JPS6077144A - Ultraviolet light transmitting glass - Google Patents

Ultraviolet light transmitting glass

Info

Publication number
JPS6077144A
JPS6077144A JP18312883A JP18312883A JPS6077144A JP S6077144 A JPS6077144 A JP S6077144A JP 18312883 A JP18312883 A JP 18312883A JP 18312883 A JP18312883 A JP 18312883A JP S6077144 A JPS6077144 A JP S6077144A
Authority
JP
Japan
Prior art keywords
glass
fluorine
na2o
ions
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18312883A
Other languages
Japanese (ja)
Inventor
Hidemi Tajima
田島 英身
Kenji Nakagawa
中川 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP18312883A priority Critical patent/JPS6077144A/en
Publication of JPS6077144A publication Critical patent/JPS6077144A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:The titled glass, containing specific composition amounts of SiO2, B2O3, Na2O and Al2O3, obtained by replacing oxygen ions partially with fluorine ions, fusible to alumina packages for semiconductors, meltable at relatively low temperatures, and having a low viscosity. CONSTITUTION:An ultraviolet light transmitting borosilicate glass, containing 56-70wt%, preferably 63-68wt% SiO2, 16-35wt%, preferably 20-25wt% B2O3, 4.7-13.0wt%, preferably 5-11wt% Na2O, 3-7wt% Al2O3, <0.55 ratio (Na2O/B2O3), >=95wt%, preferably >=97wt% SiO2+B2O3+Na2O+Al2O3, obtained by replacing oxygen ions with fluorine ions to contain 2.5-10wt% fluorine in the above-mentioned composition, having a high transmittance particularly of light at about 253nm wavelength, and meltable at <= about 1,500 deg.C temperature. The above-mentioned glass can be produced at a low cost by adding 0.2-1.5wt% reducing agent to a compounding raw material to make the raw material containing much impurities, e.g. iron, usable.

Description

【発明の詳細な説明】 本発明は紫外線透過性能にすぐれ半導体用アルミナパッ
ケージに融着可能でアリ、1,500t;’以下の温度
で溶解できる硼硅酸系ガラスに関するもので、特にコン
ピューターに使用される半導体メモリーの一種である紫
外線消去可能型ROM(UV型EPROM)の紫外線透
過窓用ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to borosilicate glass that has excellent ultraviolet transmission performance and can be melted into alumina packages for semiconductors at temperatures below 1,500 tons, and is particularly used in computers. The present invention relates to a glass for an ultraviolet-transmitting window of an ultraviolet-erasable ROM (UV-type EPROM), which is a type of semiconductor memory.

UV型lPROMの窓用ガラスとして用いられるガラス
は、波長253nmの光に対する透過率が高いこと、ア
ルミナノ臂ツケ〕ジに融着可能であること、量産性に富
むこと、という特性が要求される。
The glass used as the window glass for UV-type IPROM is required to have the following properties: high transmittance for light with a wavelength of 253 nm, ability to be fused to an aluminum nano arm cage, and ease of mass production.

これらの要求から従来はEPROM用紫外線透過ガラス
としては、S10.含有率が多くN82°’BtOs比
の小さい硼硅酸塩ガラスが用いられていた0この種のガ
ラスは溶融時の粘性が極めて大きいため脱泡が困難であ
シ、高湿度で溶融されるにもかかわらず気泡のない均質
なガラスを得ることが困難であった。
Due to these requirements, S10. Borosilicate glass, which has a high N82°'BtOs ratio and a low ratio, was used. This type of glass has extremely high viscosity when melted, making it difficult to defoam, and it is difficult to remove bubbles when melted. However, it has been difficult to obtain homogeneous glass without bubbles.

