JPH02106671A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH02106671A
JPH02106671A JP25813088A JP25813088A JPH02106671A JP H02106671 A JPH02106671 A JP H02106671A JP 25813088 A JP25813088 A JP 25813088A JP 25813088 A JP25813088 A JP 25813088A JP H02106671 A JPH02106671 A JP H02106671A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
heat exchanger
compression capacity
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25813088A
Other languages
Japanese (ja)
Inventor
Mikihiko Kuroda
幹彦 黒田
Tetsuya Hoshino
哲也 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25813088A priority Critical patent/JPH02106671A/en
Publication of JPH02106671A publication Critical patent/JPH02106671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To shorten a changing-over time than that of the prior art, keep a longer heating operation time and improve a comfortable air conditioning by a method wherein a changing of compression capability is instantaneously got through a stopping and a starting of a second compressor having a designated compressing capability, and a compressing capability required in case of changing-over between a heating and a defrosting operation is changed together with the varying operation. CONSTITUTION:A unit 1 is constructed such that a first compressor 31 whose number of revolutions can be changed under a control of inverter and a second compressor 32 whose number of revolution is constant are connected in parallel to each other and stored in a housing. Temperature of an outdoor heat exchanger 7 is detected, an outdoor control device 40 is operated and a total output frequency is reduced. That is, the second compressor 32 is stopped, and after a reduction corresponding to a frequency of an applied power supply for the second compressor is carried out, if necessary, an output frequency for the first compressor 31 is gradually reduced to get a total frequency (fo) in case of performing a predetermined changing-over operation. As a result of such a control, a reduction of compressing capability at the second compressor 32 is carried out substantially instantaneously, so that change of capacity is carried out within a short period of time, resulting in that a high pressure reaches rapidly a low pressure state in case of performing a predetermined changing- over operation.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は圧縮能力可変な圧縮機を有すると共に、暖房
運転中に室外熱交換器に生じた霜を除く除霜運転への切
換機能を有する空気調和機に関するものである。
Detailed Description of the Invention (Industrial Application Field) This invention has a compressor with variable compression capacity, and also has a function to switch to a defrosting operation to remove frost generated on an outdoor heat exchanger during a heating operation. It is related to air conditioners.

(従来の技術) 上記のような空気調和機の従来例としては、例えば特開
昭59−185955号公報記載の装置を挙げることが
できる。その装置は、インバータ制御される回転数可変
形の圧縮機の吐出配管と吸込配管とを四路切換弁に接続
し、さらにこの四路切換弁に室内熱交換器、減圧機構、
室外熱交換器を順次接続して冷媒循環回路を構成してい
る。
(Prior Art) As a conventional example of the above-mentioned air conditioner, there can be mentioned, for example, a device described in Japanese Patent Application Laid-open No. 59-185955. The device connects the discharge piping and suction piping of a variable rotation speed compressor controlled by an inverter to a four-way switching valve, and further connects the four-way switching valve with an indoor heat exchanger, a pressure reducing mechanism,
A refrigerant circulation circuit is constructed by sequentially connecting outdoor heat exchangers.

上記装置では圧縮機からの吐出冷媒を室内熱交換器側か
ら室外熱交換器へと回流させて暖房運転を行い、この暖
房運転中に室外熱交換器に生じた霜を除く除霜運転は、
上記から四路切換弁を切換えて圧縮機からの吐出冷媒を
室外熱交換器側から室内熱交換器へと回流させる、いわ
ゆる逆サイクルデフロストによって行うようになされて
いる。
In the above device, the refrigerant discharged from the compressor is circulated from the indoor heat exchanger side to the outdoor heat exchanger to perform heating operation, and the defrosting operation is to remove frost that has formed on the outdoor heat exchanger during this heating operation.
From the above, the four-way selector valve is switched to circulate the refrigerant discharged from the compressor from the outdoor heat exchanger to the indoor heat exchanger, which is what is called reverse cycle defrosting.

そして暖房運転から除霜運転への切換時には、圧縮機の
回転数を、暖房運転時の室内側の暖房負荷に応じた回転
数から所定の低回転数に低下させ、この状態にて四路切
換弁を切換え、その後、所定の除霜時回転数に上昇させ
る制御を行っている。
When switching from heating operation to defrosting operation, the rotation speed of the compressor is reduced from the rotation speed corresponding to the indoor heating load during heating operation to a predetermined low rotation speed, and in this state four-way switching is performed. After switching the valve, control is performed to increase the rotation speed to a predetermined defrosting speed.

これは圧縮機を高速回転しているとき、すなわち高い圧
縮能力で運転しているときには、その吐出圧力と吸込圧
力との差が大きく、この状態で四路切換弁を切換えると
冷媒流路が変わる際の衝撃振動が発生し、在室者に不快
感を与えることとなるためである。なお除霜終了後、暖
房運転へ復帰する際も、同様に圧縮機を低圧縮能力状態
として四路切換弁の切換えを行い、衝撃振動の防止を行
うようにしている。
This is because when the compressor is rotating at high speed, that is, when operating at high compression capacity, there is a large difference between the discharge pressure and suction pressure, and when the four-way selector valve is switched in this state, the refrigerant flow path changes. This is because shock vibrations are generated when the room is closed, causing discomfort to the occupants. When returning to heating operation after defrosting, the compressor is similarly placed in a low compression capacity state and the four-way selector valve is switched to prevent impact vibrations.

