JPH0210677B2 - - Google Patents

Info

Publication number
JPH0210677B2
JPH0210677B2 JP59104231A JP10423184A JPH0210677B2 JP H0210677 B2 JPH0210677 B2 JP H0210677B2 JP 59104231 A JP59104231 A JP 59104231A JP 10423184 A JP10423184 A JP 10423184A JP H0210677 B2 JPH0210677 B2 JP H0210677B2
Authority
JP
Japan
Prior art keywords
signal
voltage
time
transistors
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104231A
Other languages
Japanese (ja)
Other versions
JPS60249886A (en
Inventor
Juji Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59104231A priority Critical patent/JPS60249886A/en
Publication of JPS60249886A publication Critical patent/JPS60249886A/en
Publication of JPH0210677B2 publication Critical patent/JPH0210677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、直流電動機の駆動装置に関する。 The present invention relates to a drive device for a DC motor.

【従来の技術】[Conventional technology]

従来、この種の技術として第1図に示すものが
あつた。第1図において、1は電流指令i*と直流
電動機に実際に供給される電流からの検出信号id
との差を検出し、信号ΔIを出力する加算器、2
は信号ΔIを増幅する増幅器、3,4は増幅器2
の出力と3角波のキヤリア信号CRYとを比較し
て増幅器出力が大となつた部分をパルスにして出
力する、即ち、パルス幅変調された信号PWM,
PWMNを出力する比較器、5,6は比較器3,
4の信号PWM,PWMNを反転するインバータ、
7〜10は比較器3,4の出力及びインバータ
5,6の出力を時間Tdだけ遅延させるオンデイ
レー回路で、このオンデイレー回路7〜10はト
ランジスタ11〜14のベースに信号PWMd,
PWMd,PWMNd,を供給する。15
はトランジスタ11とトランジスタ12との接続
点C1及びトランジスタ13とトランジスタ14
との接続点C2間に接続された(直流)電動機で
ある。 次に動作について説明する。第2図は加算器1
の信号ΔIが0のときの各部の波形を示す。時刻t0
まではトランジスタ11,13がオン、トランジ
スタ12,14がオフとなつており、接続点C1
の電圧V1及び接続点C2の電圧V2は共に電源電圧
となつているので、V1−V2は0である。トラン
ジスタ11〜14の電荷蓄積時間Tsより大きく
なるように選択された時間Td、すなわち第2図
の時刻t0〜t1ではトランジスタ11〜14が全て
オフであり、電圧V1−V2は不定となる。第2図
の時刻t1になると、トランジスタ12,14がオ
ンとなり、接続点C1,C2は、0電圧となる。 第3図は信号ΔIが0付近を変動する電圧にな
つたとき(指令電流i*と検出電流idとの差が0付
近を変動する差であるとき)の各部の波形を示
す。第3図の時刻t0になるとトランジスタ13が
オフになり、第3図の時刻t1になるとトランジス
タ11がオフになる。第3図の時刻t0より時間
Td後の時刻t2になると、トランジスタ14はオ
ンになり、さらに第3図の時刻t1より時間Td後
の時刻t3になると、トランジスタ12がオンとな
る。 このため、第3図においてトランジスタ11,
12が両方共にオフの期間、つまり第3図の時刻
t1からt3までの間は接続点C1の電圧V1は不定(電
動機15に流れる電流方向により電圧V1は決定
される)になる。同様に、トランジスタ13,1
4が両方共にオフの期間、つまり第3図の時刻t0
からt2までの間は接続点C2の電圧V2は不定(電
動機15に流れる電流方向により電圧V2は決定
される)になる。このトランジスタ11,12及
びトランジスタ13,14がオフとなる期間が必
要な理由は、トランジスタの電荷蓄積期間Tsに
よりトランジスタのオンよりもオフが遅れると、
直列接続したトランジスタ11,12又はトラン
ジスタ13,14が共にオンする期間が生じ、ト
ランジスタを破壊することになるからである。 従来の直流電動機駆動装置は、以上のように構
成され、直列接続したトランジスタ11と12及
びトランジスタ13と14が共にオフとなる期間
を設けているので、オフとなる期間の電動機15
の電流方向により電圧V1,V2が決定されるため、
すなわち接続点C1の電圧V1と接続点C2の電圧V2
が不定となり、電流指令と直流電動機から検出さ
れた電流信号との差が小さい領域で指令信号であ
る信号ΔIが変化しても電動機15に加わる電圧
が変化とおりに現われない制御の不感帯が存在
し、この不感帯を単にループゲインを大きくする
だけでは除去できない欠点があつた。
Conventionally, there has been a technique of this type as shown in FIG. In Figure 1, 1 is the detection signal i d from the current command i * and the current actually supplied to the DC motor.
an adder that detects the difference between the two and outputs a signal ΔI;
is an amplifier that amplifies the signal ΔI, and 3 and 4 are amplifiers 2
The output of the amplifier is compared with the triangular wave carrier signal CRY, and the part where the amplifier output is large is output as a pulse, that is, a pulse width modulated signal PWM,
Comparators that output PWMN, 5 and 6 are comparators 3,
An inverter that inverts the 4 signals PWM and PWMN,
7 to 10 are on-delay circuits that delay the outputs of the comparators 3 and 4 and the outputs of the inverters 5 and 6 by a time Td.