本発明はsto、’yo重量%以下、Na2O34,7
重量%以上を含む硼硅酬塩ガラスにおいて、適量のフッ
素を加えることによ、!lls253nmの波長におけ
る透過率を向上させ、ガラスの粘性を低下させたもので
ある。フッ素を加えることによ5.253nmの波長に
おける透過率が増加し、かつ粘性が低下する理由はBO
4群中の一部の酸素イオンがフッ素イオンにより置換さ
れること、ガラス網目の一部がフッ素イオンにより切断
され、この端末にフッ素イオンが結合することにより単
結合酸素が生成しないことによるものと考えられる。ざ
らに還元剤を添加すれば、その還元効果により鉄などの
不純物の多い原料も使用でき原料コストを安くすること
ができる。すなわち本発明によればi、5ooc以下の
温度で十分溶解でき、かつ1wm厚での波長253nm
に対する透過率が80%以上のガラスが得られる。
The present invention is based on sto, 'yo weight% or less, Na2O34,7
By adding an appropriate amount of fluorine to borosilicate salt glass containing more than % by weight! The transmittance at a wavelength of lls253 nm is improved and the viscosity of the glass is reduced. The reason why the transmittance at the wavelength of 5.253 nm increases and the viscosity decreases by adding fluorine is BO.
This is because some of the oxygen ions in the 4 groups are replaced by fluorine ions, a part of the glass network is cut by the fluorine ions, and the fluorine ions bond to the terminals, so that single-bonded oxygen is not generated. Conceivable. By adding a reducing agent, raw materials with many impurities such as iron can be used due to its reducing effect, and raw material costs can be reduced. That is, according to the present invention, it can be sufficiently melted at a temperature of i.
A glass having a transmittance of 80% or more can be obtained.

本発明の組成域は、重量百分率で sio、 56〜70%、好ましくは63〜68%B2
O316〜35%、好ましくは20〜25%Nano 
47.〜13%、好ましくは5〜11%kl*os ”
〜7% N a20/B、 O,<0.55 8 i 0. +B20n 十N a、 O+A 12
0s≧95%。
The composition range of the present invention is sio in weight percentage, 56-70%, preferably 63-68% B2
O3 16-35%, preferably 20-25% Nano
47. ~13%, preferably 5-11%kl*os”
~7% Na20/B, O, <0.55 8 i 0. +B20n 10N a, O+A 12
0s≧95%.

好ましくは297% で、かつ酸素イオンをフッ素イオンで置換して上記組成
中に2.5〜10重量%のフッ素を含ませてなるもので
ある。
Preferably, it is 297%, and oxygen ions are replaced with fluorine ions so that 2.5 to 10% by weight of fluorine is included in the above composition.

本発明の組成範囲の限定理由を述べると、8102は7
0%以上では溶解温度が1,500C以上を必要とする
ので本発明の目的に反し、56%以下では化学耐久性に
乏しく実用に耐えない。B!03は16%以下では溶解
温度が高く不適であシ、35%以上では化学的耐久性に
乏しい。)Ja40は4.7%以下では1,500C以
上の溶解湿度を必要とするので本発明の目的に反し、1
1%以上では波長253 nmに対する透過率が悪くな
る。Na2Oの一部をLi、 0およびに、Oに置換す
ることも可能であるが、1,1.0はこのガラスの分相
傾向を増し、K、Oは紫外域の透過率を低下させる傾向
があるので、これらの成分は全アルカリ金属酸化物の3
0%以下であることが望ましい。A J、 oxはこの
系のガラスの分相全抑制し、化学的耐久性を向上させる
ので3%以上必要であるが、7%以上ではガラスが高粘
性となυ、本発明の目的に適さない。ガラスの溶融を促
進するために少量のMgO、CaOなど全導入すること
ができるが、紫外域の透過率を低下させるので、810
、 、 Nano、 Am、01およびB20.以外の
成分の合計量は5%以下、好ましくは3%以下である。
To explain the reason for limiting the composition range of the present invention, 8102 is 7
If it is more than 0%, a melting temperature of 1,500 C or more is required, which is contrary to the purpose of the present invention, and if it is less than 56%, the chemical durability is poor and it is not practical. B! When 03 is less than 16%, the melting temperature is high and it is unsuitable, and when it is more than 35%, it has poor chemical durability. ) If Ja40 is 4.7% or less, it requires a dissolution humidity of 1,500C or more, which is contrary to the purpose of the present invention.
If it is 1% or more, the transmittance at a wavelength of 253 nm becomes poor. It is also possible to replace a part of Na2O with Li, 0, and O, but 1, 1.0 increases the phase separation tendency of this glass, and K and O tend to decrease the transmittance in the ultraviolet region. Therefore, these components account for 3% of the total alkali metal oxides.
It is desirable that it is 0% or less. A J, ox completely suppresses the phase separation of this type of glass and improves the chemical durability, so it is necessary to have an amount of 3% or more, but if it is more than 7%, the glass becomes highly viscous υ, and it is not suitable for the purpose of the present invention. do not have. Although a small amount of MgO, CaO, etc. can be introduced to promote glass melting, it reduces the transmittance in the ultraviolet region, so 810
, , Nano, Am, 01 and B20. The total amount of other components is 5% or less, preferably 3% or less.