(発明が解決しようとする課題) しかしながら上記装置においては、暖房と除霜との切換
時における圧縮能力の変更が、インバータ制御周波数を
漸減して所定の低回転数状態とし、また漸増して除霜時
の運転周波数(除霜開始時)、或いは暖房時の運転周波
数(暖房再開時)とする操作が必要であるために、この
漸減、漸増の時間によって切換え時間が長(なり、その
分、暖房運転時間が短くなるために暖房能力が低下し、
充分な快適性が得られないという問題を生じている。
(Problem to be Solved by the Invention) However, in the above device, the compression capacity is changed when switching between heating and defrosting by gradually reducing the inverter control frequency to a predetermined low rotational speed state, and then gradually increasing the frequency to achieve a predetermined low rotational speed state. Since it is necessary to change the operating frequency to the operating frequency during frost (when defrosting starts) or the operating frequency during heating (when heating resumes), the switching time becomes longer due to the time of gradual decrease and increase. Heating capacity decreases due to shorter heating operation time,
This poses a problem in that sufficient comfort cannot be obtained.

この発明は上記に鑑みなされたものであって、その目的
は、上記のような暖房運転と除霜運転との切換時間の短
縮を図り、これにより暖房運転時間を従来よりも長くし
て空調快適性を向上し得る空気調和機を提供することに
ある。
This invention was made in view of the above, and its purpose is to shorten the switching time between heating operation and defrosting operation as described above, thereby extending the heating operation time than before and making air conditioning more comfortable. The purpose of the present invention is to provide an air conditioner that can improve performance.

(課題を解決するための手段) そこでこの発明の空気調和機は、圧縮機ユニット1に、
その吐出冷媒が室内熱交換器15から室外熱交換器7へ
と回流して上記圧縮機ユニット1に返流される暖房時の
冷媒循環径路と、吐出冷媒が室外熱交換器7に供給され
た後、上記圧縮機ユニットlに返流される除霜時の冷媒
循環径路とを与える冷媒回路を接続すると共に、上記冷
媒回路に暖房時の冷媒循環径路と除霜時の冷媒循環径路
とを切換える切換手段17.18.23を介装して成る
空気調和機であって、上記圧縮機ユニットlを圧縮能力
可変な第1の圧縮機31と圧縮能力一定の第2の圧縮機
32とを互いに並列に接続して構成すると共に、所定の
低圧縮能力状態で上記切換手段17.18.23を切換
作動して暖房と除霜との切換えを行う際に、暖房時及び
除霜時の圧縮能力と上記低圧縮能力状態との圧縮や力の
変更を、上記第2圧縮機32の停止及び再起動を上記第
1圧縮機31の圧縮能力の変更に併用させて行う切換時
運転制御手段40を設けている。
(Means for Solving the Problems) Therefore, in the air conditioner of the present invention, the compressor unit 1 includes:
A refrigerant circulation path during heating in which the discharged refrigerant is circulated from the indoor heat exchanger 15 to the outdoor heat exchanger 7 and returned to the compressor unit 1, and the discharged refrigerant is supplied to the outdoor heat exchanger 7. After that, a refrigerant circuit that provides a refrigerant circulation path during defrosting that is returned to the compressor unit l is connected, and the refrigerant circuit is switched between a refrigerant circulation path during heating and a refrigerant circulation path during defrosting. An air conditioner equipped with a switching means 17, 18, 23, in which the compressor unit 1 is connected to a first compressor 31 having a variable compression capacity and a second compressor 32 having a constant compression capacity to each other. In addition, when the switching means 17, 18, and 23 are switched in a predetermined low compression capacity state to switch between heating and defrosting, the compression capacity during heating and defrosting is switching operation control means 40 for changing compression and force between the low compression capacity state and the low compression capacity state by stopping and restarting the second compressor 32 in combination with changing the compression capacity of the first compressor 31; It is set up.

(作用) 上記構成の空気調和機においては、暖房と除霜との切換
え時に必要な圧m能力の変更は、圧縮能力一定の第2圧
縮機32の停止と起動とによって、この第2圧縮機32
の圧縮能力骨の変更がまず瞬間的になされ、この第2圧
縮機32の圧縮能力を越える変更量に対してのみ圧縮能
力可変形の第1圧縮[31で追加の変更を行えばよく、
したがって上記第2圧縮機32の圧縮能力骨に対して従
来必要であった変更時間だけ切換時間が短縮される。
(Function) In the air conditioner having the above configuration, the pressure m capacity required when switching between heating and defrosting can be changed by stopping and starting the second compressor 32, which has a constant compression capacity. 32
First, the compression capacity bone is changed instantaneously, and only for the amount of change exceeding the compression capacity of the second compressor 32, an additional change may be made in the first compression [31] of the variable compression capacity type.
Therefore, the switching time is shortened by the amount of time required for changing the compression capacity of the second compressor 32 in the past.

これにより暖房運転時間をより長く確保し得ることにな
るので、空調快適性が向上する。
This makes it possible to secure a longer heating operation time, thereby improving air conditioning comfort.

(実施例) 次にこの発明の空気調和機の具体的な実施例について、
図面を参照しつつ詳細に説明する。
(Example) Next, regarding a specific example of the air conditioner of this invention,
This will be explained in detail with reference to the drawings.

