JPH02106190A - Vector controller for induction motor - Google Patents

Vector controller for induction motor

Info

Publication number
JPH02106190A
JPH02106190A JP63256746A JP25674688A JPH02106190A JP H02106190 A JPH02106190 A JP H02106190A JP 63256746 A JP63256746 A JP 63256746A JP 25674688 A JP25674688 A JP 25674688A JP H02106190 A JPH02106190 A JP H02106190A
Authority
JP
Japan
Prior art keywords
time
constant
voltage
current
time constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63256746A
Other languages
Japanese (ja)
Other versions
JP2629309B2 (en
Inventor
Masayuki Mori
雅之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63256746A priority Critical patent/JP2629309B2/en
Publication of JPH02106190A publication Critical patent/JPH02106190A/en
Application granted granted Critical
Publication of JP2629309B2 publication Critical patent/JP2629309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To measure a secondary time constant in a short time and to perform vector control with temperature correction by obtaining the time constant from 3 sampled values of the primary voltage or current change of a motor and eliminating waiting time until the primary voltage or current becomes constant. CONSTITUTION:A primary voltage detector 15 detects a primary voltage v1(t1) at a time t1, the voltage v1(t2) at a time t2 (=t1+ t), and the voltage v1(t3) at a time t3 (= t2+ t) at a predetermined time interval t. A secondary time constant calculator 14 obtains a secondary time constant tau2 from the detected voltages v1(t1), v2(t2), v3(t3) according to an equation. Accordingly, the constant tau2 is obtained from the detected values of the voltages v1(t1)-v3(t3) in a short time from the application of a constant current to the time t3, and the measurement of a voltage to become a normal value i1r1 required for a relatively long period of time is eliminated.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、誘導電動機のベクトル制御装置に係り、特に
二次時定数測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a vector control device for an induction motor, and more particularly to a secondary time constant measuring device.

B1発明の概要 本発明は、二次時定数τ、を求めてベクトル制御するに
おいて、 電動機に定電流又は定電圧を印加したときの一次電圧又
は電流を時間Δt毎に3サンプル検出して二次時定数τ
、を求めることにより、温度補正した二次時定数を短時
間で測定できるようにしたものである。
B1 Summary of the Invention The present invention detects three samples of primary voltage or current every time Δt when a constant current or constant voltage is applied to a motor, and performs vector control by determining a secondary time constant τ. time constant τ
By determining , the temperature-corrected secondary time constant can be measured in a short time.

C1従来の技術 誘導電動機のベクトル制御は、電動機の一次電流を励磁
電流と二次電流に分けて制御し、磁束と二次電流(トル
ク電流)ベクトルを常に直交させることで直流機と同等
以上の可変速性能を得ようとする。
C1 Conventional technology Vector control of an induction motor divides the motor's primary current into an excitation current and a secondary current and controls the magnetic flux and secondary current (torque current) vectors so that they are always orthogonal to each other. Try to obtain variable speed performance.

第5図はベクトル制御装置を示す。速度指令Nと誘導電
動機1の速度検出器2から速度演算部3が求める速度ω
nとを突合わせてトルク演算部4に比例積分(PI)演
算でトルク電流指令11を求める。このトルク電流と励
磁電流設定値!。とから一次電流演算部5に一次電流値
11を求める。
FIG. 5 shows a vector control device. Speed ω determined by the speed calculation unit 3 from the speed command N and the speed detector 2 of the induction motor 1
n, and the torque calculation unit 4 calculates the torque current command 11 by proportional integral (PI) calculation. This torque current and excitation current setting value! . The primary current value 11 is obtained from the primary current calculation section 5.

一方、位相演算部6はトルク電流■、と励磁電流r、と
の位相角φ を求め、またすべり周波数演算部7はトルク電流■、と
励磁電流I。と電動機二次時定数τ2τt = L −
/ Rt L、:二次自己インダクタンス R2二二次抵抗 とがらすべり周波数ωSを求める。
On the other hand, the phase calculation unit 6 calculates the phase angle φ between the torque current ■ and the excitation current r, and the slip frequency calculation unit 7 calculates the phase angle φ between the torque current ■ and the excitation current I. and motor secondary time constant τ2τt = L −
/Rt L,: Find the secondary self-inductance R2, the secondary resistance, and the sliding frequency ωS.

t ω S − 1Oτ! このすべり周波数ωSは加算器8によって速度検出値ω
nとの加算によって一次角周波数ω。を求める。
t ω S − 1Oτ! This slip frequency ωS is determined by the adder 8 as the speed detection value ω
The primary angular frequency ω is obtained by adding with n. seek.

