JPS61227693A - Momentary generating torque measuring instrument for three-phase induction motor - Google Patents

Momentary generating torque measuring instrument for three-phase induction motor

Info

Publication number
JPS61227693A
JPS61227693A JP60067150A JP6715085A JPS61227693A JP S61227693 A JPS61227693 A JP S61227693A JP 60067150 A JP60067150 A JP 60067150A JP 6715085 A JP6715085 A JP 6715085A JP S61227693 A JPS61227693 A JP S61227693A
Authority
JP
Japan
Prior art keywords
phase
vector
current
magnetic flux
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60067150A
Other languages
Japanese (ja)
Inventor
Kaneo Takaku
高久 銀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP60067150A priority Critical patent/JPS61227693A/en
Publication of JPS61227693A publication Critical patent/JPS61227693A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Abstract

PURPOSE:To enable momentary generating torque to be directly found, by detecting space rotation current vector and space rotation magnetic flux vector, and by operating the space rotation vectors arithmetically. CONSTITUTION:Vector analysers 3, 7 for inducting space rotation current vector and space rotation magnetic flux vector respectively from two phase current and two-phase magnetic flux are provided. The values of the space rotation magnetic flux vector PSIs and the space rotation current vector Is obtained from the vector analysers 3, 7 are fed respectively to a Sinphi arithmetic unit 6 and a multiplier 8, and Sinphi (phi is space phase difference between vectors.) and ¦PSIs¦.¦Is¦ are obtained. The Sinphi found by the Sinphi arithmetic unit 6 is induced to a multiplier 10 via a counter 9 for multiplying the coefficient K1 corresponding to n(polar logarithm), and ¦PSIs¦.¦IS¦ found by the multiplier 8 is fed to the multiplier 10, and the mutual product is found to obtain momentary generating torque taue.

Description

【発明の詳細な説明】 (技術分野) 本発明は、誘導電動機、とくに三相かご形誘導電動機の
瞬時発生トルク測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an apparatus for measuring instantaneous torque generated in an induction motor, particularly a three-phase squirrel cage induction motor.

(従来の技術) 誘導電動機のトルクの測定は、これまでにも各種の方法
が開発され利用されている。最も一般的な方法は、機械
的に測定する方法で、軸のねじりひずみ量を測定し、こ
れよりトルク量を間接的に知る方法である。
(Prior Art) Various methods have been developed and used to measure the torque of an induction motor. The most common method is mechanical measurement, which measures the amount of torsional strain on the shaft and indirectly determines the amount of torque from this.

例えば、誘導電動機の瞬時トルクを測定するのに軸のね
じり角がトルクに比例する性質を利用して、軸のねじり
角を検出し、軸トルクを測定する方法が多く使用されて
いる。この方法は電動機の発生トルクと負荷の反応トル
クとのねじり振動による軸トルクを示すので、直接、電
動機の瞬時発生トルクを得ることはできず、また他の方
法においても瞬時発生トルクの実測が困難であった。
For example, in order to measure the instantaneous torque of an induction motor, a method is often used that takes advantage of the property that the torsion angle of the shaft is proportional to the torque, detects the torsion angle of the shaft, and measures the shaft torque. Since this method shows the shaft torque due to torsional vibration between the generated torque of the electric motor and the reaction torque of the load, it is not possible to directly obtain the instantaneous generated torque of the electric motor, and it is also difficult to actually measure the instantaneous generated torque using other methods. Met.

これに関し、本出願人は、巻線形誘導電動機の固定子電
流、回転子電流と回転子位置に対する正弦波、余弦波電
圧を検出するだけで、電動機の瞬時発生トルクを容易に
求めることのできる[空間回転電流ベクトルを用いた巻
線形誘導電動機瞬時トルク測定装置」について出願をし
た(特願昭59−058154号)。
In this regard, the present applicant has discovered that the instantaneous torque generated by the motor can be easily determined by simply detecting the stator current, rotor current, and sine wave and cosine wave voltages with respect to the rotor position of the wound induction motor [ We filed an application for ``Instant Torque Measuring Device for Wound Induction Motor Using Space Rotating Current Vector'' (Japanese Patent Application No. 59-058154).