Supply PWMd, PWMNd. 15
is the connection point C1 between transistor 11 and transistor 12, and the connection point C1 between transistor 13 and transistor 14.
It is a (DC) motor connected between the connection point C and 2 . Next, the operation will be explained. Figure 2 shows adder 1
The waveforms of each part are shown when the signal ΔI is 0. time t 0
Until then, transistors 11 and 13 are on and transistors 12 and 14 are off, and the connection point C 1
Since the voltage V 1 at the node C 2 and the voltage V 2 at the connection point C 2 are both the power supply voltage, V 1 −V 2 is 0. During the time Td selected to be longer than the charge accumulation time Ts of the transistors 11 to 14, that is, from time t 0 to t 1 in FIG. 2, the transistors 11 to 14 are all off, and the voltage V 1 -V 2 is undefined. becomes. At time t 1 in FIG. 2, transistors 12 and 14 are turned on, and connection points C 1 and C 2 become 0 voltage. FIG. 3 shows waveforms at various parts when the signal ΔI reaches a voltage that fluctuates around 0 (when the difference between the command current i * and the detected current i d fluctuates around 0). At time t0 in FIG. 3, transistor 13 is turned off, and at time t1 in FIG. 3, transistor 11 is turned off. Time from time t 0 in Figure 3
At time t2 after Td, transistor 14 is turned on, and further at time t3 , which is a time Td after time t1 in FIG. 3 , transistor 12 is turned on. Therefore, in FIG.
12 are both off, that is, the time shown in Figure 3.
From t 1 to t 3 , the voltage V 1 at the connection point C 1 is undefined (the voltage V 1 is determined by the direction of the current flowing through the motor 15). Similarly, transistors 13,1
4 are both off, that is, time t 0 in Figure 3.
During the period from t2 to t2 , the voltage V2 at the connection point C2 is undefined (the voltage V2 is determined by the direction of the current flowing through the motor 15). The reason why the period in which the transistors 11 and 12 and the transistors 13 and 14 are off is necessary is that when the transistor turns off later than the transistor turns on due to the charge accumulation period Ts of the transistor,
This is because there is a period in which the series-connected transistors 11 and 12 or the transistors 13 and 14 are both turned on, resulting in destruction of the transistors. The conventional DC motor drive device is configured as described above, and has a period in which the series-connected transistors 11 and 12 and transistors 13 and 14 are both off, so that the motor 15 during the off period is
Since the voltages V 1 and V 2 are determined by the current direction of
That is, the voltage V 1 at the connection point C 1 and the voltage V 2 at the connection point C 2
becomes unstable, and there is a control dead zone in which the voltage applied to the motor 15 does not appear as changed even if the signal ΔI, which is the command signal, changes in a region where the difference between the current command and the current signal detected from the DC motor is small. However, this dead zone cannot be removed simply by increasing the loop gain.