第1図には、1台の室外ユニットXに第1〜第4の室内
ユニットA−Dを接続してマルチ形空気調和機として構
成したこの発明の一実施例における装置の冷媒回路図を
示している。
FIG. 1 shows a refrigerant circuit diagram of an apparatus according to an embodiment of the present invention, which is configured as a multi-type air conditioner by connecting the first to fourth indoor units A to D to one outdoor unit X. ing.

上記室外ユニットXには圧縮機ユニット1が内装されて
おり、この圧wi機ユニッI−1の吐出配管2と吸込配
管3とはそれぞれ四路切換弁4に接続され、この四路切
換弁4にさらに第1ガス管5と第2ガス管6とが接続さ
れている。上記圧縮機ユニット1は、インバータ制御に
よる回転数可変形の第1の圧縮機31と、回転数一定の
第2の圧縮機32とを互いに並列に接続してハウジング
内に収納して構成しており、また第1、第2圧縮機31
.32の各吸込側はそれぞれ第1アキユームレータ33
.33を介して相互に接続されている。
A compressor unit 1 is installed inside the outdoor unit Further, a first gas pipe 5 and a second gas pipe 6 are connected. The compressor unit 1 is constructed by connecting a first compressor 31 whose rotation speed is variable by inverter control and a second compressor 32 whose rotation speed is constant and housing them in a housing. Also, the first and second compressors 31
.. Each suction side of 32 is connected to a first accumulator 33.
.. They are interconnected via 33.

上記第1ガス管5には室外熱交換器7が接続されており
、この室外熱交換器7に、第1電動膨張弁8、受液器9
が順次介設された液管10がさらに接続されている。こ
の液管10の先端は、それぞれ第2電動膨張弁11・・
11の介設された4本の液受管12・・12に分岐され
ており、また上記第2ガス管6の先端も、上記に対応し
て、それぞれガス支管マフラー13・・13の介設され
た4本のガス支管14・・14に分岐されている。
An outdoor heat exchanger 7 is connected to the first gas pipe 5, and a first electric expansion valve 8 and a liquid receiver 9 are connected to the outdoor heat exchanger 7.
Further, a liquid pipe 10 is connected thereto. The tip of this liquid pipe 10 is connected to a second electric expansion valve 11, respectively.
11 are interposed, and the tip of the second gas pipe 6 is also branched into four liquid receiving pipes 12...12, each having a gas branch pipe muffler 13...13 interposed therein. It is branched into four gas branch pipes 14...14.

そしてこれらの液受管12・・12とガス支管14・・
14との間に、第1〜第4室内ユニツトA〜Dに内装さ
れている各室内熱交換器(第1室内ユニツトAについて
のみ図示する)15が接続されて冷媒循環回路が構成さ
れている。
And these liquid receiving pipes 12...12 and gas branch pipes 14...
14, each indoor heat exchanger 15 (only the first indoor unit A is shown) installed in the first to fourth indoor units A to D is connected to form a refrigerant circulation circuit. .

そして上記冷媒循環回路における吐出配管2には、圧縮
機ユニット1側から吐出管マフラー16と第1開閉弁1
7とが順次介設されると共に、上記吐出管マフラー16
と第1開閉弁17との間から、第2開閉弁18の介設さ
れた第1バイパス配管19が分岐され、この第1バイパ
ス配管19は、上記液管10における第1電動膨張弁8
よりも室外熱交換器7側に接続されている。
A discharge pipe muffler 16 and a first on-off valve 1 are connected to the discharge pipe 2 in the refrigerant circulation circuit from the compressor unit 1 side.
7 are successively interposed, and the discharge pipe muffler 16
A first bypass pipe 19 in which a second on-off valve 18 is interposed is branched from between the first on-off valve 17 and the first electric expansion valve 8 in the liquid pipe 10.
It is connected to the outdoor heat exchanger 7 side.

さらに上記装置においては、上記吐出配管2の途中に蓄
熱槽21が周設されており、圧縮機ユニット1からの高
温吐出ガス冷媒の流通によって高温温度状態に維持され
る上記吐出配管2からの外部放散熱量を、上記蓄熱槽2
1内に充填している蓄熱剤に蓄熱するようになされてい
る。一方、上記吸込配管3には第2アキユームレータ2
2が介設されているが、この吸込配管3における一ヒ記
第1アキュームレータ22よりも四路切換弁4側と、上
記第1ガス管5とが、第3開閉弁23の介設された第2
バイパス配管24で接続されており、この第2バイパス
配管24における上記第3開閉弁23よりも第2アキユ
ームレータ22側の中途部に、上記蓄熱槽21内に配設
される熱交換部25が設けられ、上記蓄熱剤に蓄熱され
ている熱量がこの熱交換部25を流通する冷媒に付与さ
れるようになされている。
Further, in the above device, a heat storage tank 21 is provided in the middle of the discharge piping 2, and the external heat storage tank 21 is maintained in a high temperature state by the flow of the high temperature discharged gas refrigerant from the compressor unit 1. The amount of heat dissipated is transferred to the heat storage tank 2.
Heat is stored in the heat storage agent filled in the inside of the tank. On the other hand, a second accumulator 2 is connected to the suction pipe 3.
2 is interposed, but the side of the suction pipe 3 closer to the four-way switching valve 4 than the first accumulator 22 and the first gas pipe 5 are connected to the third on-off valve 23. Second
A heat exchange section 25 is connected to the heat storage tank 21 by a bypass pipe 24 and is disposed in the middle of the second bypass pipe 24 on the side closer to the second accumulator 22 than the third on-off valve 23 . is provided so that the amount of heat stored in the heat storage agent is applied to the refrigerant flowing through the heat exchange section 25.

