては、コンパクション現象によるガラスの屈折率変化を小さくするため、一種または二種以上の上記フッ化物に含まれるFの合計量を10〜45%の範囲とすることが適当である。また、上記酸化物およびフッ化物は、それぞれの金属イオン、酸素イオンおよびフッ素イオンの比率を保つ範囲において、適宜酸化物とフッ化物とを置換しても差し支えない。 Furthermore, in P 2 O 5 —Al 2 O 3 —alkaline earth fluoride glass, the total of F contained in one or more of the above fluorides is used to reduce the refractive index change of the glass due to the compaction phenomenon. Suitably the amount is in the range of 10-45%. In addition, the oxide and fluoride may be appropriately replaced with oxide and fluoride within a range that maintains the ratio of the respective metal ions, oxygen ions, and fluorine ions.
次に、本発明の光学ガラスにかかる実施例について説明する。表1〜表4に示す実施組成例No.1〜No.24は、本発明にかかるSiO2−PbO−アルカリ金属酸化物系ガラスの実施組成例である。また、表5〜表6に示す実施組成例No.25〜No.38は、本発明にかかるSiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスの実施組成例である。また、表7〜表9に示す実施組成例No.39〜No.59は、本発明にかかるP2O5−Al2O3−アルカリ土類フッ化物系ガラスの実施組成例である。
さらに、表10は、本発明にかかるSiO2−PbO−アルカリ金属酸化物系ガラスの実施組成例No.60〜No.64と従来のガラスの比較組成例No.AおよびNo.Bとの比較(比較Iおよび比較II)
を示し、表11は、本発明にかかるSiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスの実施組成例No.65およびNo.66と従来のガラスの比較組成例No.CおよびNo.Dとの比較(比較IIIおよび比較IV)を示した。
Next, the Example concerning the optical glass of this invention is described. Example composition examples Nos. 1 to 4 shown in Tables 1 to 4 were used. 1-No. 24 is an implementation composition example of the SiO 2 —PbO—alkali metal oxide glass according to the present invention. Moreover, the implementation composition example No. shown in Table 5-Table 6 is shown. 25-No. 38 is an example of the practical composition of the SiO 2 —B 2 O 3 —alkali metal oxide and / or alkaline earth metal oxide glass according to the present invention. In addition, Example Nos. 39-No. 59 is an implementation composition example of the P 2 O 5 —Al 2 O 3 —alkaline earth fluoride glass according to the present invention.
Further, Table 10 shows an example of composition No. of the SiO 2 —PbO—alkali metal oxide glass according to the present invention. 60-No. 64 and comparative glass composition example No. A and No. Comparison with B (Comparison I and Comparison II)
Table 11 shows practical composition Nos. Of SiO 2 —B 2 O 3 —alkali metal oxide and / or alkaline earth metal oxide glass according to the present invention. 65 and no. No. 66 and conventional glass composition No. C and No. Comparison with D (Comparison III and Comparison IV) is shown.
なお、表1〜表11に示したΔn(ppm)は、ビーム直径=2.0mm,波長=351nmのパルスレーザー光(平均出力(Average Output Power)=0.43W,パルス繰り返し数(Pulse Repetition Rate)=5kHz,パルス幅(Pulse Width)=400ns)を、照射時間=1時間という照射条件で、ガラスに照射した部分の照射前後の屈折率の変化量を示したものである。
また、表12は、本発明にかかるSiO2−PbO−アルカリ金属酸化物系ガラスの実施組成例No.67〜No.70および本発明にかかるSiO2−B2O3−アルカリ金属酸化物および/またはアルカリ土類金属酸化物系ガラスの実施組成例No.71〜No.73を示し、表13は表12に示したガラスに、前記レーザ(波長351nm,ビーム直径=2.0mm)の出力および照射時間を表1〜表11とは照射条件を変えて、照射した部分の照射前後の屈折率の変化量:Δn(ppm)を示したものである。
In addition, Δn (ppm) shown in Tables 1 to 11 is a pulse laser beam having a beam diameter = 2.0 mm and a wavelength = 351 nm (Average Output Power = 0.43 W, pulse repetition rate (Pulse Repetition Rate). ) = 5 kHz, pulse width (Pulse Width = 400 ns) under irradiation conditions of irradiation time = 1 hour, the amount of change in refractive index before and after irradiation of the portion irradiated onto the glass is shown.