【発明の概要】[Summary of the invention]

この発明は、上記の点に鑑みてなされたもの
で、直流電動機に駆動電流を供給する装置の出力
端の電圧を示す電圧信号PCとオンデイレー回路
の入力となるパルス幅変調信号との立下り位相差
を検出し、この位相差によりパルス幅変調された
パルス信号の立上りの位相を補償することによつ
て制御の不感帯をなくし、装置の応答特性を改善
できる直流電動機駆動装置を提供することを目的
とする。
This invention has been made in view of the above points, and is the falling edge of the voltage signal PC indicating the voltage at the output terminal of a device that supplies drive current to a DC motor and the pulse width modulation signal that is input to the on-delay circuit. An object of the present invention is to provide a DC motor drive device that can eliminate a control dead zone and improve the response characteristics of the device by detecting a phase difference and compensating the phase of the rise of a pulse width modulated pulse signal using this phase difference. shall be.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明
す。第4図はこの発明によるブロツク図を示すも
ので、第1図に示す符号と同一符号は同一部分を
示す。比較器3の指令信号PWMはアンドゲート
16の一方側及びインバータ29を介してアンド
ゲート17の一方側に入力される。また、アンド
ゲート16の他方側入力には装置の出力端から検
出される検出信号PCをインバータ18を介して
入力しており、指令信号PWMとアンドをとり、
信号PDIFを出力する。さらに、アンドゲート1
7の他方側入力には検出信号PCを入力し、指令
信号PWMの反転信号とアンドをとり、インバー
タ19を介て信号を出力する。積分器20
は信号PDIF,を入力して積分し、信号
PINTを出力する。比較器21はゼロクロス検出
器よりなり、信号PINTのゼロクロス点を検出
し、信号PWMCを出力する。信号PWMCはオン
デイレー回路7,9と、インバータ22を介して
オンデイレー回路8,10とに入力される。 トランジスタ11及び12の接続点C1とトラ
ンジスタ13及び14の接続点C2にはそれぞれ
電圧の検出器となるフオトカツプラ23が接続さ
れ、接続点C1と接続点C2の電圧を示す検出信号
PCを出力する。 なお、トランジスタ13及び14の接続点C2
の電圧を示す検出信号PCもトランジスタ11及
び12の接続点C1の電圧を示す検出信号PCと同
様に考えられるので、以下の説明では接続点C1
側のみを説明する。 次の動作について第5図を参照して説明する。
いま、第5図に示すようなパルス幅変調された指
令信号PWMで接続点C1の電圧V1を制御すると
き、時刻t0では前回の指令信号PWMと検出信号
PCとの差が第5図に示す信号PINTの電圧V3
して蓄えられている。よつて、指令信号PWMが
ハイレベルになつても信号PINTが0になるまで
信号PWMCは0のままである。そして、時刻t0
でアンドゲート16が開くと、積分器20が正の
値をもつ信号PDIFについて積分を開始し、電圧
は上昇することになる。時刻t1になると、信号
PINTが0軸と交差するので、比較器21より信
号PWMCの出力が変化し、前記の誤差分は帳消
になる。そして、上記比較器21よりの信号
PWMCはハイレベルとなり、オン信号を出力す
るが、接続点C1の電圧V1はベースアンプトラン
ジスタ等の遅れでまだ変化せず、指令信号PWM
とおりの電圧V1が得られないので、第5図の信
号PINTはさらに加算を続けることになる。しか
るのち、電荷蓄積時間Tsをもつトランジスタ1
2がオフになるのに十分な時間Td後の時刻t2
なると、オンデイレー回路7,9は信号PWMCd
をハイにしてトランジスタ11をオンにさせる。
トランジスタ11がオンになると、接続点C1
電圧V1は電源電圧となるので、フオトカツプラ
23の検出信号PCはハイになり、その結果アン
ドゲート16はブロツクされ、積分器20は積分
を停止し、その積分値を保持する。このときの信
号PINT=V4が誤差分となる。 時刻t0から時間T1後の時刻t3になると、指令信
号PWMがローとなるので、アンドゲート17が
開き、インバータ19を介して積分器20は負の
値をもつ信号について積分を開始する。時
刻t4になると、信号PINTが0軸と交差するの
で、比較器21は信号PWMCをローにし、オン
デイレー回路7は信号PWMCdをローにする。こ
のため、トランジスタ11は電荷蓄積時間Ts後
の時刻t5でオフとなる。トランジスタ12は時刻
t4から時間Td後の時刻t6でオンデイレー回路8に
よりオンにされ、以下、指令信号PWMに従つて
前述の動作を繰返す。このように毎回検出信号
PCを用いて補正を掛けるので、最終的に指令ど
おりの出力電圧が得られる。 第6図はこの発明の他の実施例を示すブロツク
図であり、第4図に示す点線内の部分に相当する
部分のみを示す。アンドゲート16からの信号
PDIFをアンドゲート24に導き、クロツク発生
器25からのクロツク信号CLKとアンドをとり
積算回路としてのアツプダウンカウンタ26のア
ツプカウント入力UPにその結果を入力する。ア
ンドゲート17からの信号をアンドゲート27に
導き、クロツク信号CLKとアンドをとり、その
結果をアツプダウンカウンタ26のダウン入力
DNに入力する。アツプダウンカウンタ26のキ
ヤリ信号CRはフリツプフロツプ28のセツト入
力Sに入力され、またボロー信号BRはフリツプ
フロツプ28のリセツト入力Rに入力される。フ
リツプフロツプ28のQ出力はオンデイレー回路
7に、出力はオンデイレー回路8に供給され
る。 次に動作において、アンドゲート16又は17
が開となると、アツプダウンカウンタ26はアツ
プカウント又はダウンカウントをとうして指令信
号PWMと検出信号PCとの位相差を積算し、そ
の結果が0となる時点でキヤリ信号CR又はボロ
ー信号BRを発生し、フリツプフロツプ28をセ
ツト又はリセツトし、オンデイレー回路7又は8
を付勢する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 shows a block diagram according to the present invention, and the same reference numerals as those shown in FIG. 1 indicate the same parts. The command signal PWM of the comparator 3 is input to one side of the AND gate 16 and one side of the AND gate 17 via the inverter 29 . Furthermore, the detection signal PC detected from the output end of the device is inputted to the other side input of the AND gate 16 via the inverter 18, and is ANDed with the command signal PWM.
Output signal PDIF. Furthermore, and gate 1
The detection signal PC is inputted to the other side input of 7, ANDed with the inverted signal of the command signal PWM, and the signal is outputted via the inverter 19. Integrator 20
inputs the signal PDIF, integrates it, and calculates the signal
Output PINT. Comparator 21 includes a zero-cross detector, detects the zero-cross point of signal PINT, and outputs signal PWMC. The signal PWMC is input to the on-delay circuits 7 and 9 and the on-delay circuits 8 and 10 via the inverter 22. A photo coupler 23 serving as a voltage detector is connected to the connection point C 1 between the transistors 11 and 12 and the connection point C 2 between the transistors 13 and 14, respectively, and a detection signal indicating the voltage at the connection point C 1 and the connection point C 2 is connected.