なお上記冷媒循環回路においては、吐出配管2と吸込配
管3とは、第4開閉弁34の介設された第3バイパス配
管35で相互に接続されているが、これは、圧縮機ユニ
7)1の運転停止後に上記第4開閉弁34を開弁するこ
とによって冷媒回路内を迅速に均圧化するためのもので
ある。さらに第1図において、第1室内ユニッl−Aの
接続されている液受管12を、第5開閉弁36の介設さ
れた第4バイパス配管37で上記第1バイパス配管19
に接続すると共に、上記第1室内ユニツトAの接続され
ているガス支管14には、第6開閉弁38と逆止弁39
との並列回路が介設されているが、これらは、例えば未
使用時の浴室の更衣室を洗濯後の衣類の乾燥室とし、上
記更衣室内に温風を吹出すための乾燥ユニットの接続を
、上記室内ユニットAに替えて接続し得る構成としてい
るものである。この場合に、その他の室内ユニッ)B−
Dとは異なる冷媒循環制御を乾燥ユニットに対して行う
ために、上記の第5、第6開閉弁3G、38の開閉操作
を行うこととなるが、その詳細は省略し、以下には上記
第1室内ユニットAが接続され、したがって上記第5開
閉弁36は閉に、また第6開閉弁38は閉にそれぞれ維
持し、また上記均圧用の第4開閉弁34を開にして行う
暖房運転と除霜運転との冷媒循環制御について説明する
In the above-mentioned refrigerant circulation circuit, the discharge pipe 2 and the suction pipe 3 are connected to each other by a third bypass pipe 35 in which a fourth on-off valve 34 is interposed. This is to quickly equalize the pressure in the refrigerant circuit by opening the fourth on-off valve 34 after the first operation is stopped. Furthermore, in FIG. 1, the liquid receiving pipe 12 connected to the first indoor unit l-A is connected to the first bypass pipe 19 by the fourth bypass pipe 37 in which the fifth on-off valve 36 is interposed.
The gas branch pipe 14 to which the first indoor unit A is connected also has a sixth on-off valve 38 and a check valve 39.
For example, a parallel circuit is installed between the changing room of the bathroom when not in use and a drying unit for blowing hot air into the changing room. , which can be connected in place of the indoor unit A described above. In this case, other indoor units) B-
In order to perform refrigerant circulation control on the drying unit that is different from D, the opening and closing operations of the fifth and sixth on-off valves 3G and 38 described above will be performed, but the details will be omitted and the following will be described below. 1 indoor unit A is connected, therefore, the fifth on-off valve 36 is kept closed, the sixth on-off valve 38 is kept closed, and the fourth on-off valve 34 for pressure equalization is opened. Refrigerant circulation control with defrosting operation will be explained.

上記各室内ユニットA−Dには、図示してばいないが、
それぞれ室内制御装置がさらに設けられており、また室
外ユニットXには、図のように、暖房運転と除霜運転と
の切換枠運転制御手段としての機能も有する室外制御装
置40が設けられている。そして室内制御装置側での冷
暖切換スイッチを暖房側にして運転スイッチが利用者に
より0:1操作された時に、上記室外制御装置40によ
って、四路切換弁4は図中実線で示す切換位置に、また
第1開閉弁17は開、第2、第3開閉弁18.23は閉
にして圧縮機ユニッ)1が起動され暖房運転が開始され
る。これにより圧縮機ユニット1からの吐出冷媒は、図
中実線矢印で示すように、四踏切換弁4、第2ガス管6
を経由して各室内熱交換器15に供給され、さらに液管
10から室外熱交換器7を通過し、第1ガス管5、四路
切換弁4、吸込配管3を経由して圧縮機ユニット1に返
流される。この場合、蒸発冷媒の過熱度制御は第1電動
膨張弁8で行われる。また各第2電動膨張弁11・・1
1では、各室内熱交換器15への冷媒分配徹の制御が行
われるが、これは各室内熱交換器15出口での凝縮冷媒
温度を同一温度となるように上記各第2電動膨張弁11
・・11の開度を制御することによって行う。なお停止
部屋の室内ユニットに対応する第2電動膨張弁11は所
定の停止開度(圧縮機lへの液戻りを防止するため、自
然放熱に見合うだけのわずかな量の冷媒を流し得る開度
)に維持する。
Although not shown in each indoor unit A-D above,
Each of them is further provided with an indoor control device, and the outdoor unit X is also provided with an outdoor control device 40 that also functions as a switching frame operation control means for heating operation and defrosting operation, as shown in the figure. . When the cooling/heating selector switch on the indoor control device side is set to the heating side and the operation switch is operated 0:1 by the user, the outdoor control device 40 moves the four-way selector valve 4 to the switching position shown by the solid line in the figure. Also, the first on-off valve 17 is opened, the second and third on-off valves 18 and 23 are closed, and the compressor unit 1 is activated to start heating operation. As a result, the refrigerant discharged from the compressor unit 1 is transferred to the four-step switching valve 4, the second gas pipe 6, as shown by the solid line arrow in the figure.
The liquid is supplied to each indoor heat exchanger 15 via the liquid pipe 10, passes through the outdoor heat exchanger 7, and is supplied to the compressor unit via the first gas pipe 5, four-way switching valve 4, and suction pipe 3. It is returned to 1. In this case, the degree of superheating of the evaporative refrigerant is controlled by the first electric expansion valve 8. In addition, each second electric expansion valve 11...1
1, the refrigerant distribution to each indoor heat exchanger 15 is controlled.
...This is done by controlling the opening degree of 11. The second electric expansion valve 11 corresponding to the indoor unit in the stop room is set to a predetermined stop opening (opening that allows a small amount of refrigerant to flow in proportion to natural heat dissipation in order to prevent liquid from returning to the compressor 1). ).

