JPH02106670A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH02106670A
JPH02106670A JP25812888A JP25812888A JPH02106670A JP H02106670 A JPH02106670 A JP H02106670A JP 25812888 A JP25812888 A JP 25812888A JP 25812888 A JP25812888 A JP 25812888A JP H02106670 A JPH02106670 A JP H02106670A
Authority
JP
Japan
Prior art keywords
compressor
valve
pipe
refrigerant
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25812888A
Other languages
Japanese (ja)
Inventor
Mikihiko Kuroda
幹彦 黒田
Tetsuya Hoshino
哲也 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25812888A priority Critical patent/JPH02106670A/en
Publication of JPH02106670A publication Critical patent/JPH02106670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To increase a heating calorie to defrost and shorten a defrosting time by a method wherein in case of defrosting operation, liquid refrigerant condensed by an evaporator is made to reversely flow to a compressor after evaporation by receiving heat in a heat accumulating tank. CONSTITUTION:Liquid refrigerant condensed by radiating in an outdoor heat exchanger 7 of low temperature having frost thereon passes through a second bypass pipe 24 and oppositely returns to a compressor 1. In this case, heat for accumulation is given to a heat accumulating tank 21 at a heat exchanger 25 of the second bypassing pipe 24. With this arrangement, the refrigerant is evaporated at the heat exchanger 25, becomes gas refrigerant and returns back to the compressor 1, so that liquid refrigerant separated by each of accumulators 22 and 33 from a circulating refrigerant and stored is eliminated. A decreasing of an amount of circulating refrigerant passing through the compressor 1 is restricted, so that it is possible to perform a higher compressing work at the compressor 1 than that of the prior art.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は蒸発器に付着成長した霜を除く除霜運転機能
を有する冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refrigeration system having a defrosting operation function for removing frost that has grown on an evaporator.

(従来の技術) 上記のような除霜運転機能を有する冷凍装置の従来例と
しては、例えば実開昭60−10178号公報記載の装
置を挙げることができる。セパレート形空気調和機とし
て構成されたその装置では、圧縮機の吐出配管と吸込配
管とが接続された四路切換弁に、順次、第1ガス管、室
内熱交換器、第1液管、電動膨張弁、第2液管、室外熱
交換器、第2ガス管を接続して冷媒循環回路が構成され
ており、そして上記吐出配管と第2液管とが、デフロス
ト用開閉弁の介設されたバイパス配管で接続されている
。なお上記吸込配管にはアキュームレータが介設されて
いる。
(Prior Art) As a conventional example of a refrigeration system having a defrosting operation function as described above, there can be mentioned, for example, the system described in Japanese Utility Model Application Publication No. 60-10178. In the device configured as a separate type air conditioner, the four-way switching valve connected to the discharge pipe and suction pipe of the compressor sequentially connects the first gas pipe, indoor heat exchanger, first liquid pipe, and electric A refrigerant circulation circuit is constructed by connecting an expansion valve, a second liquid pipe, an outdoor heat exchanger, and a second gas pipe, and a defrost on-off valve is interposed between the discharge pipe and the second liquid pipe. Connected by bypass piping. Note that an accumulator is interposed in the suction pipe.

上記装置においては、デフロスト用開閉弁を閉弁し、圧
縮機からの吐出冷媒を室内熱交換器から室外熱交換器へ
と回流させることによって暖房運転を行い、そしてこの
暖房運転時に蒸発器として作用する上記室外熱交換器に
付着成長した霜を除く除霜運転は、上記からデフロスト
用開閉弁を開弁することによって行う。このとき圧縮機
から吐出される冷媒の大部分は、吐出配管からバイパス
配管、第2液管を通して直接室外熱交換器に供給され、
そしてこの室外熱交換器から第2ガス管、吸込配管を経
由して圧縮機に返流される。このように、圧縮機からの
高温吐出冷媒を直接室外熱交換器に供給してこの室外熱
交換器の除霜を行うのである(以下、このような冷媒循
環サイクルでの除霜運転を正サイクルデフロストと言う
)。
In the above device, heating operation is performed by closing the defrost on-off valve and recirculating the refrigerant discharged from the compressor from the indoor heat exchanger to the outdoor heat exchanger, and during this heating operation, it acts as an evaporator. Defrosting operation to remove frost that has grown on the outdoor heat exchanger is performed by opening the defrost on-off valve described above. At this time, most of the refrigerant discharged from the compressor is directly supplied to the outdoor heat exchanger from the discharge pipe through the bypass pipe and the second liquid pipe,
The gas is then returned to the compressor from the outdoor heat exchanger via the second gas pipe and the suction pipe. In this way, the high-temperature discharge refrigerant from the compressor is directly supplied to the outdoor heat exchanger to defrost the outdoor heat exchanger. (called defrost).