Output PC. Note that the connection point C 2 between transistors 13 and 14
The detection signal PC indicating the voltage at the connection point C1 of the transistors 11 and 12 can be considered in the same way as the detection signal PC indicating the voltage at the connection point C1 .
Only the side will be explained. The next operation will be explained with reference to FIG.
Now, when controlling the voltage V 1 at the connection point C 1 with the pulse width modulated command signal PWM as shown in Fig. 5, at time t 0 , the previous command signal PWM and the detection signal
The difference with PC is stored as the voltage V3 of the signal PINT shown in FIG. Therefore, even if the command signal PWM becomes high level, the signal PWMC remains at 0 until the signal PINT becomes 0. And time t 0
When the AND gate 16 opens, the integrator 20 starts integrating the signal PDIF having a positive value, and the voltage increases. At time t 1 , the signal
Since PINT crosses the 0 axis, the output of the signal PWMC from the comparator 21 changes, canceling out the above error. Then, the signal from the comparator 21
PWMC becomes high level and outputs an on signal, but the voltage V 1 at connection point C 1 does not change yet due to the delay of the base amplifier transistor, etc., and the command signal PWM
Since the correct voltage V 1 cannot be obtained, the signal PINT in FIG. 5 continues to be added. After that, transistor 1 with charge storage time Ts
At time t2 , after a sufficient time Td for PWMCd to turn off, the on-delay circuits 7 and 9 turn off the signal PWMCd.
is set high to turn on transistor 11.
When the transistor 11 is turned on, the voltage V 1 at the connection point C 1 becomes the power supply voltage, so the detection signal PC of the photocoupler 23 becomes high, and as a result, the AND gate 16 is blocked and the integrator 20 stops integrating. , hold its integral value. The signal PINT= V4 at this time becomes the error. At time t 3 , which is a time T 1 after time t 0 , the command signal PWM becomes low, so the AND gate 17 opens and the integrator 20 starts integrating a signal having a negative value via the inverter 19. . At time t4 , the signal PINT crosses the 0 axis, so the comparator 21 makes the signal PWMC low, and the on-delay circuit 7 makes the signal PWMCd low. Therefore, the transistor 11 is turned off at time t5 after the charge accumulation time Ts. Transistor 12 is the time
At time t6 , which is a time Td after t4 , it is turned on by the on-delay circuit 8, and thereafter the above-described operation is repeated in accordance with the command signal PWM. Detection signal every time like this
Since the correction is applied using a PC, the output voltage according to the command can be obtained in the end. FIG. 6 is a block diagram showing another embodiment of the present invention, in which only the portions corresponding to the portions within the dotted lines shown in FIG. 4 are shown. Signal from AND gate 16
The PDIF is led to the AND gate 24, ANDed with the clock signal CLK from the clock generator 25, and the result is input to the up-count input UP of the up-down counter 26 as an integration circuit. The signal from the AND gate 17 is guided to the AND gate 27, ANDed with the clock signal CLK, and the result is inputted to the up/down counter 26.
Enter the DN. The carry signal CR of the up-down counter 26 is input to the set input S of the flip-flop 28, and the borrow signal BR is input to the reset input R of the flip-flop 28. The Q output of the flip-flop 28 is supplied to the on-delay circuit 7, and the output is supplied to the on-delay circuit 8. Next, in operation, AND gate 16 or 17
When is open, the up-down counter 26 integrates the phase difference between the command signal PWM and the detection signal PC through up-counting or down-counting, and when the result becomes 0, it outputs a carry signal CR or a borrow signal BR. occurs, sets or resets flip-flop 28, and switches on-delay circuit 7 or 8.
energize.