なお冷房運転は、上記から四路切換弁4を図中破線で示
す切換位置に切換え、図中破線矢印で示すように、圧縮
機ユニット1からの吐出冷媒を、凝縮器となる室外熱交
換器7から蒸発器となる各室内熱交換器15・・15へ
と回流させることによって行う。このとき、第1電動膨
張弁8は全開にし、各第2電動膨張弁11・・11で冷
媒の過熱度制御を行う。なお冷房停止部屋の室内ユニッ
トに対応する第2電動膨張弁11は全開にする。
In the cooling operation, the four-way switching valve 4 is switched to the switching position shown by the broken line in the figure, and the refrigerant discharged from the compressor unit 1 is transferred to the outdoor heat exchanger that serves as the condenser, as shown by the broken line arrow in the figure. This is done by circulating the heat from the heat exchanger 7 to each indoor heat exchanger 15, which serves as an evaporator. At this time, the first electric expansion valve 8 is fully opened, and each of the second electric expansion valves 11 . . . 11 controls the degree of superheating of the refrigerant. Note that the second electric expansion valve 11 corresponding to the indoor unit in the room where cooling is stopped is fully opened.

上記の暖房運転の継続中に、室外熱交換器7に付着成長
した霜が増加してきた場合、例えば上記室外熱交換器7
の温度が上記の着霜量と共に低下することから、室外熱
交換器7の温度を検出し、その検出温度が基準温度以下
となったときにデフロスト信号が発生されるようになさ
れており、このデフロスト信号に応じて、上記室外制御
装置40は、第2図に示しているような、圧縮機ユニッ
トlに対して、第1圧縮機31へのインバータ制御装置
(図示せず)の出力周波数と、第2圧縮機32に印加さ
れる商用電源の周波数(例えば60Hz )との合計出
力周波数を可変することにより合計圧縮能力を変更する
制御と、各開閉弁17.18.23、及び四路切換弁4
の開閉制御と、各電動膨張弁8.11の開度制御とを行
うようになされている。すなわち上記デフロスト信号の
発生と略同時に上記合計出力周波数の低下操作を行う。
If the frost that has grown on the outdoor heat exchanger 7 increases while the heating operation is continued, for example, the outdoor heat exchanger 7
Since the temperature of the outdoor heat exchanger 7 decreases with the amount of frost formed above, the temperature of the outdoor heat exchanger 7 is detected, and a defrost signal is generated when the detected temperature becomes below the reference temperature. In response to the defrost signal, the outdoor control device 40 controls the output frequency of the inverter control device (not shown) to the first compressor 31 for the compressor unit l as shown in FIG. , control for changing the total compression capacity by varying the total output frequency with the frequency of the commercial power supply (for example, 60 Hz) applied to the second compressor 32, each on-off valve 17, 18, 23, and four-way switching. valve 4
The opening/closing control of each electric expansion valve 8.11 and the opening degree control of each electric expansion valve 8.11 are performed. That is, the total output frequency is reduced substantially simultaneously with the generation of the defrost signal.

これはまず上記第2圧縮機32を停止することによって
、この第2圧縮機への印加電源の周波数(60Hz)分
の低下を行った後、必要ならば第1圧縮機31への出力
周波数を漸減させて、所定の切換時合計周波数foにす
る。このような制御の結果、図中破線で示している圧縮
能力可変形の圧縮機のみを備えた従来装置での圧縮能力
変更時間に比べて、上記第2圧縮機32での圧縮能力分
の低下がほぼ瞬間的になされるので、より短時間のうち
に能力変更が行われ、また図中高圧側圧力の欄に示して
いるように、より迅速に高圧側圧力が所定の切換時低圧
圧力状態に達することとなる。
This is done by first stopping the second compressor 32 to reduce the frequency (60Hz) of the power applied to the second compressor, and then, if necessary, reducing the output frequency to the first compressor 31. The frequency is gradually decreased to a predetermined total switching frequency fo. As a result of such control, the compression capacity of the second compressor 32 is reduced compared to the compression capacity change time of a conventional device equipped with only a compressor with variable compression capacity, as shown by the broken line in the figure. Since this is done almost instantaneously, the capacity change can be made in a shorter period of time, and as shown in the column of high pressure side pressure in the figure, the high pressure side pressure can be changed more quickly to the low pressure state at the time of the predetermined switching. will be reached.