紫外域の透過率を向上させるためには、2.5%以上の
フッ素が必要であるが、10%以上ではガラスからの揮
発が激しく均質なガラスが得られなくなるので、フッ素
の含有量は2.5〜10%が適当である。ガラス原料中
に微量に含まれる鉄イオンあるいはガラス製造工程にお
いて混入する鉄イオンによる紫外域の吸収を除くために
、配合原料中に還元剤全添加することによりガラス中の
Fe” f Fe”に還元することが有効である。還元
剤としてはテン粉、マンニット等の有機化合物あるいは
金属ケイ素などが有効である。還元剤の適量はるつMi
:を用いて溶融する際には、テン粉の場合1.5%以下
、金属ケイ素の場合0,1%以下である。添加量が多す
ぎると炭素や金属ケイ素が残留してガラスが着色するの
で好ましくない。
In order to improve the transmittance in the ultraviolet region, 2.5% or more of fluorine is required, but if it exceeds 10%, the fluorine content will be too strong and a homogeneous glass will not be obtained. .5 to 10% is appropriate. In order to eliminate absorption in the ultraviolet region by iron ions contained in trace amounts in the glass raw materials or mixed in during the glass manufacturing process, all of the reducing agent is added to the blended raw materials to reduce the amount of Fe in the glass to "f Fe". It is effective to do so. Effective reducing agents include organic compounds such as marten powder and mannitol, and metallic silicon. Appropriate amount of reducing agent Melts Mi
When melting using :, the content is 1.5% or less in the case of ten flour and 0.1% or less in the case of metallic silicon. If the amount added is too large, carbon and metallic silicon will remain and the glass will be colored, which is not preferable.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

(tvt%) T113 (%) ’ 2 s 3Hmの波長に対する
透過率、試料1m厚F +NaF、AJF、から計算し
たフッ素含有賞上表に示したそれぞれの組成になるよう
に、砕石粉、硼酸、アルミナ、炭酸ナトリウム、フッ化
アルミニウムあるいはフッ化ナトリウムを原料として配
合し、この配合原料に必要に応じて還元剤としてデンプ
ンヲ0.5ないし1.0%添加した。この配合原料全る
つほに入れ電気炉中で1400〜1500Cで溶融し、
攪拌しながら脱泡した後に金型に鋳込んで室温lで徐冷
した。このガラスの一部から試料全採取し厚さ1ffl
#lに研賠して253nmの透過率全分光光電光度計に
よQ測定し/ヒ結果と、これらガラスの転移温度Tyお
よび熱膨張係数αも併せて表中に示した。
(tvt%) T113 (%) ' Transmittance at wavelength of 2s 3Hm, sample 1m thickness F + NaF, AJF, calculated from fluorine content award. Alumina, sodium carbonate, aluminum fluoride or sodium fluoride were blended as raw materials, and 0.5 to 1.0% of starch was added as a reducing agent to the blended raw materials as required. All of this blended raw material is placed in a melting pot and melted at 1400 to 1500C in an electric furnace.
After degassing while stirring, the mixture was poured into a mold and slowly cooled at room temperature. All samples were taken from a part of this glass and the thickness was 1ffl.
#1 and the transmittance at 253 nm was measured using a total spectrophotometer. The results are also shown in the table together with the transition temperature Ty and thermal expansion coefficient α of these glasses.