(発明が解決しようとする課題) ところで上記の正サイクルデフロストにおいては、除霜
のための熱源となる圧縮機での圧縮仕事量が小さくなっ
て、循環冷媒に対して充分な除霜熱量を付与し得なくな
るという問題がある。それは、圧縮機からの吐出冷媒は
霜の付着した低温の上記室外熱交換器通過時に放熱して
凝縮し、この凝縮液冷媒は上記圧縮機へと返流されるま
での間に再蒸発はなされず、吸込配管に介設されている
アキュームレークでガス冷媒から分離されていくために
、圧縮機を通して循環するガス冷媒量が少なくなり、そ
の結果、圧縮機での圧縮仕事量の低下を生じてしまうの
である。また上記アキュームレータで分離された液冷媒
は、少量ずつ圧縮機に吸入されて、この圧縮機内部で蒸
発することとなるが、この蒸発熱量として上記圧縮機で
の圧縮仕事量が費やされるために、除霜のための熱量は
さらに低下し、このため除霜終了までに長時間を必要と
するという問題を生じている。
(Problem to be solved by the invention) By the way, in the above-mentioned positive cycle defrost, the amount of compression work in the compressor, which is the heat source for defrosting, becomes small, so that sufficient defrosting heat is provided to the circulating refrigerant. The problem is that it becomes impossible. The refrigerant discharged from the compressor radiates heat and condenses when passing through the cold outdoor heat exchanger covered with frost, and this condensed refrigerant is not re-evaporated before being returned to the compressor. First, because the gas refrigerant is separated from the gas refrigerant by the accumulation rake installed in the suction pipe, the amount of gas refrigerant circulating through the compressor decreases, resulting in a decrease in the compression work of the compressor. It's put away. In addition, the liquid refrigerant separated by the accumulator is sucked into the compressor little by little and evaporates inside the compressor, but since the compression work in the compressor is spent as the heat of evaporation, The amount of heat required for defrosting further decreases, resulting in the problem that it takes a long time to complete defrosting.

この発明は上記に鑑みなされたものであって、その目的
は、上記のような正サイクルデフロストでの除霜運転時
間を従来よりも短縮し得る冷凍装置を提供することにあ
る。
This invention has been made in view of the above, and an object thereof is to provide a refrigeration system that can shorten the defrosting operation time in the above-mentioned normal cycle defrost compared to the conventional one.

(課題を解決するための手段) そこでこの発明の冷凍装置は、圧縮機1に、吐出側ガス
管41、凝縮器15、減圧機構8の介設された液管10
、蒸発器7、吸込側ガス管42を順次接続して冷媒循環
回路を構成すると共に、上記液管IOにおける減圧機構
8よりも蒸発器7側と吐出側ガス管41とを吐出側バイ
パス開閉弁18の介設された第1バイパス配管19で接
続して成る冷凍装置であって、さらに上記圧縮機1や吐
出側ガス管41等の高温部品からの外方放散熱量を蓄熱
する蓄熱槽2Iを設ける一方、上記吸込側ガス管42に
、吸込側開閉弁4を介設すると共にこの吸込側開閉弁4
をバイパスする第2バイパス配管24を接続し、この第
2バイパス配管24には、吸込側バイパス開閉弁23を
介設すると共にこの吸込側バイパス開閉弁23よりも上
記圧縮機1側に上記蓄熱槽21との熱交換可能な熱交換
部25を設け、また上記蒸発器7の除霜運転を、上記吐
出側バイパス開閉弁18と吸込側バイパス開閉弁23と
を開弁すると共に吸込側開閉弁4を閉弁して行う除霜運
転制御手段40を設けている。
(Means for Solving the Problems) Therefore, in the refrigeration system of the present invention, the compressor 1 has a discharge side gas pipe 41, a condenser 15, and a liquid pipe 10 in which a pressure reducing mechanism 8 is interposed.
, the evaporator 7, and the suction side gas pipe 42 are sequentially connected to form a refrigerant circulation circuit, and the evaporator 7 side of the liquid pipe IO from the pressure reducing mechanism 8 and the discharge side gas pipe 41 are connected to each other by a discharge side bypass on-off valve. The refrigeration system is connected by a first bypass pipe 19 having 18 interposed therein, and further includes a heat storage tank 2I for storing heat dissipated outwardly from high-temperature parts such as the compressor 1 and the discharge side gas pipe 41. On the other hand, a suction side on-off valve 4 is interposed in the suction side gas pipe 42, and this suction side on-off valve 4
A second bypass pipe 24 is connected to the second bypass pipe 24, and a suction-side bypass on-off valve 23 is interposed therein, and the heat storage tank is connected to the compressor 1 side of the suction-side bypass on-off valve 23. 21 is provided, and the defrosting operation of the evaporator 7 is performed by opening the discharge-side bypass on-off valve 18 and the suction-side bypass on-off valve 23 and by opening the suction-side on-off valve 4. A defrosting operation control means 40 is provided which performs the defrosting operation by closing the valve.

(作用) 上記の冷凍装置においては、除霜運転時の循環冷媒は、
蒸発器7から第2バイパス配管24を通して圧縮機1に
返流されることとなり、この際に、上記’7242バイ
パス配管24の熱交換部25において蓄熱槽21での蓄
熱熱量が付与される。したがって上記蒸発器7で凝縮し
た液冷媒は、上記熱交換部25において蒸発し、ガス冷
媒となって圧縮機lに返流されることとなるので、圧縮
機l内の循環冷媒量の低下が抑えられ、上記圧縮機1に
おいて循環ガス冷媒に加えられる圧縮仕事量が従来より
も増加すると共に、圧縮機1内部で、液冷媒の蒸発熱量
として費やされる圧縮仕事量が低下する。この結果、除
霜のための熱量が従来よりも大きくなるので、除霜時間
が短縮される。
(Function) In the above refrigeration system, the circulating refrigerant during defrosting operation is
The heat is returned from the evaporator 7 to the compressor 1 through the second bypass pipe 24, and at this time, the amount of heat stored in the heat storage tank 21 is provided in the heat exchange section 25 of the '7242 bypass pipe 24. Therefore, the liquid refrigerant condensed in the evaporator 7 is evaporated in the heat exchanger 25 and turned into gas refrigerant, which is returned to the compressor 1, so that the amount of circulating refrigerant in the compressor 1 is prevented from decreasing. As a result, the amount of compression work applied to the circulating gas refrigerant in the compressor 1 is increased compared to the conventional one, and the amount of compression work expended as the amount of heat of evaporation of the liquid refrigerant inside the compressor 1 is reduced. As a result, the amount of heat for defrosting becomes larger than before, so the defrosting time is shortened.