【発明の効果】【Effect of the invention】

以上のようにこの発明によれば、直流電動機に
駆動電流を供給する装置の出力端の電圧を示す電
圧信号すなわち検出信号とパルス幅変調されたパ
ルス信号、すなわち指令信号との差異を積算回路
でカウントし、次に指令信号が変化するときに、
その差分を補正してトランジスタ信号として出力
するように構成したので、制御の不感帯が狭めら
れ、出力電圧として指令信号とおりの信号が得ら
れ、装置の制御特性を高めることができる効果が
ある。
As described above, according to the present invention, the difference between the voltage signal, that is, the detection signal, indicating the voltage at the output end of the device that supplies the drive current to the DC motor, and the pulse width modulated pulse signal, that is, the command signal, is detected by the integrating circuit. Count, and then when the command signal changes,
Since the difference is corrected and output as a transistor signal, the dead zone of control is narrowed, a signal in accordance with the command signal can be obtained as the output voltage, and the control characteristics of the device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直流電動機駆動装置のブロツク
図、第2図及び第3図は第1図に示す装置の動作
の波形図、第4図はこの発明の一実施例による直
流電動機駆動装置のブロツク図、第5図は第4図
に示す装置の動作の波形図、第6図はこの発明の
他の実施例のブロツク図である。 1……加算器、2……増幅器、3,4,21…
…比較器、7〜10……オンデイレー回路、11
〜14……トランジスタ、15……電動機、20
……積分器。なお、図中、同一符号は同一部分を
示す。
FIG. 1 is a block diagram of a conventional DC motor drive device, FIGS. 2 and 3 are waveform diagrams of the operation of the device shown in FIG. 1, and FIG. 4 is a diagram of a DC motor drive device according to an embodiment of the present invention. FIG. 5 is a waveform diagram of the operation of the apparatus shown in FIG. 4, and FIG. 6 is a block diagram of another embodiment of the present invention. 1...Adder, 2...Amplifier, 3, 4, 21...
... Comparator, 7-10 ... On-delay circuit, 11
~14...transistor, 15...motor, 20
...integrator. In addition, in the figures, the same reference numerals indicate the same parts.