しかしかご形誘導電動機では回転子電流の測定ができな
いため、上述の先願の装置は適用不能であった。
However, since the rotor current cannot be measured in squirrel cage induction motors, the device of the above-mentioned prior application was not applicable.

(発明の目的) 本発明は回転子電流の測定不可能な三相かご形誘導電動
機においても、固定子側三相電圧と三相電流をそれぞれ
検出して演算を行い、固定子側空間回転電流ベクトルと
空間回転磁束ベクトルを求めることにより三相かご形誘
導電動機の瞬時発生トルクを得るようにした測定装置を
提供しようとするものである。
(Objective of the Invention) The present invention detects and calculates the stator side three-phase voltage and three-phase current, even in a three-phase squirrel cage induction motor in which the rotor current cannot be measured, and calculates the stator side space rotating current. The present invention aims to provide a measuring device that obtains the instantaneous generated torque of a three-phase squirrel cage induction motor by determining the vector and the spatially rotating magnetic flux vector.

(発明の構成) 本発明装置は、三相かご形誘導電動機の固定子側三相電
圧と三相電流をそれぞれ検出し、通常の零相が存在しな
い場合には三相電圧の中の二相電圧と三相電流の中の二
相電流をそれぞれ検出し、演算を行って空間回転電流ベ
クトルと空間回転磁束ベクトルを算出し、さらに所定の
係数を乗算器して、瞬時発生トルクを算出することを特
徴とする。
(Structure of the Invention) The device of the present invention detects the three-phase voltage and three-phase current on the stator side of a three-phase squirrel-cage induction motor, and detects the two-phase voltage of the three-phase voltage when there is no normal zero phase. Detect the voltage and the two-phase current in the three-phase current, perform calculations to calculate the spatially rotating current vector and the spatially rotating magnetic flux vector, and then multiply by a predetermined coefficient to calculate the instantaneous generated torque. It is characterized by

(効 果) さらに説明すると、本発明装置は、瞬時発生トルクを従
来の方法におけるように回転軸のねじり角等により間接
的に測定せず、固定子巻線電流と巻線電圧を検出し、直
接に測定し得るようにしたものである。
(Effects) To further explain, the device of the present invention detects the stator winding current and winding voltage instead of indirectly measuring the instantaneous generated torque using the torsion angle of the rotating shaft as in conventional methods. This allows for direct measurement.

誘導電動機の瞬時発生トルクτ。は空間回転磁束ベクト
ル?、と空間回転電流ベクトル1.のベクトル積に比例
し、つぎの(1) 式によって示される。
The instantaneous torque τ of an induction motor. Is it a spatially rotating magnetic flux vector? , and the spatial rotating current vector 1. It is proportional to the vector product of , and is expressed by the following equation (1).

また、発生トルクτ。は上記磁束ベクトルの二と上記電
流ベクトルの二相軸上の各成分空間ベクトルI:L、I
jの大きさによって書き表わすことができ(2)式とな
る。
Also, the generated torque τ. are the component space vectors I: L, I on the two-phase axes of the above magnetic flux vector and the above current vector.
It can be expressed in terms of the size of j, resulting in equation (2).

さらに発生トルクτ。は上記空間回転ベクトルψ8.1
、のそれぞれの大きさおよび相互間の空間位相差φに関
係を有しており、(3)式で与えられる。
Furthermore, the generated torque τ. is the above spatial rotation vector ψ8.1
, and the spatial phase difference φ between them, which is given by equation (3).

τe: Kl l WS  xim  l    −−
−−−(1)・Kl I’s l l Is 1stn
φ −−−−(3)ここに、K1は比例定数を示し、極
対数nに等しい。
τe: Kl l WS xim l --
---(1)・Kl I's l l Is 1stn
φ ----(3) Here, K1 indicates a proportionality constant and is equal to the number of pole pairs n.