(実施例) 次にこの発明の冷凍装置の具体的な実施例について、図
面を参照しつつ詳細に説明する。
(Example) Next, a specific example of the refrigeration apparatus of the present invention will be described in detail with reference to the drawings.

第1図には、1台の室外ユニットXに第1〜第4の室内
ユニットA−Dを接続してマルチ形空気調和機として構
成したこの発明の一実施例における冷凍装置の冷媒回路
図を示している。
FIG. 1 shows a refrigerant circuit diagram of a refrigeration system according to an embodiment of the present invention, which is configured as a multi-type air conditioner by connecting the first to fourth indoor units A to D to one outdoor unit X. It shows.

上記室外ユニットXには圧縮機1が内装されており、こ
の圧縮機1の吐出配管2と吸込配管3とはそれぞれ四路
切換弁4に接続され、この四路切換弁4にさらに第1ガ
ス管5と第2ガス管6とが接続されている。上記第1ガ
ス管5には室外熱交換器7が接続されており、この室外
熱交換器7に、第1電動膨張弁8、受液器9が順次介設
された液管10がさらに接続されている。この液管■0
の先端は、それぞれ第2電動膨張弁11・・11の介設
された4本の液支管12・・12に分岐されており、ま
た上記第2ガス管6の先端も、上記に対応して、それぞ
れガス支管マフラー13・・13の介設された4本のガ
ス支管14・・14に分岐されている。そしてこ力、ら
の液支管12・・12とガス支管14・・14との間に
、第1〜第4室内ユニットA−Dに内装されている各室
内熱交換器(第1室内ユニッl−Aについてのみ図示す
る)15が接続されて冷媒循環回路が構成されている。
A compressor 1 is installed inside the outdoor unit Pipe 5 and second gas pipe 6 are connected. An outdoor heat exchanger 7 is connected to the first gas pipe 5, and a liquid pipe 10 in which a first electric expansion valve 8 and a liquid receiver 9 are successively installed is further connected to the outdoor heat exchanger 7. has been done. This liquid pipe■0
The tip is branched into four liquid branch pipes 12...12 each having a second electric expansion valve 11...11 interposed therein, and the tip of the second gas pipe 6 is also branched correspondingly to the above. , branched into four gas branch pipes 14...14 each having a gas branch pipe muffler 13...13 interposed therebetween. Between the liquid branch pipes 12...12 and the gas branch pipes 14...14, each indoor heat exchanger installed in the first to fourth indoor units A-D (first indoor unit -A (only A is shown) are connected to form a refrigerant circulation circuit.

そして上記冷媒循環回路における吐出配管2には、圧縮
機1側から吐出管マフラー16と第1開閉弁17とが順
次介設されると共に、上記吐出管マフラー16と第1開
閉弁17との間から、第2開閉弁(吐出側バイパス開閉
弁)18の介設された第1バイパス配管19が分岐され
、この第1バイパス配管19は、上記液管10における
第1電動膨張弁8よりも室外熱交換器7側に接続されて
いる。
A discharge pipe muffler 16 and a first on-off valve 17 are sequentially interposed in the discharge pipe 2 in the refrigerant circulation circuit from the compressor 1 side, and between the discharge pipe muffler 16 and the first on-off valve 17. A first bypass pipe 19 in which a second on-off valve (discharge-side bypass on-off valve) 18 is interposed is branched from the first bypass pipe 19 , and this first bypass pipe 19 is located outside the liquid pipe 10 more than the first electric expansion valve 8 . It is connected to the heat exchanger 7 side.

さらに上記装置においては、上記吐出配管2の途中に蓄
熱槽21が周設されており、圧縮機1からの高温吐出ガ
ス冷媒の流通によって高温温度状態に維持される上記吐
出配管2からの外部放散熱量を、上記蓄熱槽21内に充
填している蓄熱剤に蓄熱するようになされている。一方
、上記吸込配管3には第1アキユームレータ22が介設
されているが、この吸込配管3における上記第1アキユ
ームレータ22よりも四路切換弁4側と、上記第1ガス
管5とが、第3開閉弁(吸込側バイパス開閉弁)23の
介設された第2バイパス配管24で接続されており、こ
の第2バイパス配管24における上記第3開閉弁23よ
りも第1アキュームレータ22例の中途部に、上記蓄熱
槽21内に配設される熱交換部25が設けられ、上記蓄
熱剤に蓄熱されている熱量がこの熱交換部25を流通す
る冷媒に付与されるようになされている。
Furthermore, in the above device, a heat storage tank 21 is provided in the middle of the discharge piping 2, and external radiation from the discharge piping 2, which is maintained in a high temperature state by the circulation of the high temperature gas refrigerant discharged from the compressor 1, is provided. The amount of heat is stored in a heat storage agent filled in the heat storage tank 21. On the other hand, a first accumulator 22 is interposed in the suction pipe 3, and the four-way switching valve 4 side of the first accumulator 22 in the suction pipe 3 and the first gas pipe 5 are connected by a second bypass pipe 24 in which a third on-off valve (suction-side bypass on-off valve) 23 is interposed, and the first accumulator 22 A heat exchange section 25 disposed within the heat storage tank 21 is provided in the middle of the example, and the amount of heat stored in the heat storage agent is imparted to the refrigerant flowing through the heat exchange section 25. ing.