一次電流演算部9は一次電流位相、と位相角φと角周波
数ω。から電動機lの一次電流1a、Ib、Icを求め
、この電流をインバータ10の電流指令として該インバ
ータlOが電動機lに一次電流を供給する。演算部9の
演算は下記式に従って行われる。
The primary current calculation unit 9 calculates the primary current phase, phase angle φ, and angular frequency ω. The primary currents 1a, Ib, and Ic of the motor l are obtained from the equations 1 and 2, and the inverter lO supplies the primary current to the motor l by using these currents as a current command for the inverter 10. The calculation of the calculation unit 9 is performed according to the following formula.

r a=J  2 1r、l  s+n(θ+φ)この
ようなベクトル制御装置において、すべり周波数ωSを
求めるための二次時定数で2は電動機1の定数R7、L
 2によって決められるが、電動機の温度による二次抵
抗R7の変動が二次時定数τ2の変動ひいては一次電流
位相のずれとなってしまう。
r a=J 2 1r, l s+n (θ+φ) In such a vector control device, 2 is a quadratic time constant for determining the slip frequency ωS, and 2 is the constant R7, L of the motor 1.
However, fluctuations in the secondary resistance R7 due to the temperature of the motor result in fluctuations in the secondary time constant τ2 and, in turn, a shift in the primary current phase.

そこで、従来から二次時定数τ、の温度補正が行われ、
この補正方法として電動機に定電流を印加したときの一
次電圧から求める方法がある。
Therefore, temperature correction of the quadratic time constant τ has traditionally been performed,
As a method for this correction, there is a method of calculating from the primary voltage when a constant current is applied to the motor.

第6図は定′1−[流11を印加したときの一次電圧τ
 2 v+(t)=i+(r++rte    )で近似され
る。そこで、時刻t+、tzにおける次組圧V+(j+
)、V+(j*)を測定することにより二次時定数τ、
を次式 から求め、この二次時定数τ、をすべり周波数演算に使
用することで温度による影響を除去するようにしている
Figure 6 shows the primary voltage τ when a constant '1-[current 11 is applied.
2 v+(t)=i+(r++rte). Therefore, the next set pressure V+(j+
), V+(j*) to obtain the quadratic time constant τ,
is obtained from the following equation, and this second-order time constant τ is used in the slip frequency calculation to remove the influence of temperature.

D1発明が解決しようとする課題 従来の二次時定数補正方法は、一次組圧v+(t)の定
常値i、r、を必要とし、この測定には一次電流位相(
t)が定常値に至るまでの長い時間を必要とする。この
ため、電動機の運転準備に長い時間を要して立上りの悪
いベクトル制御装置になる問v+(t)の変化を示し、
一次組圧v+(t)は題があった。
D1 Problems to be Solved by the Invention The conventional secondary time constant correction method requires steady values i, r of the primary assembly pressure v+(t), and this measurement requires the primary current phase (
t) requires a long time to reach a steady value. For this reason, it takes a long time to prepare the motor for operation, and the vector control device has a slow start-up.
There was a problem with the primary assembly pressure v+(t).

本発明の目的は、二次時定数の測定を短時間にして温度
補正したベクトル制御ができるベクトル制御装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vector control device that can perform temperature-corrected vector control by shortening the measurement of a secondary time constant.

81課題を解決するための手段と作用 本発明は上記目的を達成するため、誘導電動機の二次時
定数τ、を求めて該電動機をベクトル制御するにおいて
、前記電動機に定電流又は定電圧を印加したときの時間
ΔL毎の一次電圧変化(t+)、v、(t、)、v +
 (t 3)又は一次電流++(1+)。
81 Means and Effects for Solving the Problems The present invention achieves the above object by applying a constant current or constant voltage to the motor in determining the secondary time constant τ of the induction motor and vector-controlling the motor. Primary voltage change (t+), v, (t,), v + for each time ΔL when
(t 3) or primary current ++ (1+).