そしてこの低圧力状態となったときに、第2開閉弁18
と第3開閉弁23とをそれぞれ開弁じ、その後、幾分遅
れて第1開閉弁17を閉弁すると共に、四路切換弁4を
第1図中破線で示す切換位置に切換え、また第1、第2
電動膨張弁8.11をそれぞれ全開にするのである。こ
れにより、圧縮機ユニット1から吐出される冷媒は、第
1図の一点鎖線矢印で示しているように、第1バイパス
配管19を通して直接室外熱交換器7に供給される。そ
して室外熱交換器7を通過した冷媒は、第1ガス管5か
ら第2バイパス配管24を通して圧縮機ユニット1に返
流される除霜時の冷媒循環サイクルに変更される。
When this low pressure state occurs, the second on-off valve 18
and the third on-off valve 23 are opened, and then, after some delay, the first on-off valve 17 is closed, and the four-way switching valve 4 is switched to the switching position shown by the broken line in FIG. , second
The electric expansion valves 8 and 11 are respectively fully opened. Thereby, the refrigerant discharged from the compressor unit 1 is directly supplied to the outdoor heat exchanger 7 through the first bypass pipe 19, as indicated by the dashed-dotted arrow in FIG. The refrigerant that has passed through the outdoor heat exchanger 7 is changed into a refrigerant circulation cycle during defrosting, in which the refrigerant is returned from the first gas pipe 5 to the compressor unit 1 through the second bypass pipe 24.

上記の答弁の切換えを行った後、圧縮機ユニット1に対
する合計出力周波数を所定の除霜運転周波数fdまで上
昇させるが、これは第2図のようにまず第2圧縮機32
を再起動することによってほぼ瞬間的に60Hz分の上
昇を与え、その後、第1圧縮機31への出力周波数を漸
増させることによって行う。したがってこの場合にも従
来に比べてより迅速な圧縮能力の変更、及び高圧側圧力
の上昇がなされ、これらの変更に要する時間が短縮され
る。
After the above answer is switched, the total output frequency for the compressor unit 1 is increased to a predetermined defrosting operation frequency fd, but this is first performed by the second compressor 32 as shown in FIG.
This is done by restarting the compressor to give an increase of 60 Hz almost instantaneously, and then gradually increasing the output frequency to the first compressor 31. Therefore, in this case as well, the compression capacity can be changed more quickly and the pressure on the high pressure side can be increased more quickly than in the past, and the time required for these changes can be shortened.

上記の除霜運転時の冷媒循環サイクルにおいては、霜の
付着した低温の室外熱交換器7に放熱することにより凝
縮した液冷媒は、第2バイパス配管24を通して圧縮機
ユニットlに返流される際に、上記第2バイパス配管2
4の熱交換部25において蓄熱槽21での蓄熱熱量が付
与される。つまり暖房運転時の放散熱量を蓄熱槽21内
に蓄熱しておき、この蓄熱熱量も除霜熱量として活用さ
れる除霜運転が行われる。また上記においては、除霜運
転の開始時に、室内側は四路切換弁4を介して吸込配管
3に連通することとなり、この結果、それまでの暖房運
転時に各室内側に供給されていた冷媒の回収がなされ、
これにより、除霜運転開始時における室内側での冷媒保
存熱量が除霜熱量として活用されるものともなっている
In the refrigerant circulation cycle during the above-mentioned defrosting operation, the liquid refrigerant condensed by dissipating heat to the frosted, low-temperature outdoor heat exchanger 7 is returned to the compressor unit l through the second bypass pipe 24. In this case, the second bypass piping 2
The amount of heat stored in the heat storage tank 21 is provided in the heat exchange section 25 of No. 4. In other words, the amount of heat dissipated during the heating operation is stored in the heat storage tank 21, and the defrosting operation is performed in which this amount of stored heat is also utilized as the amount of defrosting heat. In addition, in the above case, at the start of defrosting operation, the indoor side is communicated with the suction pipe 3 via the four-way switching valve 4, and as a result, the refrigerant that had been supplied to each indoor side during the heating operation until then is were collected,
Thereby, the amount of heat stored in the refrigerant indoors at the start of the defrosting operation is utilized as the amount of heat for defrosting.

上記の除霜運転の継続によって室外熱交換器7に付着し
ていた霜が除かれ、その後、室外熱交換器7の温度が上
昇してその検出温度が所定のデフロスト終了温度を超え
た時にデフロスト信号が停止され、これにより、室外制
御装置40によって、第2図に示すような暖房運転への
復帰操作が行われる。すなわち上記デフロスト信号の停
止と略同時にまず四路切換弁4の切換えと第1、第2電
動膨張弁8.11の開弁を行う。これにより、それまで
四路切換弁4を介して吸込配管3に連通していた室内側
は、吸込配管3への連通が断たれると共に、液管10側
から高圧圧力が導入される。その後、圧縮機ユニット1
への合計出力周波数を切換時合計周波数foへと低下さ
せるが、この操作も前記と同様に、まず第2圧縮機32
の停止後、第1圧縮機31に対する出力周波数の漸減を
行うようにして、変更時間を短縮するようにしている。
By continuing the defrosting operation described above, the frost adhering to the outdoor heat exchanger 7 is removed, and after that, when the temperature of the outdoor heat exchanger 7 rises and the detected temperature exceeds the predetermined defrost end temperature, the defrost operation starts. The signal is stopped, and as a result, the outdoor control device 40 performs an operation to return to the heating operation as shown in FIG. That is, substantially simultaneously with the stop of the defrost signal, the four-way switching valve 4 is switched and the first and second electric expansion valves 8.11 are opened. As a result, the indoor side, which had been communicating with the suction pipe 3 via the four-way switching valve 4, is cut off from communicating with the suction pipe 3, and high pressure is introduced from the liquid pipe 10 side. After that, compressor unit 1
The total output frequency of
After the first compressor 31 is stopped, the output frequency of the first compressor 31 is gradually decreased to shorten the change time.