なお上記圧縮機1は、インバータ制御による回転数可変
形の第1の圧縮機31と、回転数一定の第2の圧縮機3
2とを互いに並列に接続してハウジング内に収納してい
る、いわゆるツインバータと呼ばれる複合形の圧縮機で
あり、第1、第2圧縮機31.32の各吸込側はそれぞ
れ第2アキユームレータ33.33を介して相互に接続
されている。また上記冷媒VIi環回路においては、吐
出配管2と吸込配管3とは、第4開閉弁34の介設され
た第3バイパス配管35で相互に接続されているが、こ
れは、圧縮機lの運転停止後に上記第4開閉弁34を開
弁することによって冷媒回路内を迅速に均圧化するため
のものである。さらに第1図において、第1室内ユニツ
トAの接続されている液支管12を、第5開閉弁36の
介設された第4バイパス配管37で上記第1バイパス配
管19に接続すると共に、上記第1室内ユニッI−Aの
接続されているガス支管14には、第6開閉弁38と逆
止弁39との並列回路が介設されているが、これらは、
例えば未使用時の浴室の更衣室を洗濯後の衣類の乾燥室
とし、上記更衣室内に温風を吹出すための乾燥ユニット
の接続を、上記室内ユニットAに替えて接続し得る構成
としているものである。この場合に、その他の室内ユニ
ットB−Dとは異なる冷媒循環制御を乾燥ユニットに対
して行うために、上記の第5、第6開閉弁36.38の
開閉操作を行うこととなるが、その詳細は省略し、以下
には上記第1室内ユニッl−Aが接続され、したがって
上記第5開閉弁36は閉に、また第6開閉弁38は開に
それぞれ維持し、また上記均圧用の第4開閉弁34を閉
にして行う暖房運転と除霜運転との冷媒循環制御につい
て説明する。
The compressor 1 includes a first compressor 31 whose rotation speed is variable by inverter control, and a second compressor 3 whose rotation speed is constant.
This is a composite type compressor called a twin converter, in which the first and second compressors 31 and 32 are connected in parallel and housed in a housing. They are interconnected via multors 33.33. Further, in the refrigerant VIi ring circuit, the discharge pipe 2 and the suction pipe 3 are connected to each other by a third bypass pipe 35 in which a fourth on-off valve 34 is interposed. This is to quickly equalize the pressure in the refrigerant circuit by opening the fourth on-off valve 34 after the operation is stopped. Furthermore, in FIG. 1, the liquid branch pipe 12 to which the first indoor unit A is connected is connected to the first bypass pipe 19 through a fourth bypass pipe 37 in which a fifth on-off valve 36 is interposed, and A parallel circuit including a sixth on-off valve 38 and a check valve 39 is installed in the gas branch pipe 14 to which the first indoor unit I-A is connected.
For example, a changing room in a bathroom when not in use can be used as a drying room for clothes after washing, and a drying unit for blowing warm air into the changing room can be connected instead of the indoor unit A. It is. In this case, in order to perform refrigerant circulation control for the drying unit that is different from that for the other indoor units B-D, the opening and closing operations of the fifth and sixth on-off valves 36 and 38 described above are performed. The details will be omitted, but the first indoor unit I-A is connected to the following, so the fifth on-off valve 36 is kept closed, the sixth on-off valve 38 is kept open, and the pressure equalization valve 1-A is kept closed. The refrigerant circulation control for heating operation and defrosting operation performed with the 4-on-off valve 34 closed will be explained.

上記各室内ユニットA−Dには、図示してはいないが、
それぞれ室内制御装置がさらに設けられており、また室
外ユニットXには、図のように、除霜運転制御手段とし
ての機能も有する室外制御装置40が設けられている。
Although not shown in each indoor unit A-D above,
Each of them is further provided with an indoor control device, and the outdoor unit X is also provided with an outdoor control device 40 that also functions as a defrosting operation control means, as shown in the figure.