三相かご形誘導電動機の瞬時発生トルクの測定に対して
空間回転磁束ベクトルと空間回転電流ベクトルを利用す
れば、(2)式と(3)式により直接に瞬時発生トルク
を測定し得るのみならず、(3)式によれば各空間回転
ベクトルの大きさおよび相互間の空間位相差φの正弦値
sinφをも直接に測定し得ることになる。
If we use the spatially rotating magnetic flux vector and the spatially rotating current vector to measure the instantaneous generated torque of a three-phase squirrel cage induction motor, we can directly measure the instantaneous generated torque using equations (2) and (3). First, according to equation (3), it is possible to directly measure the magnitude of each spatial rotation vector and the sine value sinφ of the spatial phase difference φ between them.

以下本発明の実施例を図面を参照して詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

(実施例) 第1図において、1および2は三相・二相変換器であり
、三相誘導電動機(図示せず)から供給した三相固定子
巻線に流れる電流tii’、i、。
(Example) In FIG. 1, 1 and 2 are three-phase/two-phase converters, and currents tii',i, flowing through the three-phase stator windings are supplied from a three-phase induction motor (not shown).

iFおよび三相固定子巻線端子間の相電圧v、。iF and the phase voltage v, between the three-phase stator winding terminals.

”: +  vCをつぎの(4)式に従い、互いに直交
すl 1’ l = K2i” α       a l 1’ l = K3(i’ −i’ )    −
一−(4)β     bC I V” I = K2V’ α       a IV、>l=に3  (Vら −vs  )る空間電流
ベクトルと空間電圧ベクトルを表示し、K2. K3は
いずれも比例定数である。通常の零相が存在しない場合
には三相電流の中のiλ xAと三相電圧の中の二相電
圧Vλ、VCのそれぞれ第1図に示された破線を除き実
線で示す値を検出するだけで、つぎの(5)式から二相
軸の空間電流ベクトル1:、、  I、;と空間電圧ベ
クトルv:、、 v、)が求まる。
": + vC according to the following equation (4), l 1' l = K2i" α a l 1' l = K3 (i' − i' ) −
1-(4) β bC I V'' I = K2V' α a IV, > l = 3 (V et -vs ) Display the space current vector and space voltage vector, K2 and K3 are both proportionality constants. If there is no normal zero phase, the values of iλ xA in the three-phase current and the two-phase voltages Vλ and VC in the three-phase voltage, respectively, except for the broken lines shown in Figure 1, are shown by the solid lines. By simply detecting, the spatial current vector 1:, I,; and the spatial voltage vector v:, v, ) of the two-phase axis can be determined from the following equation (5).

l ’ ” I = K 21 m α       a l 1” l = K4i”+に、i”   −−−(
5)β    ab l V” l = K、v’ α       a l V2 l = K4V二+に、V、;ここに、K4
. KSはいずれも比例定数を示す。このように、三相
・二相変換器1から得られた二相の空間電流ベクトルを
I:ti、;によって表し、変換器2についてはv’、
v’によって表わすとα β 第2図に示すような合成空間電流ベクトルI3および合
成空間電圧ベクトルvsが得られる。次に誘導電動機の
固定子側における空間ベクトル微分方程式は(6)式で
表わされ、(6)式より空間磁束ベクトルψ、を求める
と(7)式となる。
l''' I = K 21 m α a l 1'' l = K4i''+, i'' ---(
5) β ab l V" l = K, v' α a l V2 l = K4V2+, V,; here, K4
.. KS indicates a constant of proportionality. In this way, the two-phase spatial current vector obtained from the three-phase/two-phase converter 1 is expressed by I:ti,; and for the converter 2, v',
When expressed by v', α β A composite spatial current vector I3 and a composite spatial voltage vector vs as shown in FIG. 2 are obtained. Next, the space vector differential equation on the stator side of the induction motor is expressed by equation (6), and when the spatial magnetic flux vector ψ is determined from equation (6), equation (7) is obtained.

V、 = R’!、 +PW、  −−−−−(6)こ
こで、R”は固定子巻線抵抗を示し、Pは微分演算子を
示す。
V, = R'! , +PW, -------(6) Here, R'' represents the stator winding resistance, and P represents the differential operator.