r + (t 2) 、  i + (L 3)を検出
する一次電圧又は一次電流検出回路と、前記−吹型圧又
は一次電流から次式 に従って二次時定数τ、を求める二次時定数演算回路と
を備え、電動機の一次電圧変化又は一次電流変化の3サ
ンプル値から二次時定数τ、を求め、−吹型圧又は一次
電流が一定になるまでの時間待ちを不要にする。
A primary voltage or primary current detection circuit that detects r + (t 2) and i + (L 3), and a secondary time constant calculation that calculates a secondary time constant τ from the -blow mold pressure or primary current according to the following formula. The second-order time constant τ is obtained from three sample values of the primary voltage change or the primary current change of the motor, thereby eliminating the need to wait for the time until the blowing mold pressure or the primary current becomes constant.

F、実施例 第1図は本発明の一実施例を示す装置構成図である。同
図中、制御回路11は重連の第5図における演算部4〜
9に対応し、インバータ本体12と整流2313はイン
バータ10に対応して示す。
F. Embodiment FIG. 1 is an apparatus configuration diagram showing an embodiment of the present invention. In the same figure, the control circuit 11 is a multi-connected calculation unit 4 to 5 in FIG.
9, and the inverter main body 12 and rectifier 2313 are shown corresponding to the inverter 10.

ここで、制御回路11は二次時定数τ2を二次時定数演
算回路14の演算結果として与えられる。
Here, the control circuit 11 is given the second-order time constant τ2 as the calculation result of the second-order time constant calculation circuit 14.

この演算回路I4は誘導電動機lの一次電圧を検出する
一次電圧検出回路15からの一次電圧V(tl)、v、
(、t2)、v、(t3)と測定間隔Δ1(=1゜t 
+  t 3t 2)が与えられて二次時定数を求める
This arithmetic circuit I4 detects the primary voltage V(tl), v, from the primary voltage detection circuit 15 which detects the primary voltage of the induction motor l
(, t2), v, (t3) and measurement interval Δ1 (=1°t
+ t 3t 2) is given, find the quadratic time constant.

制御回路11は、二次時定数演算に際して電動機1に定
電流を印加するために、電流検出器16の検出値をフィ
ードバックとしてインバータ本体12のスイッチトラン
ジスタのオン・オフ比を制御する。この定1[流印加に
おいて、−吹型圧検出回路15は、第2図に示すように
、一定時間間隔Δtで時刻t、におけろ一次電圧v 、
(t 、)と、時刻t v (−t ++Δt)におけ
る−吹型圧v1([2)と、時刻し3(−t 2+Δt
)における−吹型圧V(t3)を検出する。
The control circuit 11 controls the on/off ratio of the switch transistors of the inverter main body 12 using the detected value of the current detector 16 as feedback in order to apply a constant current to the motor 1 during secondary time constant calculation. When this constant current is applied, the blow mold pressure detection circuit 15 detects the primary voltage v at time t at a constant time interval Δt, as shown in FIG.
(t , ), -blow mold pressure v1 ([2) at time t v (-t ++ Δt), and time 3 (-t 2 + Δt
) -Blow mold pressure V(t3) is detected.

この検出電圧v、(to、v2(t、)、Va(j3)
から、二次時定数演算回路14は次式に従って二次時定
数τ、を求める。
This detection voltage v, (to, v2(t,), Va(j3)
From this, the second-order time constant calculation circuit 14 calculates the second-order time constant τ according to the following equation.

従って、二次時定数τ、の演算には定電流印加から時刻
t3まての短い時間内の一次電圧v 1(t +)〜V
 3(t 3)の検出値から求められ、比較的長い時間
を要する定常値i、r、になる電圧測定を不要にする。
Therefore, to calculate the secondary time constant τ, the primary voltage v 1 (t +) to V within a short time from constant current application to time t3 is calculated.
This eliminates the need for voltage measurements to reach steady-state values i, r, which are determined from the detected values at 3 (t 3) and take a relatively long time.

上述の一次電圧検出回路15及び二次時定数演算回路1
4は例えば第3図に示す回路構成又は殆どをコンピュー
タ演算とすることで実現される。
The above-mentioned primary voltage detection circuit 15 and secondary time constant calculation circuit 1
4 can be realized, for example, by using the circuit configuration shown in FIG. 3 or by performing most of the calculations on a computer.