そして室内制御装置側での冷暖切換スイッチを暖房側に
して運転スイッチが利用者によりON操作された時に、
上記室外制御装置40によって、四路切換弁4は図中実
線で示す切換位置に、また第1開閉弁17は開、第2、
第3開閉弁I8.23は閉にして圧縮s1が起動され暖
房運転が開始される。これにより圧縮a1からの吐出冷
媒は、図中実線矢印で示すように、四路切換弁4、第2
ガス管6を経由して各室内熱交換器15に供給され、さ
らに液管10から室外熱交換器7を通過し、第1ガス管
5、四路切換弁4、吸込配管3を経由して圧縮機1に返
流される。この場合、蒸発冷媒の過熱度制御は第1電動
膨張弁8で行われる。また各第2電動膨張弁11・・1
1では、各室内熱交換器15への冷媒分配量の制御が行
われるが、これは各室内熱交換器15出口での凝縮冷媒
温度を同一温度となるように上記各第2電動膨張弁11
・・11の開度を制御することによって行う。なお停止
部屋の室内ユニットに対応する第2電動膨張弁11は所
定の停止開度(圧縮機1への液戻りを防止するため、自
然放熱に見合うだけのわずかな量の冷媒を流し得る開度
)に維持する。
Then, when the user turns on the operation switch with the cooling/heating selector switch on the indoor control device side set to the heating side,
By the outdoor control device 40, the four-way switching valve 4 is placed in the switching position shown by the solid line in the figure, and the first on-off valve 17 is opened, the second on-off valve 17 is opened,
The third on-off valve I8.23 is closed, compression s1 is activated, and heating operation is started. As a result, the refrigerant discharged from the compression a1 is transferred to the four-way switching valve 4, the second
It is supplied to each indoor heat exchanger 15 via the gas pipe 6, further passes through the outdoor heat exchanger 7 from the liquid pipe 10, and then via the first gas pipe 5, the four-way switching valve 4, and the suction pipe 3. It is returned to the compressor 1. In this case, the degree of superheating of the evaporative refrigerant is controlled by the first electric expansion valve 8. In addition, each second electric expansion valve 11...1
1, the amount of refrigerant distributed to each indoor heat exchanger 15 is controlled.
...This is done by controlling the opening degree of 11. The second electric expansion valve 11 corresponding to the indoor unit in the stop room is set to a predetermined stop opening (an opening that allows a small amount of refrigerant to flow in proportion to natural heat dissipation in order to prevent liquid from returning to the compressor 1). ).

上記の暖房サイクルにおいては、吐出配管2と、この吐
出配管2に四路切換弁4を介して連通ずる第2ガス管6
とで吐出側ガス管41が、また吸込配管3と、この吸込
配管3に四路切換弁4を介して連通ずる第1ガス管5と
で吸込側ガス管42が形成され、上記四路切換弁4は、
後述する除霜サイクルでの上記吸込側ガス管42を通し
ての流路を閉にする吸込側開閉弁の機能を兼用している
In the heating cycle described above, a discharge pipe 2 and a second gas pipe 6 communicating with the discharge pipe 2 via a four-way switching valve 4 are used.
A discharge side gas pipe 41 is formed by the suction pipe 3, and a suction side gas pipe 42 is formed by the suction pipe 3 and the first gas pipe 5 communicating with the suction pipe 3 via the four-way switching valve 4. Valve 4 is
It also functions as a suction side on-off valve that closes the flow path through the suction side gas pipe 42 in the defrosting cycle described later.

また各室内熱交換器15が凝縮器、室外熱交換器7が蒸
発器、第1電動膨張弁8が減圧機構としてそれぞれ機能
する。
Further, each indoor heat exchanger 15 functions as a condenser, the outdoor heat exchanger 7 functions as an evaporator, and the first electric expansion valve 8 functions as a pressure reducing mechanism.

なお冷房運転は、上記から四路切換弁4を図中破線で示
す切換位置に切換え、図中破線矢印で示すように、圧縮
機1からの吐出冷媒を、凝縮器となる室外熱交換器7か
ら蒸発器となる各室内熱交換器15・・15へと回流さ
せることによって行う。このとき、第1電動膨張弁8は
全開にし、各第2電動膨張弁11・・11で冷媒の過熱
度制御を行う。なお冷房停止部屋の室内ユニットに対応
する第2電動膨張弁11は全開にする。
In the cooling operation, the four-way switching valve 4 is switched to the switching position shown by the broken line in the figure, and the refrigerant discharged from the compressor 1 is transferred to the outdoor heat exchanger 7, which serves as a condenser, as shown by the broken line arrow in the figure. This is done by circulating the water from the air to the indoor heat exchangers 15, which serve as evaporators. At this time, the first electric expansion valve 8 is fully opened, and each of the second electric expansion valves 11 . . . 11 controls the degree of superheating of the refrigerant. Note that the second electric expansion valve 11 corresponding to the indoor unit in the room where cooling is stopped is fully opened.

上記の暖房運転の継続中に、室外熱交換器7に付着成長
した霜が増加してきた場合、例えば上記室外熱交換器7
の温度が上記の着霜量と共に低下することから、室外熱
交換器7の温度を検出し、その検出温度が基準温度以下
となったときにデフロスト信号が発生されるようになさ
れており、このデフロスト信号に応じて、上記室外制御
装置40は、第2図に示しているような各開閉弁17.
18.23、及び四路切換弁4の開閉制御と、各電動膨
張弁8.11の開度制御とを行うようになされている。
If the frost that has grown on the outdoor heat exchanger 7 increases while the heating operation is continued, for example, the outdoor heat exchanger 7
Since the temperature of the outdoor heat exchanger 7 decreases with the amount of frost formed above, the temperature of the outdoor heat exchanger 7 is detected, and a defrost signal is generated when the detected temperature becomes below the reference temperature. In response to the defrost signal, the outdoor control device 40 controls each on-off valve 17. as shown in FIG.
18.23, the opening/closing control of the four-way switching valve 4, and the opening degree control of each electric expansion valve 8.11.