Table 12 shows the composition example No. of the SiO 2 —PbO—alkali metal oxide glass according to the present invention. 67-No. No. 70 and examples of composition No. of SiO 2 —B 2 O 3 —alkali metal oxide and / or alkaline earth metal oxide glass according to the present invention. 71-No. 73, Table 13 shows the portion of the glass shown in Table 12 irradiated with the output of the laser (wavelength 351 nm, beam diameter = 2.0 mm) and the irradiation time with the irradiation conditions being different from those in Tables 1 to 11. The amount of change in refractive index before and after irradiation: Δn (ppm) is shown.
表1〜表12に見られるとおり、本発明の実施組成例No.1〜No.73のガラスは、いずれも、レーザー照射前後の屈折率の変化量(Δn)が5ppm以下であり、表10および表11に示した本発明の実施組成例No.60〜No.66のガラスは、SiO2、PbO、B2O3、アルカリ金属酸化物およびBaO等の含有量ならびにndおよびνdがこれらの実施組成例のガラスと近似している比較組成例No.A〜No.Dの従来のガラスと比べて、いずれもレーザー照射前後の屈折率の変化量(Δn)が小さく、フッ素成分および/または酸化チタン成分および/または酸化砒素成分含有の効果を示している。 As seen in Tables 1 to 12, Example Composition Nos. 1-No. In each of the glasses No. 73, the amount of change in refractive index (Δn) before and after laser irradiation was 5 ppm or less. 60-No. No. 66 is a comparative composition example No. 66 in which the contents of SiO 2 , PbO, B 2 O 3 , alkali metal oxides, BaO, etc., and nd and νd are similar to those of these example compositions. A-No. Compared with the conventional glass of D, the refractive index change amount (Δn) before and after laser irradiation is small, indicating the effect of containing a fluorine component and / or a titanium oxide component and / or an arsenic oxide component.
また、本発明の上記実施組成例のガラスは、いずれも、酸化物、炭酸塩、硝酸塩、水酸化物、燐酸塩、弗化物等の光学ガラス用原料を秤量混合した後、白金容器および/または石英容器等を用い、900〜1500℃で約3〜10時間、溶融、清澄、攪拌、均質化し、所定の温度まで冷却した後、余熱した金型に鋳込み、徐冷することにより容易に製造することができる。 In addition, the glasses of the above-mentioned embodiment examples of the present invention are all prepared by weighing and mixing raw materials for optical glass such as oxides, carbonates, nitrates, hydroxides, phosphates, fluorides, and the like. It is easily manufactured by melting, clarifying, stirring and homogenizing at 900-1500 ° C. for about 3-10 hours using a quartz container, etc., cooling to a predetermined temperature, casting into a preheated mold, and slow cooling. be able to.
Claims (5)
質量%で、
SiO2 30〜70%、B2O3 3〜20%、
Al2O3 0〜6%、Li2O 0〜5%、
Na2O 0〜13%、K2O 0〜12%、
BaO 0〜42%、ZnO 0〜7%、
ただし、Na2O、K2O、BaOおよびZnOの一種または二種以上の合計量10〜45%、
PbO 0〜2%、TiO2 0〜0.5%、
As2O3 0〜1%、Sb2O3 0〜1%、
および、一種または二種以上の上記酸化物の一部または全部を置換したフッ化物のFの合計量0〜11%を含有することを特徴とする光学ガラス。 After irradiating the glass with pulse laser light having a wavelength = 351 nm (Average Output Power = 0.43 W, Pulse Repetition Rate = 5 kHz, Pulse Width = 400 ns) for 1 hour The amount of change in refractive index (Δn: difference in refractive index before and after irradiation) is 5 ppm or less,
% By mass
SiO 2 30~70%, B 2 O 3 3~20%,
Al 2 O 3 0-6%, Li 2 O 0-5%,
Na 2 O 0-13%, K 2 O 0-12%,
BaO 0-42%, ZnO 0-7%,
However, the total amount of one or more of Na 2 O, K 2 O, BaO and ZnO is 10 to 45%,
PbO 0~2%, TiO 2 0~0.5% ,
As 2 O 3 0 to 1%, Sb 2 O 3 0 to 1%,
And the optical glass containing 0 to 11% of total amount of F of the fluoride which substituted a part or all of the said oxide of 1 type, or 2 or more types.