?、 =f<V、 −R”1. )dt −−−一−(
7)空間磁束ベクトル重、は第1図の変換器1からのの
二相空間電圧ベクトルv;、  V、yを磁束演算器4
に供給し、(7)式に基づいて二相軸上の空間磁束ベク
トルψ、、V、を求める。さらにベクトル・アナライザ
(V、A、)7に供給し、第2図に示すようにして合成
することにより得られる。
? , =f<V, -R"1.)dt---1-(
7) The spatial magnetic flux vector weight is the two-phase spatial voltage vector v from the converter 1 in Fig. 1; V, y is the magnetic flux calculator 4.
The spatial magnetic flux vector ψ,,V, on the two-phase axis is determined based on equation (7). The signals are further supplied to a vector analyzer (V, A,) 7 and synthesized as shown in FIG.

固定子の各相巻線に三相交流電圧を印加し、三相交流を
流したときには、かかる合成空間ベクトルV、、I、と
!、は空間的に回転することになる。従って、このよう
な合成空間ベクトルをそれぞれ「空間回転電圧ベクトル
」、「空間回転電流ベクトル」および「空間回転磁束ベ
クトル」と呼ぶことにする。
When three-phase AC voltage is applied to each phase winding of the stator and three-phase AC is caused to flow, the resultant space vector V,,I, and! , will be spatially rotated. Therefore, such synthetic space vectors will be referred to as a "spatial rotation voltage vector," a "spatial rotation current vector," and a "spatial rotation magnetic flux vector," respectively.

三相かご形誘導電動機の瞬時発生トルクは(1)式で与
えられたように空間回転磁束ベクトルψ、と空間回転電
流ベクトルI、のベクトル積に比例し、瞬時トルクの演
算は(2)式と(3)式によって行われる。
The instantaneous generated torque of a three-phase squirrel cage induction motor is proportional to the vector product of the spatially rotating magnetic flux vector ψ and the spatially rotating current vector I, as given by equation (1), and the calculation of the instantaneous torque is given by equation (2). and (3).

(2)式によれば、瞬時発生トルクは変換器1からの二
相軸空間電流ベクトル■; 、 I、yと磁束演算器ル
の大きさを(2)式に基づいて演算し、係数 Klを乗
算して得られる。
According to equation (2), the instantaneous generated torque is calculated by calculating the two-phase axial space current vector from converter 1, I, y, and the magnitude of the magnetic flux calculator based on equation (2), and then calculating the coefficient Kl. It is obtained by multiplying.

次に変換器1からの二相空間電圧ベクトルIトI/はベ
クトル・アナライザ(V、A、)3に供給し、磁束演算
器4からの二相軸空間磁束ベクトル、鮎、ψ)はベクト
ル・アナライザ(V、A、)7に供給する。それぞれの
ベクトル・アナライザ3と7においては、つぎの(8)
式の各項に基づいて第2図に示す空間回転ベクトル1、
と曹、が求まる。
Next, the two-phase spatial voltage vector I to I/ from the converter 1 is supplied to the vector analyzer (V, A, ) 3, and the two-phase axial spatial magnetic flux vector, Ayu, ψ) from the magnetic flux calculator 4 is・Supply to analyzer (V, A,) 7. For each vector analyzer 3 and 7, the following (8)
Based on each term of the equation, the spatial rotation vector 1 shown in FIG.
and Cao are found.

また、空間回転ベクトルの瞬時値L +  ψ1はつぎ
の(9)式によって与えられるので空間回転ベクトルI
、、?、の二相軸空間ベクトルの大きさは第2図と(8
)式によって、つぎの01式にそれぞれ書き表わされる
Also, since the instantaneous value L + ψ1 of the spatial rotation vector is given by the following equation (9), the spatial rotation vector I
,,? , the magnitude of the two-phase axis space vector is shown in Figure 2 and (8
) are respectively expressed as the following equation 01.