すなわち上記デフロスト信号の発生と略同時に第2開閉
弁18と第3開閉弁23とをそれぞれ開弁し、その後、
幾分遅れて第1開閉弁17を閉弁すると共に、四路切換
弁4を第1図中破線で示す切換位置に切換え、また第1
、第2電動膨張弁8.11をそれぞれ全開にするのであ
る。
That is, the second on-off valve 18 and the third on-off valve 23 are opened approximately simultaneously with the generation of the defrost signal, and then,
After some delay, the first on-off valve 17 is closed, and the four-way switching valve 4 is switched to the switching position shown by the broken line in FIG.
, the second electric expansion valves 8 and 11 are respectively fully opened.

これにより、圧縮機1から吐出される冷媒は、第1図の
一点鎖線矢印で示しているように、第1バイパス配管1
9を通して直接室外熱交換器7に供給される。そして室
外熱交換器7を通過した冷媒は、第1ガス管5から第2
バイパス配管24を通して圧縮機1に返流される。
As a result, the refrigerant discharged from the compressor 1 is transferred to the first bypass pipe 1, as shown by the dashed line arrow in FIG.
9 and is directly supplied to the outdoor heat exchanger 7. The refrigerant that has passed through the outdoor heat exchanger 7 is then transferred from the first gas pipe 5 to the second gas pipe 5.
The water is returned to the compressor 1 through the bypass pipe 24.

上記の除霜運転時の冷媒循環サイクルにおいては、霜の
付着した低温の室外熱交換器7に放熱することにより凝
縮した液冷媒は、第2バイパス配管24を通して圧縮機
lに返流される際に、上記第2バイパス配管24の熱交
換部25において蓄熱槽21での蓄熱熱量が付与される
。これにより、この熱交換部25において蒸発し、ガス
冷媒となって圧縮機1に返流されることとなる。このた
め、循環冷媒から各アキュームレータ22.33で分離
、貯溜される液冷媒を生じなくなり、圧縮機1を通過す
る循環冷媒量の低下が抑えられるので、圧縮機1では従
来よりも大きな圧縮仕事が行われることとなる。また圧
縮機1内部で液冷媒の蒸発熱量として費やされる圧縮仕
事量が低下することともなり、この結果、圧縮機1から
吐出されるガス冷媒に対して、充分な除霜のための熱量
を保有した状態で冷媒循環サイクルが維持されることと
なるので、除霜終了までに必要とする除霜運転時間が従
来よりも短縮される。また上記のように、圧縮8!!■
への液戻りが生じない運転となることによって、圧縮機
1における液圧縮が防止され、これにより信頼性の向上
した装置ともなっている。
In the refrigerant circulation cycle during the above-mentioned defrosting operation, the liquid refrigerant condensed by dissipating heat to the frosted, low-temperature outdoor heat exchanger 7 is returned to the compressor l through the second bypass pipe 24. The amount of heat stored in the heat storage tank 21 is applied to the heat exchange section 25 of the second bypass pipe 24. As a result, it evaporates in the heat exchange section 25, becomes a gas refrigerant, and is returned to the compressor 1. Therefore, no liquid refrigerant is separated and stored in each accumulator 22, 33 from the circulating refrigerant, and a decrease in the amount of circulating refrigerant passing through the compressor 1 is suppressed, so the compressor 1 performs a larger compression work than before. It will be carried out. In addition, the amount of compression work consumed as heat of evaporation of the liquid refrigerant inside the compressor 1 decreases, and as a result, the gas refrigerant discharged from the compressor 1 retains sufficient heat for defrosting. Since the refrigerant circulation cycle is maintained in this state, the defrosting operation time required to complete defrosting is shorter than in the past. Also, as mentioned above, compression 8! ! ■
By operating in such a way that liquid does not return to the compressor 1, liquid compression in the compressor 1 is prevented, resulting in an apparatus with improved reliability.

さらに上記においては、除霜運転の開始時に、室内側は
四路切換弁4を介して吸込配管3に連通することとなり
、この結果、それまでの暖房運転時に各室内側に供給さ
れていた冷媒の回収がなされ、これにより、除霜サイク
ルでより多くの循環冷媒量が確保し得ると共に、除霜運
転開始時における室内側での冷媒保有熱量が除霜熱量と
して活用されることとなるので、さらに除霜時間の短縮
を図り得るものともなっている。
Furthermore, in the above case, at the start of the defrosting operation, the indoor side is communicated with the suction pipe 3 via the four-way switching valve 4, and as a result, the refrigerant that had been supplied to each indoor side during the heating operation until then is As a result, a larger amount of circulating refrigerant can be secured in the defrosting cycle, and the amount of heat held by the refrigerant indoors at the start of the defrosting operation is utilized as the amount of defrosting heat. Furthermore, the defrosting time can be shortened.