そして高圧側圧力を切換特低圧力状態として、第1開閉
弁17をまず開弁じ、第2、第3開閉弁18.23を閉
弁して、暖房循環サイクルに復帰させる。なおこの復帰
操作を終了した後の圧縮能力の上昇は、油上りを防止す
るために第1圧縮機31の圧縮能力を段階的に上昇させ
ていく制?111を行うようにしている。
Then, the high pressure side pressure is switched to a special low pressure state, the first on-off valve 17 is first opened, and the second and third on-off valves 18.23 are closed to return to the heating circulation cycle. Note that the compression capacity is increased after this return operation is completed by increasing the compression capacity of the first compressor 31 in stages to prevent oil from rising. I try to call 111.

以上のように、上記装置においては暖房と除霜との切換
時に必要な圧縮能力の変更を、第2圧縮機32の停止及
び起動を併用して行うことにより、従来よりも変更時間
が短縮されることとなり、この結果、暖房運転時間をよ
り長く確保し得ることとなるので、空調快適性が向上す
る。また上記装置では、除霜運転から暖房運転への切換
時に室内側に液管10側から高圧冷媒を導入することと
しているが、この結果、暖房再開時の高圧圧力の立上り
が迅速に行われ、この結果、速暖性が得られることによ
っても空調快適性がさらに向上されるものとなっている
As described above, in the above device, the change in compression capacity required when switching between heating and defrosting is performed in conjunction with stopping and starting the second compressor 32, thereby reducing the change time compared to conventional methods. As a result, the heating operation time can be secured for a longer period of time, thereby improving air conditioning comfort. In addition, in the above device, high-pressure refrigerant is introduced into the room from the liquid pipe 10 side when switching from defrosting operation to heating operation, but as a result, the high pressure rises quickly when heating is restarted, As a result, air-conditioning comfort is further improved by providing rapid heating.

以上、この発明の具体的な実施例についての説明を行っ
たが、上記実施例はこの発明を限定するものではなくこ
の発明の範囲内で種々の変更が可能であり、例えば上記
では、暖房と除霜との切換手段を第1〜第3開閉弁17
.18.23で構成し、圧縮機ユニット1からの吐出冷
媒を室外熱交換器7に直接供給する、いわゆる正サイク
ルデフロストによって除霜を行うように構成した装置を
例に挙げて装置を説明したが、前記した従来装置のよう
に逆サイクルデフロストにより除霜を行う装置にもこの
発明の適用が可能であり、この場合、暖房と除霜との切
換手段は四路切換弁によって構成される。また上記にお
いては複数の室内ユニットA−Dを接続したマルチ形空
気調和機を例に挙げて説明したが、1台の室内ユニット
を接続した空気調和機においても上記同様に実施可能で
ある。
Although specific embodiments of the present invention have been described above, the above embodiments do not limit the present invention, and various modifications can be made within the scope of the present invention.For example, in the above embodiment, heating and The switching means for defrosting is the first to third on-off valves 17.
.. 18.23 and is configured to defrost by so-called positive cycle defrost, in which the refrigerant discharged from the compressor unit 1 is directly supplied to the outdoor heat exchanger 7. The present invention can also be applied to a device that performs defrosting by reverse cycle defrosting like the conventional device described above, and in this case, the switching means between heating and defrosting is constituted by a four-way switching valve. Furthermore, although the above description has been given by way of example of a multi-type air conditioner in which a plurality of indoor units A to D are connected, the same implementation as described above is also possible in an air conditioner in which one indoor unit is connected.

(発明の効果) 上記のようにこの発明の空気調和機においては、圧縮能
力一定の第2圧縮機の停止及び起動によってその圧縮能
力骨の変更がほぼ瞬間的に得られ、これを併用して暖房
と除霜との切換時に必要な圧縮能力の変更を行うことと
しているので、切換時間が従来よりも短縮され、この結
果、暖房運転時間をより長く確保し得るので、空調快適
性が向上する。
(Effects of the Invention) As described above, in the air conditioner of the present invention, by stopping and starting the second compressor, which has a constant compression capacity, the compression capacity can be changed almost instantaneously. Since the compression capacity required when switching between heating and defrosting is changed, the switching time is shorter than before, and as a result, heating operation time can be secured longer, improving air conditioning comfort. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマルチ形空気調和機として構成したこの発明の
一実施例における装置の冷媒回路図、第2図は上記空気
調和機における除霜運転への切換制御のタイムチャート
である。 1・・・圧縮機ユニット、7・・・室外熱交換器、15
・・・室内熱交換器、17・・・第1開閉弁、18・・
・第2開閉弁、23・・・第3開閉弁、 縮機、 手段) ・第1圧縮機、 ・第2圧 ・室外制御装置(切換時運軸制御
FIG. 1 is a refrigerant circuit diagram of an apparatus according to an embodiment of the present invention configured as a multi-type air conditioner, and FIG. 2 is a time chart of switching control to defrosting operation in the air conditioner. 1... Compressor unit, 7... Outdoor heat exchanger, 15
...Indoor heat exchanger, 17...First on-off valve, 18...
・Second on-off valve, 23...Third on-off valve, compressor, means) ・First compressor, ・Second pressure/outdoor control device (shaft movement control at switching