第1図は厚さj==1.Q13mとした場合の分光透過
率曲線を示した。第2図には810.59.5 wt%
−B、03 28.5− Na、07.2− AJ20
.4.8なる組成のガラスと、これをペースにしiF、
g ’i使用してフッ素105.4 wt%加えた組成
(表中、2番)のガラスとの分光透過率曲線をそれぞれ
示した。何れも還元剤は含まれていない。フッ素を含ま
せたことによる紫外域の透過率の増加は著しい。
In FIG. 1, the thickness is j==1. The spectral transmittance curve in the case of Q13m is shown. Figure 2 shows 810.59.5 wt%
-B, 03 28.5- Na, 07.2- AJ20
.. Glass with a composition of 4.8 and iF using this as a pace,
The spectral transmittance curves of glass having a composition (No. 2 in the table) in which 105.4 wt% of fluorine was added using g'i were shown. None of them contain reducing agents. The increase in transmittance in the ultraviolet region due to the inclusion of fluorine is remarkable.

上述のように本発明によれは、従来の紫外線透過用硼硅
酸ガラスよシも低温度で溶融可能で、かつ25.3nm
の透過率の大きいガラスが得られる。
As described above, according to the present invention, conventional borosilicate glass for transmitting ultraviolet rays can be melted at a low temperature, and a 25.3 nm
A glass with high transmittance can be obtained.

このガラスは気泡が少なく均質であるため、EPROM
用紫外線透過ガラスとして好適である。
This glass is homogeneous with few bubbles, so it is suitable for EPROM
Suitable as ultraviolet transmitting glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明紫外線透過ガラスの一実施例の分光透過
率曲線を示す図、第2図はフッ素を含有するものと、含
有しないものとの同上透過率曲線の差を示す図である。 株式会社 深谷硝子 代理人 朝倉正幸
FIG. 1 is a diagram showing the spectral transmittance curve of one example of the ultraviolet transmitting glass of the present invention, and FIG. 2 is a diagram showing the difference in the transmittance curves of the glass containing fluorine and that containing no fluorine. Fukaya Glass Co., Ltd. Agent Masayuki Asakura

Claims (1)

【特許請求の範囲】 1、重置百分率で 810、 56〜70% B、0,16〜35% Na、0 4.7〜13.0% A l、 033〜7% NatOs/BtQa (0,55 8i 02+B2O3+Na、O+AJ10g 2 9
5%で、かつ酸素イオンをフッ素イオンで置換して上記
組成中に2.5〜lO重−%の7ツ案を含lせたこと全
特徴とする紫外線透過ガラス。 2、 重量百分率で S10. 63〜68% Btos 20〜25% Na、05〜11% A J、 0. 3〜7% Na、O/B、08(0,55 810H+B10B +N a、 O+A To Os
297%で、かつ酸素イオン會フッ素イオンで1な換し
て上記組成中に、2.5〜10重量%のフッ素を含ませ
てなる特許請求の範囲第1項記載の紫外線透過ガラス。 3、 配合原料に0,2〜1.5重世%の還元剤全添加
している特許請求の範囲第1項lたは第2項記載の紫外
線透過ガラス。
[Claims] 1. 810 in overlapping percentage, 56-70% B, 0, 16-35% Na, 0 4.7-13.0% Al, 033-7% NatOs/BtQa (0, 55 8i 02+B2O3+Na, O+AJ10g 2 9
5% and that oxygen ions are replaced with fluorine ions so that the above composition contains seven types of 2.5 to 10% by weight. 2. S10. in weight percentage. 63-68% Btos 20-25% Na, 05-11% A J, 0. 3-7% Na, O/B, 08 (0,55 810H+B10B +Na, O+A To Os
2. The ultraviolet transmitting glass according to claim 1, wherein the composition contains 2.5 to 10% by weight of fluorine by replacing oxygen ions with fluorine ions. 3. The ultraviolet transmitting glass according to claim 1 or 2, wherein 0.2 to 1.5 weight percent of a reducing agent is added to the raw materials.
JP18312883A 1983-10-03 1983-10-03 Ultraviolet light transmitting glass Pending JPS6077144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18312883A JPS6077144A (en) 1983-10-03 1983-10-03 Ultraviolet light transmitting glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18312883A JPS6077144A (en) 1983-10-03 1983-10-03 Ultraviolet light transmitting glass