第3図において、電動機!の一次電圧変化波フィルタ1
6を通してサンプルホールド回路17による時間Δt毎
に3サンプリングし、このサンプリング電圧をA−D変
換器■8によって時間Δ[毎のディノタル値に変換し、
順次にレノスタ19゜20に転送する。この(1■成に
より、レノスタ2゜には第1番目のサンプルデータv+
(t+)が記憶され、レノスタ19には第2番1]のサ
ンプルデータv+(t2)が記憶され、A/D変換器1
8の出力データが第3番目のサンプルデータv、(t3
)として得られる。減算器21.22はデータv +(
t +)、v、(t、)、vl(t3)の引算を行い、
i「i述の式中のV +(L +)  V 1(j 2
)V +(t 2)  V I(L :l)を求める。
In Figure 3, the electric motor! Primary voltage change wave filter 1
The sampling voltage is sampled three times every time Δt by the sample and hold circuit 17 through 6, and this sampling voltage is converted into a dinotal value every time Δ[ by the A-D converter 8,
Sequentially transfer to Renostar 19°20. By this (1) formation, the first sample data v +
(t+) is stored, sample data v+(t2) of No. 2 1] is stored in the reno star 19, and the A/D converter 1
The output data of 8 is the third sample data v, (t3
) is obtained as The subtractors 21 and 22 subtract data v + (
t+), v, (t,), vl(t3),
i "V + (L +) V 1 (j 2
) V + (t 2) V I (L : l) is determined.

そして、除算器23は減算器2!、22の演算結果の割
算を行い、この結果はχ・を数曲算器24によって の対数演算を行い、除算器25によって時間Δtとの除
算によって二次時定数r、を求める。
And the divider 23 is the subtracter 2! , 22, and this result is subjected to a logarithmic operation by a number calculator 24, and a quadratic time constant r is obtained by dividing by a time Δt by a divider 25.

なお、実施例において、二次時定数τ、を求めるのに電
動機に定電圧を印加し、第4図に示すように一吹型流r
 +(t +)〜++(t3)を時間ΔL間隔で求め、
下記式 から求めることもできる。
In the example, a constant voltage was applied to the motor to obtain the second-order time constant τ, and the one-blow type flow r was calculated as shown in FIG.
+(t +) ~ ++(t3) is determined at time ΔL intervals,
It can also be calculated using the formula below.

G1発明の効果 以上のとおり、本発明によれば、−吹型圧変化又は−吹
型流変化を3サンプル検出して温度補正した二次時定数
を求めるようにしたため、−吹型圧又は−吹型流の定常
値の測定を不要にして短時間の測定ができ、ベクトル制
御の立上りを早くすることができる。また、電動機の可
変速制御途中に停止時間が含まれるときには該停止期間
が短くとも該期間に再度の二次時定数測定を行って再調
整することができる。
G1 Effects of the Invention As described above, according to the present invention, three samples of -blow mold pressure change or -blow mold flow change are detected and a temperature-corrected quadratic time constant is determined, so that -blow mold pressure or - This eliminates the need to measure the steady-state value of the blow mold flow, allowing short-time measurements and speeding up the start-up of vector control. Further, when a stop time is included during the variable speed control of the electric motor, even if the stop period is short, the secondary time constant can be measured again during the period and readjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置構成図、第2図は
実噂例の電圧測定態様図、第3図は第1図中の二次時定
数演算回路図、第4図は他の実施例の電流測定@様図、
第5図はヘクトル制御装置構成図、第6図は従来の電圧
測定態様図である。 11 ・・制御回路、12 インバータ本体、14二次
時定敢演算回路、15・・・−吹型工検出回路、192
0−・・レノスタ、24・対数演算器。 第2図 第3図 実施例の二次時定数演算回路図 外2名 第4図 実施例の電圧測定態様図 ベクトル制御装置構成図 第6図 従来の電圧測定態様図 □時間(L)
Fig. 1 is a device configuration diagram showing one embodiment of the present invention, Fig. 2 is a voltage measurement mode diagram of an actual example, Fig. 3 is a quadratic time constant calculation circuit diagram in Fig. 1, and Fig. 4 is Other examples of current measurement @ diagrams,
FIG. 5 is a block diagram of a hector control device, and FIG. 6 is a diagram of a conventional voltage measurement mode. 11... Control circuit, 12 Inverter main body, 14 Secondary time constant calculation circuit, 15...-Blow mold worker detection circuit, 192
0--Renostar, 24. Logarithm operator. Fig. 2 Fig. 3 Second-order time constant calculation circuit of the embodiment 2 people not shown Fig. 4 Voltage measurement mode diagram of the embodiment Vector control device configuration diagram Fig. 6 Conventional voltage measurement mode diagram □ Time (L)