一一一一一〇〇 このα1式の関係を発生トルクτ。の(2)式に代入す
るとつぎの圓式が得られる。
1111100 The relationship of this α1 formula is the generated torque τ. By substituting into equation (2), the following round equation is obtained.

r。−に、lψ1I−IISI−[sinφj8・co
sd、5−cosφis””φ91Sコ−に、1Fji
 ll5i [:5in(φis−φ9s月−に、I1
1ヨ1−IIsI ・ [Sinφコ        
        −−−  (11)従って、第1図に
示すベクトル・アナライザ3および7から得られた(8
)式の各項の値を、図示のように、sinφ演算器6お
よび乗算器8にそれぞれ供給して(社)式の演算を行え
ば(3)式中の各項sinφおよび1重、1・II−が
それぞれ得られる。
r. −, lψ1I−IISI−[sinφj8・co
sd, 5-cosφis””φ91S co-, 1Fji
ll5i [:5in(φis-φ9s month-, I1
1yo 1-IIsI ・[Sinφko
--- (11) Therefore, the (8
) is supplied to the sinφ calculator 6 and the multiplier 8 as shown in the figure to calculate the values of each term in the equation (3).・II- are obtained respectively.

さらに、sinφ演算器6によって求めたsinφをn
(極対数)に相当する係数に、を乗算器する係数器9を
介して乗算器10に導き、乗算器8によって求めたN’
sl ・ll81を乗算器10に供給し、相互間の積を
求めれば、(3)式すなわち00式に従って瞬時発生ト
ルクτeが得られる。
Furthermore, sinφ calculated by the sinφ calculator 6 is n
(N'
By supplying sl·ll81 to the multiplier 10 and calculating the product between them, the instantaneous generated torque τe can be obtained according to equation (3), that is, equation 00.

以上記載のごとく構成された本発明によれば三相誘導電
動機における固定子巻線について、それぞれ空間回転電
流ベクトルおよび空間回転磁束ベクトルを検出するとと
もに、それらの空間回転ベクトルに演算を施すことによ
り、直接に瞬時発生トルクを求めることができ、誘導電
動機の瞬時の発生トルクを刻々に算出することができる
According to the present invention configured as described above, by detecting a spatially rotating current vector and a spatially rotating magnetic flux vector for the stator winding of a three-phase induction motor, and performing calculations on these spatially rotating vectors, The instantaneous generated torque can be directly determined, and the instantaneous generated torque of the induction motor can be calculated moment by moment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は三相誘導電動機の瞬時発生トルク測定装置の構
成例を示すブロック線図、 第2図は同じくそのベクトル・アナライザによって得ら
れる固定子巻線の空間回転電流ベクトルと空間回転磁束
ベクトルおよび空間回転電圧ベクトルのベクトル関係の
例を示すベクトル図である。 1.2・・・三相・二相変換器 3.7・・・ベクトル・アナライザ 4・・・磁束演算器 5・・・発生トルク演算器 6・・・sinφ演算器 8.10・・・乗算器 9・・・係数器 ρ−軸
Figure 1 is a block diagram showing a configuration example of an instantaneous torque measurement device for a three-phase induction motor, and Figure 2 shows the spatially rotating current vector and spatially rotating magnetic flux vector of the stator windings obtained by the vector analyzer. FIG. 3 is a vector diagram showing an example of a vector relationship of spatial rotation voltage vectors. 1.2... Three-phase/two-phase converter 3.7... Vector analyzer 4... Magnetic flux calculator 5... Generated torque calculator 6... Sinφ calculator 8.10... Multiplier 9...Coefficient unit ρ-axis

Claims (1)