Publications (1)

Publication Number Publication Date
JPS6077144A true JPS6077144A (en) 1985-05-01

Family

ID=16130284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18312883A Pending JPS6077144A (en) 1983-10-03 1983-10-03 Ultraviolet light transmitting glass

Country Status (1)

Country Link
JP (1) JPS6077144A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200842A (en) * 1984-03-21 1985-10-11 Hoya Corp Glass for transmitting ultraviolet rays
NL8900086A (en) * 1988-01-20 1989-08-16 Schott Glaswerke U.V. TRANSMISSIVE GLASS.
JPH0455337A (en) * 1990-06-21 1992-02-24 Ohara Inc Ultraviolet ray transmitting glass
DE4335204C1 (en) * 1993-10-15 1995-04-06 Jenaer Glaswerk Gmbh Reductively produced borosilicate glass having high transmission in the UV region and good hydrolytic resistance, and the use thereof
US5547904A (en) * 1993-11-08 1996-08-20 Jenaer Glaswerk Gmbh Borosilicate glass having improved UV transmission, thermal and chemical properities and methods of making and using same
US5612262A (en) * 1994-08-10 1997-03-18 Jenaer Glaswerk Gmbh Colored borosilicate glass
US5627115A (en) * 1994-08-10 1997-05-06 Jenaer Glaswerk Gmbh Colored borosilicate glass
EP1162180A1 (en) * 2000-06-05 2001-12-12 Kabushiki Kaisha Ohara Optical glass suffering little change in refractive index when exposed to ultra-violet light during service
JP2015193521A (en) * 2014-03-19 2015-11-05 日本電気硝子株式会社 Ultraviolet transmission glass and production method
WO2016194780A1 (en) * 2015-05-29 2016-12-08 旭硝子株式会社 Ultraviolet light-transmitting glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332362A (en) * 1976-09-07 1978-03-27 Seiko Instr & Electronics Ltd Constant voltage electronic circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332362A (en) * 1976-09-07 1978-03-27 Seiko Instr & Electronics Ltd Constant voltage electronic circuit