CaO 0〜2%、SrO 0〜2%、
ZrO2 0〜2%、
ただし、上記各成分の一種または二種以上の合計量2%以下を含有することを特徴とする請求項1に記載の光学ガラス。 % By mass
CaO 0-2%, SrO 0-2%,
ZrO 2 0-2%,
However, the optical glass of Claim 1 containing the total amount 2% or less of the said each component 1 type, or 2 or more types.
質量%で、
P2O5 4〜39%、Al2O3 0〜9%、
MgO 0〜5%、CaO 0〜6%、
SrO 0〜9%、BaO 0〜10%、
Y2O3 0〜10%、La2O3 0〜10%
Gd2O3 0〜20%、Yb2O3 0〜10%、
ただし、Y2O3、La2O3、Gd2O3およびYb2O3の一種または二種以上の合計量0〜20%、
TiO2 0〜0.1%、SnO2 0〜1%、
As2O3 0〜0.5%、Sb2O3 0〜0.5%、
AlF3 0〜29%、MgF2 0〜8%、
CaF2 0〜27%、SrF2 0〜27%、
BaF2 10〜47%、YF3 0〜10%、
LaF3 0〜10%、GdF3 0〜10%、
LiF 0〜3%、NaF 0〜1%、
KF 0〜1%、
ただし、一種または二種以上の上記フッ化物のFの合計量が10〜45%であり、かつ、MgF2、CaF2、SrF2およびBaF2の一種または二種以上の合計量30〜70%を含有することを特徴とする光学ガラス。 After irradiating the glass with pulse laser light having a wavelength = 351 nm (Average Output Power = 0.43 W, Pulse Repetition Rate = 5 kHz, Pulse Width = 400 ns) for 1 hour The amount of change in refractive index (Δn: difference in refractive index before and after irradiation) is 5 ppm or less,
% By mass
P 2 O 5 4~39%, Al 2 O 3 0~9%,
MgO 0-5%, CaO 0-6%,
SrO 0-9%, BaO 0-10%,
Y 2 O 3 0-10%, La 2 O 3 0-10%
Gd 2 O 3 0-20%, Yb 2 O 3 0-10%,
However, the total amount of one or more of Y 2 O 3 , La 2 O 3 , Gd 2 O 3 and Yb 2 O 3 is 0 to 20%,
TiO 2 0-0.1%, SnO 2 0-1%,
As 2 O 3 0-0.5%, Sb 2 O 3 0-0.5%,
AlF 3 0-29%, MgF 2 0-8%,
CaF 2 0-27%, SrF 2 0-27%,
BaF 2 10 to 47%, YF 3 0 to 10%,
LaF 3 0-10%, GdF 3 0-10%,
LiF 0-3%, NaF 0-1%,
KF 0-1%,
However, the total amount of F in one or more of the above fluorides is 10 to 45%, and the total amount of one or more of MgF 2 , CaF 2 , SrF 2 and BaF 2 is 30 to 70%. An optical glass comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011171685A JP2011251903A (en) | 2000-06-05 | 2011-08-05 | Optical glass suffering little change in refractive index by radiation of light |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000167377 | 2000-06-05 | ||
JP2000167377 | 2000-06-05 | ||
JP2000330066 | 2000-10-30 | ||
JP2000330066 | 2000-10-30 | ||
JP2001156988 | 2001-05-25 | ||
JP2001156988 | 2001-05-25 | ||
JP2011171685A JP2011251903A (en) | 2000-06-05 | 2011-08-05 | Optical glass suffering little change in refractive index by radiation of light |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001164358A Division JP5349721B2 (en) | 2000-06-05 | 2001-05-31 | Optical glass with small refractive index change by light irradiation |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011251903A true JP2011251903A (en) | 2011-12-15 |
Family
ID=45416168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011171685A Pending JP2011251903A (en) | 2000-06-05 | 2011-08-05 | Optical glass suffering little change in refractive index by radiation of light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011251903A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015071699A (en) * | 2013-10-03 | 2015-04-16 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member and light-emitting device |
CN105541110A (en) * | 2016-03-02 | 2016-05-04 | 华东理工大学 | Glass material for filling emeralds and preparation method of glass material |
CN106007366A (en) * | 2016-07-20 | 2016-10-12 | 北京玻璃研究院 | Radiation shielding glass and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161351A (en) * | 1984-01-13 | 1985-08-23 | コーニング グラス ワークス | Ophthalmic glass |
JPS60200842A (en) * | 1984-03-21 | 1985-10-11 | Hoya Corp | Glass for transmitting ultraviolet rays |
JPS6287433A (en) * | 1985-10-12 | 1987-04-21 | Minolta Camera Co Ltd | Ultraviolet-transmission glass |
JPH02204342A (en) * | 1989-01-31 | 1990-08-14 | Hoya Corp | Near infrared absorption filter glass |
JPH0393644A (en) * | 1989-09-01 | 1991-04-18 | Minolta Camera Co Ltd | Ultraviolet ray transmitting glass |