【特許請求の範囲】 1、三相誘導電動機の固定子巻線の三相電圧と三相電流
をそれぞれ二相電圧と二相電流に変換する三相・二相変
換器と、通常の零相が存在しない場合には固定子巻線の
三相電圧の中の二相の電圧と三相電流の中の二相の電流
をそれぞれ検出し、三相から二相に変換する変換器を含
み、さらに変換された二相電圧と二相電流とから二相の
磁束を算出する磁束演算器と、前記二相電流と二相磁束
とからそれぞれ空間回転電流ベクトルと空間回転磁束ベ
クトルとを導出するベクトル・アナライザと、前記空間
回転電流ベクトルと空間回転磁束ベクトルの空間位相差
に対応した正弦値を算出する正弦値演算器と、前記空間
回転ベクトルの大きさの積を算出する乗算器と、さらに
所定の係数を乗算し、前記正弦値との積により瞬時発生
トルクを算出することを特徴とする固定子側空間回転電
流ベクトルと空間回転磁束ベクトルを用いた三相誘導電
動機の瞬時発生トルク測定装置。 2、三相誘導電動機の固定子巻線の三相電圧と三相電流
をそれぞれ二相電圧と二相電流に変換する三相・二相変
換器と、通常の零相が存在しない場合には固定子巻線の
三相電圧の中の二相の電圧と三相電流の中の二相の電流
をそれぞれ検出し、三相から二相に変換する変換器を含
み、さらに変換された二相電圧と二相電流とから二相の
磁束を算出する磁束演算器と、前記二相電流と二相磁束
とからそれぞれ空間回転電流ベクトルと空間回転磁束ベ
クトルとを導出するベクトル・アナライザと、前記空間
回転電流ベクトルと空間回転磁束ベクトルの空間位相差
に対応した正弦値を算出する正弦値演算器と、前記空間
回転ベクトルの大きさの積を算出する乗算器と、さらに
所定の計数を乗算し、前記正弦値との積により瞬時発生
トルクを算出し、さらに二相に変換された二相電流と二
相磁束は互いに直交する二相軸上における空間回転電流
ベクトルと空間回転磁束ベクトルの各成分の空間ベクト
ルであるので、空間回転磁束ベクトルの第1軸上空間ベ
クトルの大きさと空間回転電流ベクトルの第2軸上空間
ベクトルの大きさの積を算出する乗算器と、空間回転磁
束ベクトルの第2軸上空間ベクトルの大きさと空間回転
電流ベクトルの第1軸上空間ベクトルの大きさの積を算
出する乗算器と、前記乗算器による値から後記乗算器に
よる値を減算する減算器と、さらに所定の係数を乗算し
瞬時発生トルクを算出することのできるτ_e演算器を
も備えたことを特徴とする固定子側空間回転電流ベクト
ルと空間回転磁束ベクトルを用いた三相誘導電動機の瞬
時発生トルク測定装置。
[Claims] 1. A three-phase/two-phase converter that converts the three-phase voltage and three-phase current of the stator winding of a three-phase induction motor into two-phase voltage and two-phase current, respectively, and a normal zero-phase converter. includes a converter that detects two-phase voltage of the three-phase voltage and two-phase current of the three-phase current of the stator winding and converts from three-phase to two-phase if there is no Further, a magnetic flux calculator calculates two-phase magnetic flux from the converted two-phase voltage and two-phase current, and a vector derives a spatially rotating current vector and a spatially rotating magnetic flux vector from the two-phase current and two-phase magnetic flux, respectively. - an analyzer, a sine value calculator that calculates a sine value corresponding to the spatial phase difference between the spatially rotating current vector and the spatially rotating magnetic flux vector, a multiplier that calculates the product of the magnitudes of the spatially rotating vector, and a predetermined A device for measuring instantaneous torque generated in a three-phase induction motor using a stator side spatial rotating current vector and a spatial rotating magnetic flux vector, characterized in that the instantaneous generated torque is calculated by multiplying by a coefficient of , and the product with the sine value. 2. A three-phase/two-phase converter that converts the three-phase voltage and three-phase current of the stator winding of a three-phase induction motor into two-phase voltage and two-phase current, respectively, and when there is no normal zero phase. It includes a converter that detects the two-phase voltage in the three-phase voltage and the two-phase current in the three-phase current of the stator winding, and converts the three-phase to two-phase, and further converts the converted two-phase. a magnetic flux calculator that calculates two-phase magnetic flux from voltage and two-phase current; a vector analyzer that derives a spatially rotating current vector and a spatially rotating magnetic flux vector from the two-phase current and two-phase magnetic flux, respectively; a sine value calculator that calculates a sine value corresponding to the spatial phase difference between the rotating current vector and the spatially rotating magnetic flux vector; a multiplier that calculates the product of the magnitude of the spatially rotating vector; The instantaneous generated torque is calculated by multiplying it with the above sine value, and the two-phase current and two-phase magnetic flux converted into two-phase are calculated by calculating each component of the spatially rotating current vector and the spatially rotating magnetic flux vector on the two-phase axes that are orthogonal to each other. Since it is a space vector, there is a multiplier that calculates the product of the magnitude of the first axis space vector of the spatial rotation magnetic flux vector and the magnitude of the second axis spatial vector of the spatial rotation current vector, and a multiplier that calculates the product of the magnitude of the on-axis space vector and the magnitude of the first on-axis space vector of the spatial rotation current vector; a subtracter that subtracts the value obtained by the multiplier described later from the value obtained by the multiplier; Measurement of instantaneous torque generated in a three-phase induction motor using a stator-side space rotating current vector and a space rotating magnetic flux vector, characterized in that it is also equipped with a τ_e calculator that can calculate the instantaneously generated torque by multiplying by a coefficient. Device.
JP60067150A 1985-03-30 1985-03-30 Momentary generating torque measuring instrument for three-phase induction motor Pending JPS61227693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60067150A JPS61227693A (en) 1985-03-30 1985-03-30 Momentary generating torque measuring instrument for three-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60067150A JPS61227693A (en) 1985-03-30 1985-03-30 Momentary generating torque measuring instrument for three-phase induction motor