Claims (1)

【特許請求の範囲】[Claims] (1)誘導電動機の二次時定数τ_2を求めて該電動機
をベクトル制御するにおいて、前記電動機に定電流又は
定電圧を印加したときの時間Δt毎の一時電圧v_1(
t_)、v_1(t_2)、v_1(t_3)又は一次
電流i_1(t_1)、i_1(t_2)、i_1(t
_3)を検出する一次電圧又は一次電流検出回路と、前
記一次電圧又は一次電流から次式 ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ に従って二次時定数τ_2を求める二次時定数演算回路
とを備えたことを特徴とする誘導電動機のベクトル制御
装置。
(1) In determining the quadratic time constant τ_2 of the induction motor and vector-controlling the motor, a temporary voltage v_1(
t_), v_1(t_2), v_1(t_3) or primary current i_1(t_1), i_1(t_2), i_1(t
_3) A primary voltage or primary current detection circuit that detects 1. A vector control device for an induction motor, comprising a second-order time constant calculating circuit.
JP63256746A 1988-10-12 1988-10-12 Vector controller for induction motor Expired - Fee Related JP2629309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63256746A JP2629309B2 (en) 1988-10-12 1988-10-12 Vector controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63256746A JP2629309B2 (en) 1988-10-12 1988-10-12 Vector controller for induction motor

Publications (2)

Publication Number Publication Date
JPH02106190A true JPH02106190A (en) 1990-04-18
JP2629309B2 JP2629309B2 (en) 1997-07-09

Family

ID=17296870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63256746A Expired - Fee Related JP2629309B2 (en) 1988-10-12 1988-10-12 Vector controller for induction motor

Country Status (1)

Country Link
JP (1) JP2629309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072981A1 (en) * 2005-01-06 2006-07-13 Mitsubishi Denki Kabushiki Kaisha Rotary electric machine constant measuring device and method
KR100825158B1 (en) * 2006-06-05 2008-04-24 미쓰비시덴키 가부시키가이샤 Rotary electric machine constant measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006072981A1 (en) * 2005-01-06 2006-07-13 Mitsubishi Denki Kabushiki Kaisha Rotary electric machine constant measuring device and method
KR100825158B1 (en) * 2006-06-05 2008-04-24 미쓰비시덴키 가부시키가이샤 Rotary electric machine constant measuring method

Also Published As

Publication number Publication date
JP2629309B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
JPH09304489A (en) Method for measuring motor constant of induction motor
JPH05284776A (en) Method for deciding stator magnetic flux of asynchronous apparatus
JP3099159B2 (en) Method and apparatus for measuring motor constants
JPH085679A (en) Method and apparatus for detecting frequency and power system stabilization system
JPH02106190A (en) Vector controller for induction motor
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
JP2943377B2 (en) Vector controller for induction motor
JP6098827B2 (en) Control device for permanent magnet type synchronous motor
KR0129561B1 (en) Induction motor vector control
JP2730017B2 (en) Inverter device
JP3145876B2 (en) Vector control method and device for induction motor
JP3032681B2 (en) Method and apparatus for measuring secondary resistance of induction motor
JPS60131088A (en) Controller of induction motor
JP3123235B2 (en) Induction motor vector control device
JPH07325132A (en) Inverter control method with constant measuring/setting function
JP3329672B2 (en) Induction motor constant measuring device
JPH0767400A (en) Estimating device for constant of induction motor
JPH10160809A (en) Measuring method for induction motor constant
JPS6018769A (en) Measurement of deterioration in insulation of power cable
JPH0731200A (en) Vector controller for induction motor
JP3123304B2 (en) Induction motor vector control device
KR19990032700A (en) Induction motor vector control device
JP2619168B2 (en) Instantaneous torque measurement device for three-phase induction motor
JPH0686581A (en) Compensating method for fluctuation in parameter
RU1770785C (en) Induction motor electromagnetic moment determining device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees