JP2619168B2 - Instantaneous torque measurement device for three-phase induction motor - Google Patents

Instantaneous torque measurement device for three-phase induction motor

Info

Publication number
JP2619168B2
JP2619168B2 JP3324621A JP32462191A JP2619168B2 JP 2619168 B2 JP2619168 B2 JP 2619168B2 JP 3324621 A JP3324621 A JP 3324621A JP 32462191 A JP32462191 A JP 32462191A JP 2619168 B2 JP2619168 B2 JP 2619168B2
Authority
JP
Japan
Prior art keywords
phase
magnetic flux
total
stator winding
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3324621A
Other languages
Japanese (ja)
Other versions
JPH06186099A (en
Inventor
銀夫 高久
Original Assignee
銀夫 高久
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 銀夫 高久 filed Critical 銀夫 高久
Priority to JP3324621A priority Critical patent/JP2619168B2/en
Publication of JPH06186099A publication Critical patent/JPH06186099A/en
Application granted granted Critical
Publication of JP2619168B2 publication Critical patent/JP2619168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機、特に三相
かご形誘導電動機の瞬時発生トルク測定装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the instantaneous torque of an induction motor, particularly a three-phase squirrel-cage induction motor.

【0002】[0002]

【従来の技術】誘導電動機のトルクの測定は、これまで
にも各種の方法が開発され利用されている。最も一般的
な方法は、機械的に測定する方法で、軸のねじりひずみ
量を測定し、これよりトルク量を間接的に知る方法であ
る。
2. Description of the Related Art Various methods have been developed and used for measuring the torque of an induction motor. The most common method is a method of mechanically measuring the amount of torsional strain of a shaft and indirectly knowing the amount of torque from this.

【0003】例えば、誘導電動機の瞬時トルクを測定す
るのに軸のねじり角がトルクに比例する性質を利用し
て、軸のねじり角を検出し、軸トルクを測定する方法が
多く使用されている。この方法は電動機の発生トルクと
負荷の反抗トルクとのねじり振動による軸トルクを示す
ので、直接、電動機の瞬時発生トルクを得ることはでき
ず、また他の方法においても瞬時発生トルクの実測が困
難であった。
For example, to measure the instantaneous torque of an induction motor, a method of measuring the shaft torque by detecting the shaft torsion angle by using the property that the shaft torsion angle is proportional to the torque is often used. . This method shows the shaft torque due to the torsional vibration of the torque generated by the motor and the reaction torque of the load, so it is not possible to directly obtain the instantaneous torque generated by the motor, and it is difficult to measure the instantaneous torque generated by other methods. Met.

【0004】これに関し、本出願人は、巻線形誘導電動
機の固定子電流、回転子電流と回転子位置に対する正弦
波、余弦波電圧を検出するだけで、電動機の瞬時発生ト
ルクを容易に求めることのできる「空間回転電流ベクト
ルを用いた巻線形誘導電動機瞬時トルク測定装置」につ
いて出願をした(特願昭59- 058154号)。
In this regard, the present applicant has found that the instantaneous generated torque of a motor can be easily obtained only by detecting a sine wave and a cosine wave voltage with respect to a stator current, a rotor current and a rotor position of a wound induction motor. Filed an application for a “winding-type induction motor instantaneous torque measuring device using a spatial rotating current vector” (Japanese Patent Application No. 59-0558154).

【0005】しかしかご形誘導電動機では回転子電流の
測定ができないため、上述の先願の装置は適用不能であ
った。
However, the cage-type induction motor cannot measure the rotor current, so that the above-mentioned prior application cannot be applied.

【0006】[0006]

【発明が解決しようとする課題】本発明は回転子電流の
測定不可能な三相かご形誘導電動機においても、固定子
巻線の電流検出と各固定子巻線の全鎖交磁束の測定また
は演算を行い、各相電流と各固定子巻線の全鎖交磁束と
の演算により三相かご形誘導電動機の瞬時発生トルクを
得るようにした測定装置を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a three-phase squirrel-cage induction motor in which the rotor current cannot be measured, the detection of the stator winding current and the measurement of the total interlinkage magnetic flux of each stator winding. It is an object of the present invention to provide a measuring device which performs calculations and obtains instantaneous torque generated by a three-phase squirrel-cage induction motor by calculating each phase current and total linkage magnetic flux of each stator winding.

【0007】[0007]

【課題を解決するための手段】本発明装置は、三相かご
形誘導電動機の各固定子巻線の三相電流の検出と、各三
相固定子巻線の全鎖交磁束の測定または演算を行い、ま
たは各固定子巻線の三相のうちの二相の電流検出と、各
三相固定子巻線のうちの二相の全鎖交磁束の測定または
演算を行い、各相の電流と各相の全鎖交磁束との演算に
より三相誘導電動機の瞬時発生トルクを演算することを
特徴とする。
According to the present invention, there is provided a three-phase squirrel-cage induction motor for detecting a three-phase current of each stator winding and measuring or calculating a total interlinkage magnetic flux of each three-phase stator winding. Or the current detection of two phases among the three phases of each stator winding, and the measurement or calculation of the total interlinkage magnetic flux of the two phases of each three phase stator winding, The instantaneous torque of the three-phase induction motor is calculated by calculating the total interlinkage magnetic flux of each phase.

【0008】[0008]

【作用】さらに説明すると、本発明装置は、瞬時発生ト
ルクを従来の方法におけるように回転軸のねじり角等に
より間接的に測定せず、各固定子巻線の電圧と電流とを
検出し、検出された各相電圧から各固定子巻線の巻線抵
抗の電圧降下を除去して各固定子巻線の全鎖交磁束の演
算を行うか、または各固定子巻線の全鎖交磁束の測定を
行い、直接に瞬時発生トルクを得るようにしたものであ
る。このように本発明装置では、各固定子巻線の全鎖交
磁束をトルク演算に使用しているので、各固定子巻線の
全鎖交磁束を演算する場合には各相電圧から各相固定子
巻線の巻線抵抗の電圧降下のみを除去して積分すればよ
く、使用される演算器も少なくてすむ。しかしながら、
空隙(ギャップ)の鎖交磁束または二次鎖交磁束からト
ルク演算を行う場合には、空隙の鎖交磁束または二次鎖
交磁束の各演算は、各相電圧から各相固定子巻線の巻線
抵抗の電圧降下の除去以外に、一次漏れリアクタンスま
たは一次漏れリアクタンスと二次漏れリアクタンスとの
電圧降下をそれぞれ除去しなくてはならず、さらにこれ
ら漏れリアクタンスの電圧降下を演算するのに微分演算
器が必要となり、前記固定子巻線の全鎖交磁束の演算に
比べて演算器の使用が多く、また回路構成が複雑とな
る。
More specifically, the device of the present invention detects the voltage and current of each stator winding without indirectly measuring the instantaneously generated torque by the torsion angle of the rotating shaft as in the conventional method, Either remove the voltage drop of the winding resistance of each stator winding from the detected phase voltage and calculate the total linkage flux of each stator winding, or calculate the total linkage flux of each stator winding. Is measured, and the instantaneously generated torque is directly obtained. As described above, in the device of the present invention, the total interlinkage magnetic flux of each stator winding is used for the torque calculation. Therefore, when the total interlinkage magnetic flux of each stator winding is calculated, each phase voltage is calculated from each phase voltage. Only the voltage drop of the winding resistance of the stator winding needs to be removed and integration is performed, so that only a small number of arithmetic units are used. However,
When performing torque calculation from the flux linkage or the secondary flux linkage of the air gap (gap), each calculation of the flux linkage or the secondary flux linkage of the air gap is performed based on the phase voltage of each phase stator winding. In addition to removing the voltage drop of the winding resistance, the primary leakage reactance or the voltage drop between the primary leakage reactance and the secondary leakage reactance must be removed, respectively. An arithmetic unit is required, and the arithmetic unit is used more frequently than the calculation of the total interlinkage magnetic flux of the stator winding, and the circuit configuration is complicated.

【0009】誘導電動機の瞬時発生トルクτe は固定子
巻線の空間回転全鎖交磁束ベクトルΨs と空間回転電流
ベクトルIs とのベクトル積の大きさに比例し、次の
(1) 式によって示される。
[0009] Instantaneous torque tau e of the induction motor proportional to the magnitude of the vector product of the spatial rotation total linkage flux vector [psi s and space rotating current vector I s of the stator winding, the following
It is shown by equation (1).

【外5】 [Outside 5]

【0010】さらに発生トルクτe は上記空間回転ベク
トルΨs , Is のそれぞれの大きさおよび相互間の空間
位相差φに関係を有しており、(3) 式で与えられる。
Furthermore generated torque tau e has a relationship to the spatial phase difference φ between the respective sizes and mutual of the space rotation vector Ψ s, I s, is given by equation (3).

【数6】 ここに、K1は比例定数を示し、極対数n に等しい。(Equation 6) Here, K 1 indicates a proportionality constant, which is equal to the number n of pole pairs.

【0011】三相かご形誘導電動機の瞬時発生トルクの
測定に対して固定子巻線の空間回転全鎖交磁束ベクトル
と空間回転電流ベクトルとを利用すれば、(2) 式と(3)
式により直接に瞬時発生トルクを測定し得るのみなら
ず、(3) 式によれば各空間回転ベクトルの大きさおよび
相互間の空間位相差φの正弦値 sinφをも直接に測定し
得ることになる。
When the instantaneous generated torque of a three-phase squirrel-cage induction motor is measured by using the spatial rotation total linkage flux vector and the spatial rotation current vector of the stator winding, equations (2) and (3) are obtained.
Not only can the instantaneous torque be measured directly by the equation, but also the magnitude of each spatial rotation vector and the sine value sinφ of the spatial phase difference φ between them can be directly measured by the equation (3). Become.

【0012】[0012]

【実施例】以下本発明の実施例を図面を参照して詳細に
説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1において、1および2は三相・二相変
換器であり、三相誘導電動機(図示せず)から供給した
三相固定子巻線に流れる
In FIG. 1, reference numerals 1 and 2 denote three-phase / two-phase converters which flow through a three-phase stator winding supplied from a three-phase induction motor (not shown).

【外6】 [Outside 6]

【数7】 ※ここに、K2、K3とK4はいずれも比例定数である。また
三相電流のうちの
(Equation 7) * Here, K 2 , K 3 and K 4 are all proportional constants. Also, of the three-phase current

【外7】 [Outside 7]

【数8】 ここに、K5, K6とK7はいずれも比例定数を示す。このよ
うに、三相・二相変換器1から得られた二相軸上の電流
成分を
(Equation 8) Here, any K 5, K 6 and K 7 shows a proportional constant. Thus, the current component on the two-phase axis obtained from the three-phase / two-phase converter 1 is

【外8】 表わすと図2に示すような合成空間電流ベクトルIs
よび合成空間電圧ベクトル Vs が得られる。つぎに誘導
電動機の固定子側における空間ベクトル微分方程式は
(6) 式で表わされ、(6) 式より固定子巻線の空間全鎖交
磁束ベクトルΨs を求めると(7) 式となる。
[Outside 8] Synthesis space current vector I s and the composite spatial voltage vector V s as shown in FIG. 2 is obtained expressed. Next, the space vector differential equation on the stator side of the induction motor is
(6) represented by the formula, the (6) When determining the spatial total linkage flux vector [psi s of the stator winding from the equation (7).

【数9】 ここで、 Rs は固定子巻線抵抗を示し、Pは微分演算子
を示す。
(Equation 9) Here, R s indicates a stator winding resistance, and P indicates a differential operator.

【数10】 固定子巻線の空間全鎖交磁束ベクトルΨs は図1の変換
器1からの二相軸上の各電流成分
(Equation 10) The total interlinkage magnetic flux vector Ψ s of the stator winding is the current component on the two-phase axis from the converter 1 in FIG.

【外9】 さらにベクトル・アナライザ(V.A.)7に供給し、図2に
示すように、合成することにより得られる。
[Outside 9] Further, it is supplied to a vector analyzer (VA) 7 and obtained by synthesis as shown in FIG.

【0014】固定子の各相巻線に三相交流電圧を印加
し、三相交流を流したときには、かかる合成空間ベクト
ル Vs, Is とΨs は空間的に回転することになる。従っ
て、このような合成空間ベクトルをそれぞれ「空間回転
電圧ベクトル」、「空間回転電流ベクトル」および「空
間回転全鎖交磁束ベクトル」と呼ぶことにする。
[0014] applying a three-phase AC voltage to each phase winding of the stator, when a current of three-phase alternating current, such composite spatial vector V s, I s and [psi s will be spatially rotated. Therefore, such combined space vectors will be referred to as “space rotation voltage vector”, “space rotation current vector”, and “space rotation total interlinkage magnetic flux vector”, respectively.

【0015】三相かご形誘導電動機の瞬時発生トルクは
(1) 式で与えられたように固定子巻線の空間回転全鎖交
磁束ベクトルΨs と空間回転電流ベクトル Is とのベク
トル積の大きさに比例し、瞬時トルクの演算は(2) 式と
(3) 式とによって行われる。(2) 式によれば、瞬時発生
トルクは変換器1からの二相軸上の各電流成分
The instantaneous torque of a three-phase squirrel-cage induction motor is
(1) proportional to the magnitude of the vector product of the spatial rotation total linkage flux vector [psi s and space rotating current vector I s of the stator windings as provided in Formula, the calculation of the instantaneous torque (2) Expression and
Equation (3) is used. According to the equation (2), the instantaneously generated torque is calculated from each current component on the two-phase axis from the converter 1.

【外10】 をτe 演算器5に供給し、それぞれの二相軸各成分を
(2) 式に基づいて演算を行い、係数K1を乗算して得られ
る。
[Outside 10] Is supplied to the τ e calculator 5, and each component of each two-phase axis is
(2) performs a calculation based on the formula, is obtained by multiplying the coefficient K 1.

【0016】[0016]

【外11】 それぞれのベクトル・アナライザ3と7においては、つ
ぎの(8) 式の各項の演算に基づいて図2に示す空間回転
ベクトル Is とΨs が求まる。
[Outside 11] In each of the vector analyzers 3 and 7, the spatial rotation vectors I s and Ψ s shown in FIG. 2 are obtained based on the operation of each term of the following equation (8).

【数11】 また、空間回転ベクトルの瞬時値 Is , Ψs はつぎの
(9) 式によって与えられるので空間回転ベクトル Is ,
Ψs の二相軸上各成分は、図2と(8) 式とによってつぎ
の(10)式にそれぞれ書き表わされる。
[Equation 11] The instantaneous values I s and Ψ s of the spatial rotation vector are
(9), the spatial rotation vector I s ,
Each component of Ψ s on the two-phase axis is expressed in the following equation (10) by FIG. 2 and equation (8).

【数12】 この(10)式の関係を発生トルクτe の(2) 式に代入する
とつぎの(11)式が得られる。
(Equation 12) By substituting the relationship of this expression (10) into the expression (2) of the generated torque τ e , the following expression (11) is obtained.

【数13】 従って、図1に示すベクトル・アナライザ3および7か
ら得られた(8) 式の各項の値を、図示のように、 sinφ
演算器6および乗算器8にそれぞれ供給して(11)式の演
算を行えば(3) 式中の各項 sinφおよび|Ψs |・| I
s |がそれぞれ得られる。さらに、 sinφ演算器6によ
って求めた sinφをn(極対数)に相当する係数K1を乗
算する係数器9を介して乗算器10に導き、乗算器8によ
って求めた|Ψs |・| Is |を乗算器10に供給し、相
互間の積を求めれば、(3) 式すなわち(11)式に従って瞬
時発生トルクτe が得られる。
(Equation 13) Therefore, the value of each term of the equation (8) obtained from the vector analyzers 3 and 7 shown in FIG.
By supplying the data to the arithmetic unit 6 and the multiplier 8 and performing the operation of the expression (11), the terms sinφ and | Ψ s | · |
s | are obtained. Further, lead to the coefficient multiplier 9 through multiplier 10 for multiplying the coefficient K 1 corresponding to sinφ determined by sinφ calculator 6 to n (pole pairs), were determined by the multiplier 8 | Ψ s | · | I When s | is supplied to the multiplier 10 and the product between them is obtained, the instantaneously generated torque τ e is obtained according to the equation (3), that is, the equation (11).

【0017】しかしながら、実際に(11)式によるトルク
演算を実行するに当っては、各空間回転ベクトルの大き
さ|Ψs |と| Is |はつぎの(12)式から求められ、各
空間回転ベクトル相互間の空間位相差φの正弦値 sinφ
はつぎの(13)式から求められるので、誘導電動機の固定
子巻線の電流検出と、固定子巻線の全鎖交磁束の測定ま
たは演算を行い、かご形誘導電動機の瞬時発生トルクを
求めることができる。
However, when actually executing the torque calculation according to the equation (11), the magnitudes | Ψ s | and | I s | of the respective spatial rotation vectors are obtained from the following equation (12), Sine value sinφ of spatial phase difference φ between rotation vectors
Can be obtained from the following equation (13) .Therefore, measure the current of the stator winding of the induction motor and measure or calculate the total interlinkage magnetic flux of the stator winding to obtain the instantaneous torque generated by the squirrel-cage induction motor. Can be.

【数14】 ここに、K8とK9は比例定数を示し、(13)式の|Ψs |と
| Is |は(12)式の値を用いる。
[Equation 14] Here, K 8 and K 9 indicate proportional constants, and | Ψ s | and | I s | in equation (13) use the values in equation (12).

【0018】また各空間回転ベクトルの大きさ|Ψs
と| Is |はつぎの(14)式から求められ、各空間回転ベ
クトル相互間の正弦値 sinφはつぎの(15)式から求めら
れるので、誘導電動機の固定子巻線の三相電流のうちの
二相の電流を検出し、各三相固定子巻線の全鎖交磁束の
うちの二相の全鎖交磁束の測定または演算を行い、かご
形誘導電動機の瞬時発生トルクを求めることができる。
The magnitude of each spatial rotation vector | Ψ s |
And | I s | are obtained from the following equation (14), and the sine value sinφ between the respective spatial rotation vectors is obtained from the following equation (15). Detects two-phase current, measures or calculates two-phase total interlinkage magnetic flux of all three-phase stator windings, and obtains instantaneous generated torque of squirrel-cage induction motor. .

【数15】 ここに、K10 とK11 は比例定数を示し、(15)式の|Ψs
|と| Is |は(14)式の値を用いる。
(Equation 15) Here, K 10 and K 11 indicate a proportionality constant, and | Ψ s of equation (15)
| And | I s | use the value of equation (14).

【0019】また、(12)式、(13)式及び(14)式、(15)式
に示された各固定子巻線の全鎖交磁束
Further, the total interlinkage magnetic flux of each stator winding shown in the equations (12), (13), (14) and (15)

【外12】 を得る方法として、サーチコイルやホール素子等により
測定する方法と誘導電動機の固定子巻線の各相電圧と各
相の全鎖交磁束との間に(16)式の電圧方程式が成り立つ
ので、
[Outside 12] As a method of obtaining, the voltage equation of equation (16) is established between the method of measuring with a search coil or a Hall element and the like and the voltage of each phase of the stator winding of the induction motor and the total flux linkage of each phase.

【数16】 (16)式から導かれる(17)式を演算することにより得る方
法とがある。
(Equation 16) There is a method of obtaining by calculating equation (17) derived from equation (16).

【数17】 (17)式より各固定子巻線の全鎖交磁束は誘導電動機の固
定子巻線の各相電圧と各相電流を検出し、測定された巻
線抵抗値を用いて演算を行い、求めることができる。さ
らに、瞬時発生トルク式(11)式に(12)式と(13)式とを代
入すれば、次の瞬時発生トルク式(18)式が得られる。
[Equation 17] From equation (17), the total interlinkage magnetic flux of each stator winding is obtained by detecting each phase voltage and each phase current of the stator winding of the induction motor and performing an operation using the measured winding resistance. be able to. Further, by substituting the equations (12) and (13) into the instantaneous generated torque equation (11), the following instantly generated torque equation (18) is obtained.

【数18】 また、瞬時発生トルク式(11)式に(14)式と(15)式とを代
入すればつぎの瞬時発生トルク式(19)が得られる。
(Equation 18) By substituting the equations (14) and (15) into the instantaneous torque equation (11), the following instantaneous torque equation (19) is obtained.

【数19】 ここに、K12 とK13 は比例定数である。[Equation 19] Here, K 12 and K 13 is a proportionality constant.

【0020】以上のように、本来の瞬時発生トルク式(1
1)式の導出過程においては、誘導電動機の1次電圧、1
次電流を入力として固定子巻線の空間回転全鎖交磁束ベ
クトルを導出し、前記全鎖交磁束ベクトルと一次電流ベ
クトルとをベクトル的に掛け合わせているが、実際にト
ルク演算を実行するに当っては、(12)式と(13)式または
(14)式と(15)式との演算を行うか、もしくは(18)式また
は(19)式によって固定子巻線の各相電流および各相全鎖
交磁束から誘導電動機の瞬時発生トルクを求めることが
できる。
As described above, the original instantaneously generated torque equation (1
In the process of deriving equation (1), the primary voltage of the induction motor, 1
The secondary current is used as an input to derive a spatial rotation total interlinkage magnetic flux vector of the stator winding, and the total interlinkage magnetic flux vector is multiplied by the primary current vector in a vector manner. In this case, formulas (12) and (13) or
Either calculate Eq. (14) and Eq. (15), or use Eq. (18) or Eq. (19) to calculate the instantaneous torque of the induction motor from each phase current of the stator winding and all interlinkage magnetic flux of each phase. You can ask.

【0021】すなわち、本発明の三相誘導電動機の瞬時
発生トルク測定装置の第一の実施例は、図3に示したよ
うに三相誘導電動機の三相電圧と三相電流、または三相
電圧のうちの二相の電圧と三相電流のうちの二相の電流
から、固定子巻線の全鎖交磁束演算器11において(17)式
により三相または二相の全鎖交磁束の演算をする。サー
チコイルやホール素子などによる各相全鎖交磁束の測定
値が得られる場合にはこの演算は必要ないので、固定子
巻線の全鎖交磁束演算器11は不必要であり、得られた各
相の全鎖交磁束値を用いればよい。かくして得られた三
相の全鎖交磁束と三相の電流、または二相の全鎖交磁束
と二相の電流とから、発生トルク演算器12において、(1
8)式または(19)式によって発生トルクτe を算出する。
That is, the first embodiment of the instantaneous torque measuring apparatus for a three-phase induction motor according to the present invention is, as shown in FIG. 3, a three-phase voltage and a three-phase current or a three-phase voltage of the three-phase induction motor. From the two-phase voltage and the two-phase current among the three-phase currents, the three-phase or two-phase total flux linkage is calculated by equation (17) in the total flux linkage calculator 11 of the stator winding. do. This calculation is not necessary when the measured value of the total interlinkage magnetic flux of each phase by the search coil or the Hall element is obtained, so the all interlinkage magnetic flux calculator 11 of the stator winding is unnecessary and is obtained. All interlinkage magnetic flux values of each phase may be used. From the three-phase total interlinkage magnetic flux and the three-phase current, or the two-phase total interlinkage magnetic flux and the two-phase current, the generated torque calculator 12 calculates (1
The generated torque τ e is calculated by the equation 8) or the equation (19).