Publications (1)

Publication Number Publication Date
JPS61227693A true JPS61227693A (en) 1986-10-09

Family

ID=13336585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60067150A Pending JPS61227693A (en) 1985-03-30 1985-03-30 Momentary generating torque measuring instrument for three-phase induction motor

Country Status (1)

Country Link
JP (1) JPS61227693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167928A (en) * 1993-12-13 1995-07-04 Kaneo Takaku Measuring device for instantaneous characteristic value of three-phase ac motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186398A (en) * 1982-04-26 1983-10-31 Yaskawa Electric Mfg Co Ltd Torque detector circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186398A (en) * 1982-04-26 1983-10-31 Yaskawa Electric Mfg Co Ltd Torque detector circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07167928A (en) * 1993-12-13 1995-07-04 Kaneo Takaku Measuring device for instantaneous characteristic value of three-phase ac motor

Similar Documents

Publication Publication Date Title
JP3645509B2 (en) Induction motor sensorless vector control system and sensorless vector control method
JP2580101B2 (en) Method of setting control operation constants for induction motor control system
JPS6036716B2 (en) Magnetic flux vector calculator for induction motor
JPS61227693A (en) Momentary generating torque measuring instrument for three-phase induction motor
Hoffmann et al. Steady state analysis of speed sensorless control of induction machines
JP2591901B2 (en) Measurement device for instantaneous characteristics of three-phase AC motors
JPS58133167A (en) Device for obtaining common frequency of two electric ac amounts
JP2971762B2 (en) Simple vector controller for three-phase induction motor
JPH06186099A (en) Device for measuring momentary torque of three-phase induction motor
JP3287147B2 (en) Induction motor control method
JPH01308187A (en) Calculating method for secondary resistance of induction motor, control method, presuming method for secondary winding temperature protecting method and controller thereof
JP2856564B2 (en) Control device for synchronous motor
JP2850096B2 (en) Inverter control method with constant measurement setting function
JP3309520B2 (en) Induction motor control method
JPH0141945B2 (en)
JPH04248389A (en) Speed-sensorless speed control system
Holt Measurement of electromagnetic air gap torque produced by a syschronous motor during starting
SU1591660A1 (en) Method of determining inductive leakage reactance of three-phase synchronic machine
JPH0534423A (en) Method for calculating characteristic of linear induction motor
JPH06315291A (en) Computing method for position of magnetic flux of induction motor, and its control method using the same
JPH08294300A (en) Method for estimating speed of induction machine and controller for induction machine
JPS618640A (en) Torque detecting device of alternating current electric motor
JPH01321890A (en) Torque measuring device
JP3265768B2 (en) Variable speed device
JPH09191700A (en) Method for controlling induction motor