JPH101330A (en) * | 1996-06-10 | 1998-01-06 | Ohara Inc | Glass having satisfactory transmittance in ultraviolet region |
JPH11157868A (en) * | 1997-08-02 | 1999-06-15 | Carl Zeiss:Fa | Lead-free heavy crown or especially heavy crown optical glass |
-
2011
- 2011-08-05 JP JP2011171685A patent/JP2011251903A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161351A (en) * | 1984-01-13 | 1985-08-23 | コーニング グラス ワークス | Ophthalmic glass |
JPS60200842A (en) * | 1984-03-21 | 1985-10-11 | Hoya Corp | Glass for transmitting ultraviolet rays |
JPS6287433A (en) * | 1985-10-12 | 1987-04-21 | Minolta Camera Co Ltd | Ultraviolet-transmission glass |
JPH02204342A (en) * | 1989-01-31 | 1990-08-14 | Hoya Corp | Near infrared absorption filter glass |
JPH0393644A (en) * | 1989-09-01 | 1991-04-18 | Minolta Camera Co Ltd | Ultraviolet ray transmitting glass |
JPH101330A (en) * | 1996-06-10 | 1998-01-06 | Ohara Inc | Glass having satisfactory transmittance in ultraviolet region |
JPH11157868A (en) * | 1997-08-02 | 1999-06-15 | Carl Zeiss:Fa | Lead-free heavy crown or especially heavy crown optical glass |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015071699A (en) * | 2013-10-03 | 2015-04-16 | 日本電気硝子株式会社 | Wavelength conversion material, wavelength conversion member and light-emitting device |
CN105541110A (en) * | 2016-03-02 | 2016-05-04 | 华东理工大学 | Glass material for filling emeralds and preparation method of glass material |
CN106007366A (en) * | 2016-07-20 | 2016-10-12 | 北京玻璃研究院 | Radiation shielding glass and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7217672B2 (en) | Optical glass suffering little change in refractive index by radiation of light | |
JP5349721B2 (en) | Optical glass with small refractive index change by light irradiation | |
CN1990405B (en) | Optical glass | |
WO2010038597A1 (en) | Optical glass and method for suppressing the deterioration of spectral transmittance | |
JP2012236754A (en) | Optical glass and optical element | |
JP2010202508A (en) | Optical glasses | |
JP2007119343A (en) | High refractive index lead- and arsenic-free optical glass | |
JP6429567B2 (en) | Optical glass and optical element | |
JP2015024952A (en) | Optical glass, optical element and method for producing glass molded body | |
JP2015059060A (en) | Optical glass and optical element | |
JP4703191B2 (en) | Radiation-damaged highly stable glass, its production method and use method | |
JP2011251903A (en) | Optical glass suffering little change in refractive index by radiation of light | |
JP2515672B2 (en) | Optical glass showing positive anomalous partial dispersion in the blue region | |
WO2019031095A1 (en) | Optical glass, optical element, and optical device | |
JP4219012B2 (en) | Optical glass | |
JP2015157716A (en) | Optical glass, preform material, and optical element | |
JP2019099395A (en) | Optical glass, preform and optical element | |
JP2012091983A (en) | Optical glass and optical element | |
JP2010047425A (en) | Optical glass and method for reducing cloudiness of glass molded body | |
JP6425690B2 (en) | Optical glass and optical element | |
JP2019119633A (en) | Optical glass, optical element and preform | |
JP2019119634A (en) | Optical glass, optical element and preform | |
JP6086941B2 (en) | Optical glass and method for suppressing deterioration of spectral transmittance | |
JP2685322B2 (en) | Laser system glass | |
JP7409636B2 (en) | Multi-component oxide glass, optical element, optical fiber, and method for producing multi-component oxide glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20130212 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140520 |