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200842A (en) * 1984-03-21 1985-10-11 Hoya Corp Glass for transmitting ultraviolet rays
JPH0210770B2 (en) * 1984-03-21 1990-03-09 Hoya Corp
NL8900086A (en) * 1988-01-20 1989-08-16 Schott Glaswerke U.V. TRANSMISSIVE GLASS.
US5045509A (en) * 1988-01-20 1991-09-03 Schott Glaswerke UV-transparent glass
JPH0455337A (en) * 1990-06-21 1992-02-24 Ohara Inc Ultraviolet ray transmitting glass
DE4335204C1 (en) * 1993-10-15 1995-04-06 Jenaer Glaswerk Gmbh Reductively produced borosilicate glass having high transmission in the UV region and good hydrolytic resistance, and the use thereof
JPH07187706A (en) * 1993-10-15 1995-07-25 Jenaer Glaswerk Gmbh Reductively molten borosilicate glass having improved ultraviolet transmittance and hydrolysis stability and its usage
US5610108A (en) * 1993-10-15 1997-03-11 Schott Glaswerke Reducing melt borosilicate glass having improved UV transmission properties and water resistance and methods of use
US5547904A (en) * 1993-11-08 1996-08-20 Jenaer Glaswerk Gmbh Borosilicate glass having improved UV transmission, thermal and chemical properities and methods of making and using same
US5627115A (en) * 1994-08-10 1997-05-06 Jenaer Glaswerk Gmbh Colored borosilicate glass
US5612262A (en) * 1994-08-10 1997-03-18 Jenaer Glaswerk Gmbh Colored borosilicate glass
EP1162180A1 (en) * 2000-06-05 2001-12-12 Kabushiki Kaisha Ohara Optical glass suffering little change in refractive index when exposed to ultra-violet light during service
US7196027B2 (en) 2000-06-05 2007-03-27 Kabushiki Kaisha Ohara Optical glass suffering little change in refractive index by radiation of light
JP2015193521A (en) * 2014-03-19 2015-11-05 日本電気硝子株式会社 Ultraviolet transmission glass and production method
JP2018131384A (en) * 2014-03-19 2018-08-23 日本電気硝子株式会社 Ultraviolet transmission glass production method
JP2018197190A (en) * 2014-03-19 2018-12-13 日本電気硝子株式会社 Ultraviolet transmission glass
WO2016194780A1 (en) * 2015-05-29 2016-12-08 旭硝子株式会社 Ultraviolet light-transmitting glass
CN107614448A (en) * 2015-05-29 2018-01-19 旭硝子株式会社 Ultraviolet (uv) transmission glass
JPWO2016194780A1 (en) * 2015-05-29 2018-03-15 旭硝子株式会社 UV transmitting glass
TWI692459B (en) * 2015-05-29 2020-05-01 日商Agc股份有限公司 UV transmission glass
US10689288B2 (en) 2015-05-29 2020-06-23 AGC Inc. Ultraviolet transmitting glass
JP2021098652A (en) * 2015-05-29 2021-07-01 Agc株式会社 Ultraviolet transmitting glass

Similar Documents

Publication Publication Date Title
JP2528351B2 (en) UV transparent glass and its batch composition
JP4454266B2 (en) Borosilicate glass and use thereof
US2805166A (en) Glasses containing oxides of rare earth metals
JPS60161351A (en) Ophthalmic glass
US4925814A (en) Ultraviolet transmitting glasses for EPROM windows
TW201412676A (en) Ion exchangeable li-containing glass compositions for 3-D forming
JPH0867529A (en) Borosilicate glass low in boric acid and application thereof
JP2001080933A (en) Crystal glass not containing lead and barium
TW200413268A (en) An optical glass
ITTO940867A1 (en) BOROSILICATE GLASS WITH HIGH TRANSMISSION OF THE UV FIELD WITH LOW THERMAL EXPANSION AND HIGH CHEMICAL RESISTANCE.
JP2011057509A (en) Optical glass
JPS6077144A (en) Ultraviolet light transmitting glass
EP0048120B1 (en) Glass envelopes for tungsten-halogen lamps and production thereof
GB2134100A (en) Glass for a photomask
JPS6287433A (en) Ultraviolet-transmission glass
JP2010228969A (en) Glass
US2382056A (en) Glass transparent to far ultraviolet
JPH05306140A (en) Production of oxide-based glass and fluorine-containing glass
JPS60215547A (en) Ultraviolet transmitting glass
JPH10297934A (en) Colored glass absorbing ultraviolet and infrared rays
MATUSITA et al. Thermal expansion of substituted copper aluminosilicate glasses
JPH01286936A (en) Amber-colored borosilicate glass
JP4756429B2 (en) Compact fluorescent lamp glass and manufacturing method thereof.
JPS594389B2 (en) Method of manufacturing colored glass
JP7170007B2 (en) jewelry glass