【0022】あるいは、この第一の実施例の代わりに、
図4に示した本発明の三相誘導電動機の瞬時発生トルク
測定装置の第二の実施例では、三相誘導電動機の三相電
圧と三相電流、または三相電圧のうちの二相の電圧と三
相電流のうちの二相の電流から、固定子巻線の全鎖交磁
束演算器11において(17)式により三相または二相の全鎖
交磁束を演算する。サーチコイルやホール素子などによ
る各相全鎖交磁束の測定値が得られる場合には、この演
算は必要ないので、固定子巻線の全鎖交磁束演算器11は
不必要であり、得られた各相の全鎖交磁束値を用いれば
よい。かくして得られた三相の全鎖交磁束と三相の電
流、または二相の全鎖交磁束と二相の電流とから、演算
器13において(12)式または(14)式に従って固定子巻線の
全鎖交磁束ベクトルの大きさ|Ψs |と電流ベクトルの
大きさ| Is |とを演算し、この全鎖交磁束ベクトルの
大きさと電流ベクトルの大きさ及び三相または二相の電
流と全鎖交磁束とから、演算器14において両ベクトル間
の空間位相差の正弦値 sinφを演算する。これらの全鎖
交磁束ベクトルの大きさ|Ψs |と、電流ベクトルの大
きさ| Is |、及び空間位相差の正弦値 sinφから、
(3) 式に従って発生トルク演算器15において発生トルク
τe を算出する。
Alternatively, instead of the first embodiment,
In the second embodiment of the instantaneous torque generating device for a three-phase induction motor of the present invention shown in FIG. 4, a three-phase voltage and a three-phase current of the three-phase induction motor, or a two-phase voltage among the three-phase voltages are used. The three-phase or two-phase total interlinkage magnetic flux is calculated from the two-phase current among the three-phase currents and the three-phase or two-phase current in equation (17) in the all-interlinkage magnetic flux calculator 11 of the stator winding. When the measured value of the total interlinkage magnetic flux of each phase by the search coil, the Hall element, etc. is obtained, this calculation is not necessary, and the all interlinkage magnetic flux calculator 11 of the stator winding is unnecessary and can be obtained. The total interlinkage magnetic flux value of each phase may be used. From the three-phase total interlinkage magnetic flux and the three-phase current, or the two-phase total interlinkage magnetic flux and the two-phase current obtained in this way, the arithmetic unit 13 calculates the stator winding according to the equation (12) or (14). Ψ s | and the magnitude of the current vector | I s | are calculated, and the magnitude of the total flux linkage vector, the magnitude of the current vector, and the three-phase or two-phase The arithmetic unit 14 calculates a sine value sinφ of the spatial phase difference between the two vectors from the current and the total interlinkage magnetic flux. These total linkage flux magnitude of the vector | [psi s | a, the magnitude of the current vector | I s |, and the sine value sinφ spatial phase difference,
The generated torque calculator 15 calculates the generated torque τ e according to the equation (3).

【0023】[0023]

【発明の効果】本発明による三相誘導電動機の瞬時発生
トルク測定装置においては、三相−二相変換器を用いる
ことなく、また各固定子巻線の全鎖交磁束を使用してお
り、空隙の鎖交磁束や二次鎖交磁束の使用に比べて漏れ
リアクタンスによる電圧降下を演算するための微分演算
器を必要とせず、それだけ演算速度を速くすることがで
き、誘導電動機の瞬時の発生トルクを刻々に算出するこ
とができる。
In the instantaneous torque measuring device for a three-phase induction motor according to the present invention, the total interlinkage magnetic flux of each stator winding is used without using a three-phase to two-phase converter. Compared to the use of flux linkage or secondary flux linkage in the air gap, there is no need for a differential calculator to calculate the voltage drop due to leakage reactance, and the calculation speed can be increased accordingly, and instantaneous generation of the induction motor can be achieved. The torque can be calculated every moment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】三相誘導電動機の瞬時発生トルク測定装置の構
成例を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration example of an instantaneous generated torque measuring device for a three-phase induction motor.

【図2】図1と同じくそのベクトル・アナライザによっ
て得られる固定子巻線の空間回転全鎖交磁束ベクトルと
空間回転電流ベクトルおよび空間回転電圧ベクトルのベ
クトル関係の例を示すベクトル図である。
FIG. 2 is a vector diagram showing an example of a vector relationship among a spatial rotation total interlinkage magnetic flux vector, a spatial rotation current vector, and a spatial rotation voltage vector of a stator winding obtained by the vector analyzer as in FIG.

【図3】本発明の三相誘導電動機の瞬時発生トルク測定
装置の第一の実施例のブロック線図である。
FIG. 3 is a block diagram of a first embodiment of the instantaneous generated torque measuring device for a three-phase induction motor according to the present invention.