上記の除霜運転の継続によって室外熱交換器7に付着し
ていた霜が除かれ、その後、室外熱交換器7の温度が上
昇してその検出温度が所定のデフロスト終了温度を超え
た時にデフロスト信号が停止され、これにより、室外制
御装置40によって、第2図に示すような切換えがなさ
れて、暖房運転が再開される。すなわち上記デフロスト
信号の停止と略同時にまず四路切換弁4の切換えと第1
、第2電動膨張弁8.11の開弁操作が行われ、次いで
第1開閉弁17を開弁じた後、第2、第3開閉弁18.
23の閉弁操作を行う。このように暖房サイクルと除霜
サイクルとの切換時には、室内側での急激な圧力変化を
抑えるように答弁を順次切換えることによって、室内側
での切換音を極力小さくして利用者に不快感を生じさせ
ないようにしている。
By continuing the defrosting operation described above, the frost adhering to the outdoor heat exchanger 7 is removed, and after that, when the temperature of the outdoor heat exchanger 7 rises and the detected temperature exceeds the predetermined defrost end temperature, the defrost operation starts. The signal is stopped, and as a result, the outdoor control device 40 performs the switching as shown in FIG. 2, and the heating operation is restarted. That is, almost simultaneously with the stop of the defrost signal, the four-way switching valve 4 is switched and the first
, the second electric expansion valve 8.11 is opened, and then, after opening the first on-off valve 17, the second and third on-off valves 18.
Perform the valve closing operation in step 23. In this way, when switching between the heating cycle and the defrosting cycle, the answers are sequentially switched to suppress sudden pressure changes on the indoor side, thereby minimizing the switching noise on the indoor side and causing discomfort to the user. I try not to let it happen.

以上、この発明の具体的な実施例についての説明を行っ
たが、上記実施例はこの発明を限定するものではなくこ
の発明の範囲内で種々の変更が可能であり、例えば蓄熱
槽21を圧縮機1に周設する構成とすることも可能であ
り、また上記においては複数の室内ユニッ1−A−Dを
接続したマルチ形空気調和機を例に挙げて説明したが、
1台の室内ユニットを接続した空気調和機においても上
記同様に実施可能であり、また上記では冷暖可能な空気
調和機の例を示しているが、暖房運転のみが可能な空気
調和機においても実施可能である。この場合には、四路
切換弁4に替えて2ボートの開閉弁を吸込側ガス管に介
設する構成となる。さらに空気調和機以外の冷凍装置に
おいてもこの発明を適用して構成することができる。
Although specific embodiments of the present invention have been described above, the above embodiments do not limit the present invention, and various modifications can be made within the scope of the present invention. For example, the heat storage tank 21 may be compressed. It is also possible to have a configuration in which the air conditioner is installed around the unit 1, and in the above description, a multi-type air conditioner in which a plurality of indoor units 1-A-D are connected is taken as an example.
The above can also be implemented in an air conditioner connected to one indoor unit, and although the above example shows an air conditioner that can cool and heat, it can also be implemented in an air conditioner that can only perform heating operation. It is possible. In this case, instead of the four-way switching valve 4, a two-boat on-off valve is provided in the suction side gas pipe. Furthermore, the present invention can also be applied to refrigeration devices other than air conditioners.

(発明の効果) 」1記のようにこの発明の冷凍装置においては、除霜運
転時に蒸発器で凝縮する液冷媒は、蓄熱槽での蓄熱熱量
が付与されて蒸発した後、圧縮機に返流される。したが
って上記圧縮機内の循環冷媒量の低下が抑えられ、上記
圧縮機において循環ガス冷媒に加えられる圧縮仕事量が
従来よりも増加すると共に、圧縮機内部で、液冷媒の蒸
発熱量として費やされる圧縮仕事量が低下するので、除
霜のための熱量が従来よりも大きくなり、除霜運転時間
が短縮される。
(Effects of the Invention) As described in item 1, in the refrigeration system of the present invention, the liquid refrigerant that condenses in the evaporator during defrosting operation is given heat stored in the heat storage tank, evaporates, and then returns to the compressor. be swept away. Therefore, a decrease in the amount of circulating refrigerant in the compressor is suppressed, and the amount of compression work applied to the circulating gas refrigerant in the compressor is increased compared to the conventional method, and the compression work is expended as heat of evaporation of the liquid refrigerant inside the compressor. Since the amount of heat is reduced, the amount of heat for defrosting becomes larger than before, and the time of defrosting operation is shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマルチ形空気調和機として構成したこの発明の
一実施例における冷凍装置の冷媒回路図、第2図は上記
空気調和機における除霜運転への切換制御のタイムチャ
ートである。 1・・・圧縮機、4・・・四路切換弁(吸込側開閉弁)
、7・・・室外熱交換器(蒸発器)、8・・・第1電動
膨張弁(減圧機構)、10・・・液管、15・・・室内
熱交換器(凝縮器)、18・・・第2開閉弁(吐出側バ
イパス開閉弁)、19・・・第1バイパス配管、21・
・・蓄熱槽、23・・・第3開閉弁(吸込側バイパス開
閉弁)、24・・・第2バイパス配管、25・・・熱交
換部、40・・・室外制御装置(除霜運転制御手段)、
41・・・吐出側ガス管、42・・・吸込側ガス管。
FIG. 1 is a refrigerant circuit diagram of a refrigeration system according to an embodiment of the present invention configured as a multi-type air conditioner, and FIG. 2 is a time chart of switching control to defrosting operation in the air conditioner. 1... Compressor, 4... Four-way switching valve (suction side on-off valve)
, 7... Outdoor heat exchanger (evaporator), 8... First electric expansion valve (pressure reduction mechanism), 10... Liquid pipe, 15... Indoor heat exchanger (condenser), 18... ...Second on-off valve (discharge side bypass on-off valve), 19...First bypass piping, 21.
...Thermal storage tank, 23...Third on-off valve (suction side bypass on-off valve), 24...Second bypass piping, 25...Heat exchange section, 40...Outdoor control device (defrosting operation control) means),
41...Discharge side gas pipe, 42...Suction side gas pipe.