Claims (1)

【特許請求の範囲】[Claims] 1 パルス幅変調されたパルス信号で交互にオン
となるように直流電源線間に2個のトランジスタ
を直列接続した一対の直列回路と、直列接続した
トランジスタの各接続点に接続された直流電動機
とを有する直流電動機駆動装置において、上記直
流電動機に駆動電流を供給する直列接続された2
個のスイツチングトランジスタの接続点における
電圧を検出する検出器と、パルス幅変調されたパ
ルス信号と上記検出器の検出信号との位相差を検
出するゲート回路と、このゲート回路の出力信号
を時間的に積算する積分器と、この積分器の出力
信号の零電圧レベルを検出してパルス信号に変換
する比較器と、この比較器のパルス信号を上記ト
ランジスタの電荷蓄積時間より大きい遅延時間に
より遅延させて上記トランジスタをオンにさせる
オンデイレー回路とを備えたことを特徴とする直
流電動機駆動装置。
1. A pair of series circuits in which two transistors are connected in series between DC power supply lines so that they are turned on alternately by pulse width modulated pulse signals, and a DC motor connected to each connection point of the series-connected transistors. In the DC motor drive device having the above-mentioned DC motor, two
a detector that detects the voltage at the connection point of the switching transistors; a gate circuit that detects the phase difference between the pulse width modulated pulse signal and the detection signal of the detector; a comparator that detects the zero voltage level of the output signal of this integrator and converts it into a pulse signal, and the pulse signal of this comparator is delayed by a delay time that is longer than the charge accumulation time of the above transistor. and an on-delay circuit that turns on the transistor.
JP59104231A 1984-05-23 1984-05-23 Drive device for dc motor Granted JPS60249886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104231A JPS60249886A (en) 1984-05-23 1984-05-23 Drive device for dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104231A JPS60249886A (en) 1984-05-23 1984-05-23 Drive device for dc motor

Publications (2)

Publication Number Publication Date
JPS60249886A JPS60249886A (en) 1985-12-10
JPH0210677B2 true JPH0210677B2 (en) 1990-03-09

Family

ID=14375186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104231A Granted JPS60249886A (en) 1984-05-23 1984-05-23 Drive device for dc motor

Country Status (1)

Country Link
JP (1) JPS60249886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031321B1 (en) * 2019-05-28 2019-10-11 한화시스템(주) System for estimating position of flight vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031321B1 (en) * 2019-05-28 2019-10-11 한화시스템(주) System for estimating position of flight vehicle

Also Published As

Publication number Publication date
JPS60249886A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
EP0897213B1 (en) Monitoring of current in an inductive load, PWM driven through a bridge stage
US5262733A (en) Pulse-width modulation amplifier
EP1137162B1 (en) Analog/digital PWM control circuit of a winding
JP3982342B2 (en) Triangular wave generation circuit in class D amplifier and class D amplifier using the triangular wave generation circuit
US7817399B2 (en) PWM drive apparatus and method for correcting output offset thereof
JP2790263B2 (en) Current mode control converter circuit
KR100233956B1 (en) Voltage type inverter and that control method
US4969079A (en) Corrective device for inverter output voltage error
JPH0210677B2 (en)
JPH0431203B2 (en)
JPH04236171A (en) Method for suppressing output voltage waveform distortion of inverter
JPH06152269A (en) Switching amplifier
JPH09261974A (en) Control equipment of inverter
JPH06133559A (en) Voltage type pwm inverter
US10873283B2 (en) Actuator driving device
JPH04208076A (en) Method for detecting output current of pwm inverter
JP2567732Y2 (en) Step motor constant current drive circuit
JP2903444B2 (en) PWM inverter device
KR0122334Y1 (en) Current-limiting circuit
JPH0216862Y2 (en)
JP2513509Y2 (en) Inverter output voltage detection circuit
JPH025675Y2 (en)
JPH11275866A (en) Control method of three-phase rectifier power factor improving circuit
JP2002199735A (en) Inverter controller
JPH0324153B2 (en)