【図4】本発明の三相誘導電動機の瞬時発生トルク測定
装置の第二の実施例のブロック線図である。
FIG. 4 is a block diagram of a second embodiment of the instantaneous generated torque measuring device for a three-phase induction motor according to the present invention.

【符号の説明】[Explanation of symbols]

1,2 三相・二相変換器 3,7 ベクトル・アナライザ 4 固定子巻線の全鎖交磁束演算器 5 発生トルク演算器 6 sinφ演算器 8,10 乗算器 9 係数器 11 固定子巻線の全鎖交磁束演算器 12 発生トルク演算器 13, 14 演算器 15 発生トルク演算器 1, 3 three-phase to two-phase converter 3, 7 Vector analyzer 4 Total interlinkage magnetic flux calculator of stator winding 5 Generated torque calculator 6 sinφ calculator 8, 10 Multiplier 9 Coefficient unit 11 Stator winding Total flux linkage calculator of 12 Generated torque calculator 13, 14 calculator 15 Generated torque calculator

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三相誘導電動機の各固定子巻線の三相の
電圧 【外1】 と三相の電流 【外2】 との測定装置、及び各三相の電圧から各固定子巻線の巻
線抵抗の電圧降下を除去して各三相の固定子巻線の全鎖
交磁束 【外3】 を演算する固定子巻線の全鎖交磁束演算装置または各三
相の固定子巻線の全鎖交磁束を測定する全鎖交磁束測定
装置を有し、測定された各三相のそれぞれの電流値を減
算し、 【外4】 を演算する減算器と、減算された各電流値と演算または
測定された各三相の固定子巻線の全鎖交磁束との掛算を
行う掛算器と、各積の加算により誘導電動機が発生する
瞬時トルク 【数1】 を求めることのできる加算器とから構成されるか、また
は三相誘導電動機の固定子巻線の三相のうちの二相の電
圧と二相の電流との測定装置、及び各二相の電圧から各
固定子巻線の巻線抵抗の電圧降下を除去して各二相の固
定子巻線の全鎖交磁束を演算する固定子巻線の全鎖交磁
束演算装置または各二相の固定子巻線の全鎖交磁束を測
定する全鎖交磁束測定装置を有し、演算又は測定された
各二相の固定子巻線の全鎖交磁束と測定された各二相の
電流の異なった相とをそれぞれ掛算する掛算器と、それ
ぞれの積の減算により誘導電動機の発生する瞬時トルク 【数2】 を求めることのできる減算器とから構成される三相誘導
電動機の瞬時発生トルク測定装置。
1. A three-phase voltage of each stator winding of a three-phase induction motor. And three-phase current And the total interlinkage magnetic flux of the three-phase stator windings by removing the voltage drop of the winding resistance of each stator winding from the three-phase voltages. And a total interlinkage magnetic flux measuring device for measuring the total interlinkage magnetic flux of the stator windings of each of the three phases. Subtract the current value. , A multiplier for multiplying each subtracted current value and the calculated or measured total flux linkage of each three-phase stator winding, and an induction motor generated by adding each product. Instantaneous torque Or a device for measuring two-phase voltage and two-phase current of three phases of a stator winding of a three-phase induction motor, and a voltage of each two-phase. To calculate the total flux linkage of each two-phase stator winding by removing the voltage drop of the winding resistance of each stator winding from It has a total interlinkage magnetic flux measuring device that measures the total interlinkage magnetic flux of the stator windings, and the difference between the calculated or measured total interlinkage magnetic flux of each two-phase stator winding and the measured current of each two-phase And the instantaneous torque generated by the induction motor by subtracting each product. And a subtractor capable of determining the instantaneous torque of the three-phase induction motor.
【請求項2】 三相誘導電動機の各固定子巻線の三相の
電圧 〔外1〕 と三相の電流 〔外2〕 との測定装置、及び各三相の電圧から各固定子巻線の巻
線抵抗の電圧降下を除去して各三相の固定子巻線の全鎖
交磁束 〔外3〕 を演算する固定子巻線の全鎖交磁束演算装置または各三
相の固定子巻線の全鎖交磁束を測定する全鎖交磁束測定
装置を有するか、または三相誘導電動機の各固定子巻線
の三相のうちの二相の電圧と二相の電流の測定装置、及
び各二相の電圧から各固定子巻線の巻線抵抗の電圧降下
を除去して各二相の固定子巻線の全鎖交磁束を演算する
固定子巻線の全交磁束演算装置または各二相の固定子巻
線の全鎖交磁束を測定する全鎖交磁束測定装置を有して
おり、測定された各三相の電流と演算または測定された
各三相の固定子巻線の全鎖交磁束、または測定された各
二相の電流と演算または測定された各二相の固定子巻線
の全鎖交磁束から、固定子巻線についての空間回転電流
ベクトルと全鎖交磁束ベクトルの大きさ及び両ベクトル
間の空間位相差の正弦値 【数3】 または 【数4】 を演算する演算器を具え、これら電流ベクトルと全鎖交
磁束ベクトルの大きさ及び両ベクトル間の空間位相差の
正弦値から誘導電動機の発生する瞬時トルク 【数5】 を演算する演算器から構成される三相誘導電動機の瞬時
発生トルク測定装置。
2. An apparatus for measuring three-phase voltages [1] and three-phase currents [2] of each stator winding of a three-phase induction motor, and each stator winding from each three-phase voltage. The total interlinkage magnetic flux of the three-phase stator windings is calculated by removing the voltage drop of the winding resistance of the three-phase stator windings. Either a total interlinkage magnetic flux measuring device for measuring the total interlinkage magnetic flux of the wire, or a two-phase voltage and two-phase current measurement device for each of three stator windings of a three-phase induction motor; and A device for calculating the total interlinkage magnetic flux of the stator windings, which removes the voltage drop of the winding resistance of each stator winding from each two-phase voltage and calculates the total interlinkage magnetic flux of each two-phase stator winding, or It has a total flux linkage measuring device that measures the total flux linkage of the two-phase stator windings, the measured three-phase currents and the calculated or measured three-phase stator windings From the total interlinkage magnetic flux or the measured two-phase currents and the calculated or measured total interlinkage magnetic flux of each two-phase stator winding, the spatial rotation current vector for the stator winding and the total interlinkage The magnitude of the magnetic flux vector and the sine value of the spatial phase difference between the two vectors Or , And the instantaneous torque generated by the induction motor from the magnitudes of these current vectors and the total linkage flux vector and the sine value of the spatial phase difference between the two vectors. The instantaneous generated torque measurement device for a three-phase induction motor, which is composed of a computing unit that computes
JP3324621A 1991-12-09 1991-12-09 Instantaneous torque measurement device for three-phase induction motor Expired - Fee Related JP2619168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3324621A JP2619168B2 (en) 1991-12-09 1991-12-09 Instantaneous torque measurement device for three-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3324621A JP2619168B2 (en) 1991-12-09 1991-12-09 Instantaneous torque measurement device for three-phase induction motor