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機ユニット(1)に、その吐出冷媒が室内熱交
換器(15)から室外熱交換器(7)へと回流して上記
圧縮機ユニット(1)に返流される暖房時の冷媒循環径
路と、吐出冷媒が室外熱交換器(7)に供給された後、
上記圧縮機ユニット(1)に返流される除霜時の冷媒循
環径路とを与える冷媒回路を接続すると共に、上記冷媒
回路に暖房時の冷媒循環径路と除霜時の冷媒循環径路と
を切換える切換手段(17)(18)(23)を介装し
て成る空気調和機であって、上記圧縮機ユニット(1)
を圧縮能力可変な第1の圧縮機(31)と圧縮能力一定
の第2の圧縮機(32)とを互いに並列に接続して構成
すると共に、所定の低圧縮能力状態で上記切換手段(1
7)(18)(23)を切換作動して暖房と除霜との切
換えを行う際に、暖房時及び除霜時の圧縮能力と上記低
圧縮能力状態との圧縮能力の変更を、上記第2圧縮機(
32)の停止及び再起動を上記第1圧縮機(31)の圧
縮能力の変更に併用させて行う切換時運転制御手段(4
0)を設けていることを特徴とする空気調和機。
1. Refrigerant during heating in which the discharged refrigerant of the compressor unit (1) circulates from the indoor heat exchanger (15) to the outdoor heat exchanger (7) and returns to the compressor unit (1). After the circulation path and the discharged refrigerant are supplied to the outdoor heat exchanger (7),
A refrigerant circuit providing a refrigerant circulation path during defrosting that is returned to the compressor unit (1) is connected, and the refrigerant circulation path during heating and a refrigerant circulation path during defrosting are switched to the refrigerant circuit. An air conditioner comprising switching means (17), (18), and (23), the compressor unit (1)
is constructed by connecting a first compressor (31) with a variable compression capacity and a second compressor (32) with a constant compression capacity in parallel, and in a predetermined low compression capacity state, the switching means (1)
7) When switching between heating and defrosting by switching (18) and (23), change the compression capacity between the compression capacity during heating and defrosting and the low compression capacity state described above. 2 compressors (
switching operation control means (4) for stopping and restarting the first compressor (32) in conjunction with changing the compression capacity of the first compressor (31);
0).
JP25813088A 1988-10-13 1988-10-13 Air conditioner Pending JPH02106671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25813088A JPH02106671A (en) 1988-10-13 1988-10-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25813088A JPH02106671A (en) 1988-10-13 1988-10-13 Air conditioner

Publications (1)

Publication Number Publication Date
JPH02106671A true JPH02106671A (en) 1990-04-18

Family

ID=17315929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25813088A Pending JPH02106671A (en) 1988-10-13 1988-10-13 Air conditioner

Country Status (1)

Country Link
JP (1) JPH02106671A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154853A (en) * 1978-05-26 1979-12-06 Sanyo Electric Co Ltd Freezer
JPS60159566A (en) * 1984-01-28 1985-08-21 ダイキン工業株式会社 Controller for operation of air conditioner
JPS6179959A (en) * 1984-09-27 1986-04-23 ダイキン工業株式会社 Heat pump type air conditioner
JPS62123246A (en) * 1985-11-22 1987-06-04 Daikin Ind Ltd Control unit of air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154853A (en) * 1978-05-26 1979-12-06 Sanyo Electric Co Ltd Freezer
JPS60159566A (en) * 1984-01-28 1985-08-21 ダイキン工業株式会社 Controller for operation of air conditioner
JPS6179959A (en) * 1984-09-27 1986-04-23 ダイキン工業株式会社 Heat pump type air conditioner
JPS62123246A (en) * 1985-11-22 1987-06-04 Daikin Ind Ltd Control unit of air conditioner

Similar Documents

Publication Publication Date Title
JP3861912B2 (en) Refrigeration equipment
KR20040050477A (en) An air-condition system
JP3956784B2 (en) Refrigeration equipment
KR20060086763A (en) Air conditioner equipped with variable capacity type compressor
JPH11142001A (en) Air conditioner
WO2021010130A1 (en) Refrigeration device
JP2002174463A (en) Refrigerating apparatus
JPH0420764A (en) Air conditioner
JP2001263848A (en) Air conditioner
JP3646401B2 (en) Air conditioner
JP3000584B2 (en) Refrigeration equipment
KR100470476B1 (en) Cooling system
KR100524719B1 (en) By-pass device with variable flow rate of multi air-conditioner system
JPH02290471A (en) Air-conditioner
JPH07190534A (en) Heat storage type air conditioning equipment
JPH02106671A (en) Air conditioner
EP1878985A2 (en) Air conditioning system and method of controlling the same
JPH0328673A (en) Thermal accumulating type air conditioner
JP3143140B2 (en) Refrigeration equipment
JP3138031B2 (en) Refrigeration equipment
JPH0752031B2 (en) Heat pump type air conditioner
JP2004177064A (en) Air conditioner
JPH05308943A (en) Freezing equipment
JP2004226016A (en) Multi-chamber type air-conditioner
JPH07305915A (en) Air conditioner