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機(1)に、吐出側ガス管(41)、凝縮器(
15)、減圧機構(8)の介設された液管(10)、蒸
発器(7)、吸込側ガス管(42)を順次接続して冷媒
循環回路を構成すると共に、上記液管(10)における
減圧機構(8)よりも蒸発器(7)側と吐出側ガス管(
41)とを吐出側バイパス開閉弁(18)の介設された
第1バイパス配管(19)で接続して成る冷凍装置であ
って、さらに上記圧縮機(1)や吐出側ガス管(41)
等の高温部品からの外方放散熱量を蓄熱する蓄熱槽(2
1)を設ける一方、上記吸込側ガス管(42)に、吸込
側開閉弁(4)を介設すると共にこの吸込側開閉弁(4
)をバイパスする第2バイパス配管(24)を接続し、
この第2バイパス配管(24)には、吸込側バイパス開
閉弁(23)を介設すると共にこの吸込側バイパス開閉
弁(23)よりも上記圧縮機(1)側に上記蓄熱槽(2
1)との熱交換可能な熱交換部(25)を設け、また上
記蒸発器(7)の除霜運転を、上記吐出側バイパス開閉
弁(18)と吸込側バイパス開閉弁(23)とを開弁す
ると共に吸込側開閉弁(4)を閉弁して行う除霜運転制
御手段(40)を設けていることを特徴とする冷凍装置
1. Compressor (1), discharge side gas pipe (41), condenser (
15), the liquid pipe (10) provided with the pressure reducing mechanism (8), the evaporator (7), and the suction side gas pipe (42) are connected in sequence to constitute a refrigerant circulation circuit, and the liquid pipe (10) ) on the evaporator (7) side and the discharge side gas pipe (
41) is connected to the compressor (1) and the discharge side gas pipe (41) by a first bypass pipe (19) provided with a discharge side bypass on-off valve (18).
A heat storage tank (2
1), a suction side on-off valve (4) is interposed in the suction side gas pipe (42), and this suction side on-off valve (4) is provided.
), connect a second bypass pipe (24) that bypasses the
A suction-side bypass on-off valve (23) is interposed in this second bypass pipe (24), and the heat storage tank (2) is located closer to the compressor (1) than the suction-side bypass on-off valve (23).
1), and the defrosting operation of the evaporator (7) is controlled by the discharge side bypass on-off valve (18) and the suction side bypass on-off valve (23). A refrigeration system characterized by being provided with a defrosting operation control means (40) that opens a valve and closes a suction side on-off valve (4).
JP25812888A 1988-10-13 1988-10-13 Freezing device Pending JPH02106670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25812888A JPH02106670A (en) 1988-10-13 1988-10-13 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25812888A JPH02106670A (en) 1988-10-13 1988-10-13 Freezing device

Publications (1)

Publication Number Publication Date
JPH02106670A true JPH02106670A (en) 1990-04-18

Family

ID=17315902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25812888A Pending JPH02106670A (en) 1988-10-13 1988-10-13 Freezing device

Country Status (1)

Country Link
JP (1) JPH02106670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267889A (en) * 2007-04-18 2008-11-06 Jeol Ltd Sample holder for electron microscope, observing method and sampling device for electron microscope
JP2010276313A (en) * 2009-05-29 2010-12-09 Daikin Ind Ltd Outdoor unit for air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154853A (en) * 1978-05-26 1979-12-06 Sanyo Electric Co Ltd Freezer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154853A (en) * 1978-05-26 1979-12-06 Sanyo Electric Co Ltd Freezer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267889A (en) * 2007-04-18 2008-11-06 Jeol Ltd Sample holder for electron microscope, observing method and sampling device for electron microscope
JP2010276313A (en) * 2009-05-29 2010-12-09 Daikin Ind Ltd Outdoor unit for air conditioner

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
JP3352469B2 (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2001263848A (en) Air conditioner
JPH02106670A (en) Freezing device
JPH078999Y2 (en) Air source heat pump
JPH0835731A (en) Heat pump
JP2504416B2 (en) Refrigeration cycle
JPS6021718Y2 (en) air conditioner
JP2808899B2 (en) Two-stage compression refrigeration cycle device
JP3723244B2 (en) Air conditioner
JP2757660B2 (en) Thermal storage type air conditioner
JPH0328673A (en) Thermal accumulating type air conditioner
JPH10311614A (en) Heat storage type cooling device
JP2002061897A (en) Heat storage type air conditioner
JPH04257660A (en) Two stage compression refrigerating cycle device
JPS5852460Y2 (en) Refrigeration equipment
JP3043080B2 (en) Air conditioning system
JP2557940Y2 (en) Air heat source heat pump air conditioner
JPS6143194Y2 (en)
JP2001116423A (en) Deep freezing air conditioner
JP2877278B2 (en) Air conditioner
JP2605422B2 (en) Air conditioner
CN117847706A (en) Air conditioner
JPS5911341Y2 (en) heat pump equipment