Publications (2)

Publication Number Publication Date
JPH06186099A JPH06186099A (en) 1994-07-08
JP2619168B2 true JP2619168B2 (en) 1997-06-11

Family

ID=18167864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3324621A Expired - Fee Related JP2619168B2 (en) 1991-12-09 1991-12-09 Instantaneous torque measurement device for three-phase induction motor

Country Status (1)

Country Link
JP (1) JP2619168B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854758A (en) * 1981-09-29 1983-03-31 Fujitsu Ltd Control procedure system of subordinate station in multi-connection
JPS633559A (en) * 1986-06-23 1988-01-08 Minolta Camera Co Ltd Picture discriminating device

Also Published As

Publication number Publication date
JPH06186099A (en) 1994-07-08

Similar Documents

Publication Publication Date Title
JP3645509B2 (en) Induction motor sensorless vector control system and sensorless vector control method
EP1729405A1 (en) Speed control apparatus of vector controlled alternating current motor
JPH11235099A (en) Vector control system for induction machine
JP2585376B2 (en) Control method of induction motor
WO2023032182A1 (en) Electric motor monitoring device and electric motor monitoring method
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
JP3099159B2 (en) Method and apparatus for measuring motor constants
JP2619168B2 (en) Instantaneous torque measurement device for three-phase induction motor
JP6098827B2 (en) Control device for permanent magnet type synchronous motor
JP2591901B2 (en) Measurement device for instantaneous characteristics of three-phase AC motors
Petrovic et al. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics
JPH01308187A (en) Calculating method for secondary resistance of induction motor, control method, presuming method for secondary winding temperature protecting method and controller thereof
JP2010183691A (en) Control device of induction motor
JP2634959B2 (en) Speed sensorless speed control method
JPH06315291A (en) Computing method for position of magnetic flux of induction motor, and its control method using the same
JP2712632B2 (en) Variable speed control device for induction motor
WO2022244345A1 (en) Power conversion device
JP2897373B2 (en) DC brushless motor controller
JPS6047839B2 (en) AC motor magnetic flux detection device
JP6673175B2 (en) Induction motor control system
JP2018011474A (en) Control apparatus of induction motor
JP3074682B2 (en) Sensorless speed control method
JPS61227693A (en) Momentary generating torque measuring instrument for three-phase induction motor
JPS63245290A (en) Induction machine controller
JPH06209589A (en) Automatic adjusting method for vector control equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees