JPH02103348A - Magnetic pefrigerator - Google Patents

Magnetic pefrigerator

Info

Publication number
JPH02103348A
JPH02103348A JP25629688A JP25629688A JPH02103348A JP H02103348 A JPH02103348 A JP H02103348A JP 25629688 A JP25629688 A JP 25629688A JP 25629688 A JP25629688 A JP 25629688A JP H02103348 A JPH02103348 A JP H02103348A
Authority
JP
Japan
Prior art keywords
heat
heat source
magnetic
low
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25629688A
Other languages
Japanese (ja)
Inventor
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25629688A priority Critical patent/JPH02103348A/en
Publication of JPH02103348A publication Critical patent/JPH02103348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To enable the title device to be continuously operated while keeping a temperature level constant at all times by providing a magnetic action material which generates heat due to the increase of a magnetic field generated from a magnetic generator and absorbs heat due to the decrease of the magnetic field, providing a high-heat source and a low-heat source both of which exchange heat with the magnetic action material through respective heat pipes with a thermal switch, and packing high boiling-point refrigerant in the high-heat source and low boiling-point refrigerant in the low-heat source. CONSTITUTION:Heat which a magnetic action material 1 generates by the increase of a magnetic field is transferred to high boiling-point refrigerant 11 in a high-heat source 3 through a heat pipe 13 with a first thermal switch and is used as latent heat for gasification of the refrigerant 11. On the other hand, heat which the magnetic action material 1 absorbs due to the decrease of the magnetic field is absorbed from low boiling-point refrigerant 12 in a low-heat source 4 through a heat pipe 14 with a second thermal switch and is used as latent heat for liquefying the refrigerant 12. As a result, the temperature levels of both the high-heat source 3 and the low-heat source 4 are not fluctuated accompanying the operation of a refrigerator but always kept constant so that heat can be utilized for a continuous heating and cooling operation.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、磁性体の磁気熱量効果を応用した磁気冷凍
装置に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic refrigeration device that applies the magnetocaloric effect of a magnetic material.

[従来の技術] 従来のこの種の磁気冷凍装置としては、例えば特開昭6
2−288456号公報に掲載の技術を挙げることがで
きる。
[Prior art] As a conventional magnetic refrigeration device of this type, for example,
The technique disclosed in Japanese Patent No. 2-288456 can be mentioned.

第4図はその従来の磁気冷凍装置を示す概略構成図であ
る。
FIG. 4 is a schematic diagram showing the conventional magnetic refrigeration system.

図において、(1)は磁気作用物質(磁気作業物質)、
(2)は高磁界を発生する磁気発生器、(3)は前記磁
気作用物質(1)に対し第1の熱スィッチ(5)を介し
て熱的に接続または切断される高熱源、(4)は磁気作
用物質(1)に対し第2の熱スィッチ(6)を介して熱
的に接続または切断される低熱源である。
In the figure, (1) is a magnetically active substance (magnetic working substance);
(2) is a magnetic generator that generates a high magnetic field; (3) is a high heat source that is thermally connected to or disconnected from the magnetic substance (1) through a first thermal switch (5); ) is a low heat source that is thermally connected or disconnected to the magnetically active material (1) via a second thermal switch (6).

次に、上記のように構成された従来の磁気冷凍装置の動
作を説明する。
Next, the operation of the conventional magnetic refrigeration system configured as described above will be explained.

磁気発生器(2)から高磁界が発生して、その高磁界中
におる磁気作用物質(1)が発熱すると、第1の熱スィ
ッチ(5)がオンして、磁気作用物質(1)から高熱源
(3)に熱が移動される。熱の移動が終了すると、第1
の熱スィッチ(5)がオフすると共に、磁気発生器(2
)がオフして磁界が消え、磁気作用物質(1)が発熱か
ら吸熱に切り換えられる。これによって、低熱源(4)
との間の第2の熱スィッチ(6)がオンし、低熱源(4
)から磁気作用物質(1)に熱が吸収される。
When a high magnetic field is generated from the magnetic generator (2) and the magnetic substance (1) in the high magnetic field generates heat, the first heat switch (5) is turned on, causing the magnetic substance (1) to generate heat. Heat is transferred to a high heat source (3). When the heat transfer is finished, the first
The thermal switch (5) is turned off, and the magnetic generator (2) is turned off.
) is turned off, the magnetic field disappears, and the magnetically active substance (1) is switched from exothermic to endothermic. This allows the low heat source (4)
The second heat switch (6) between the
) is absorbed into the magnetically active substance (1).

そして、以上の動作の繰り返しにより、高熱源(3)と
低熱源(4)の温度がそれぞれ分離されていく。
By repeating the above operations, the temperatures of the high heat source (3) and the low heat source (4) are separated.

[発明が解決しようとする課題] ところが、この従来の磁気冷凍装置においては、運転に
ともない、高熱源(3)の温度が次第に上昇すると共に
、低熱源(4)の温度が次第に下降して、両者間の温度
幅が次第に大きくなるため、その温度幅の増加に従い成
績係数が低下して、連続運転を行うことかできなかった
[Problems to be Solved by the Invention] However, in this conventional magnetic refrigeration system, as the system is operated, the temperature of the high heat source (3) gradually increases, and the temperature of the low heat source (4) gradually decreases. Since the temperature range between the two gradually increases, the coefficient of performance decreases as the temperature range increases, making continuous operation impossible.

そこで、この発明は、高熱源及び低熱源の温度レベルを
常に一定に保つことができて、連続運転を行うことがで
きる磁気冷凍装置の提供を課題とするものでおる。
Therefore, an object of the present invention is to provide a magnetic refrigeration system that can constantly maintain the temperature levels of a high heat source and a low heat source and that can be operated continuously.

[課題を解決するための手段] この発明にかかる磁気冷凍装置は、磁気発生器から発生
される磁界の増加によって発熱し、前記磁界の減少によ
って吸熱する磁気作用物質を設け、磁気作用物質との間
で熱スイッチ付きヒートパイプを介して熱の交換を行う
高熱源及び低熱源を設け、高熱源内には高沸点冷媒を封
入すると共に、低熱源内には低沸点冷媒を封入したもの
である。
[Means for Solving the Problems] A magnetic refrigeration device according to the present invention is provided with a magnetically active substance that generates heat due to an increase in the magnetic field generated from a magnetic generator and absorbs heat due to a decrease in the magnetic field. A high heat source and a low heat source are installed to exchange heat via a heat pipe with a thermal switch, and a high boiling point refrigerant is sealed in the high heat source, and a low boiling point refrigerant is sealed in the low heat source. .

[作用] この発明においては、磁気発生器から発生される磁界の
増加によって磁気作用物質が発熱すると、その熱はヒー
トパイプを介して高熱源内の液体状の高沸点冷媒に伝達
され、この冷媒のガス化が促進されため、これを暖房に
使用することができる。
[Function] In this invention, when the magnetic substance generates heat due to an increase in the magnetic field generated by the magnetic generator, the heat is transferred to the liquid high boiling point refrigerant in the high heat source through the heat pipe, and this refrigerant gasification is promoted, which can be used for heating.

また、前記磁界の減少によって磁気作用物質が吸熱に切
り換えられると、ヒートパイプを介して低熱源から熱が
吸収され、低熱源内のガス状の低沸点冷媒が液化される
ため、これを冷房に使用することができる。したがって
、装置の運転にともない、高熱源及び低熱源の温度レベ
ルが変動することはない。
In addition, when the magnetic substance is switched to heat absorption due to the decrease in the magnetic field, heat is absorbed from the low heat source through the heat pipe, and the gaseous low boiling point refrigerant in the low heat source is liquefied, so it is used for cooling. can be used. Therefore, the temperature levels of the high heat source and the low heat source do not fluctuate as the device is operated.

[実施例] 以下、この発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の一実施例による磁気冷凍装置の路体
図、第2図は磁気作用物質の温度−エントロピー線図、
第3図(a>及び第3図(b)はそれぞれ高沸点冷媒及
び低沸点冷媒のモリエル線図である。
FIG. 1 is a road diagram of a magnetic refrigeration system according to an embodiment of the present invention, FIG. 2 is a temperature-entropy diagram of a magnetically active substance,
FIG. 3(a) and FIG. 3(b) are Mollier diagrams of a high boiling point refrigerant and a low boiling point refrigerant, respectively.

図において、(1)は磁気作用物質であり、ガドリウム
・ガリウム・ガーネット((3d3 Ga5012)ま
たはディスプロシウム・アルミニウム・ガーネット(D
V3 A + 5012>等、2に−20にの温度領域
で非常に優れた作用物質にて形成されている。(2〉は
高磁界を発生する磁気発生器であり、超電導コイル等の
電磁石で形成されている。そして、前記磁気作用物質(
1)は、磁気発生器(2)から発生される磁界の増加に
よって発熱し、前記磁界の減少によって吸熱するように
なっている。
In the figure, (1) is a magnetic substance, such as gadolinium gallium garnet ((3d3 Ga5012) or dysprosium aluminum garnet (D
V3 A + 5012>, etc., is made of a very effective active substance in the temperature range of 2 to -20°C. (2) is a magnetic generator that generates a high magnetic field, and is formed of an electromagnet such as a superconducting coil.
1) generates heat when the magnetic field generated by the magnetic generator (2) increases, and absorbs heat when the magnetic field decreases.

(3)は冷媒タンクよりなる高熱源、(4)は同じく冷
媒タンクよりなる低熱源である。(7)は高熱源(3)
に設けられた高熱源側熱交換器、(8)は低熱源(4)
に設けられた低熱源側熱交換器、(9)及び(10)は
画然交換器(7)及び(8)に対応して設けられたファ
ンである。
(3) is a high heat source consisting of a refrigerant tank, and (4) is a low heat source also consisting of a refrigerant tank. (7) is a high heat source (3)
The high heat source side heat exchanger installed in (8) is the low heat source side heat exchanger (4)
The low heat source side heat exchangers (9) and (10) provided in are fans provided corresponding to the natural exchangers (7) and (8).

(11)は高熱源(3)のタンク内に封入された高沸点
冷媒、(12)は低熱源(4)のタンク内に封入された
低沸点冷媒である。(13)は前記磁気作用物質(1)
と高熱源(3)との間に設けられた第1の熱スイッチ付
きヒートパイプ、(14)は磁気作用物質(1)と低熱
源(4)との間に設けられた第2の熱スイッチ付きヒー
トパイプである。
(11) is a high boiling point refrigerant sealed in the tank of the high heat source (3), and (12) is a low boiling point refrigerant sealed in the tank of the low heat source (4). (13) is the magnetically active substance (1)
(14) is a heat pipe with a first heat switch provided between the magnetically active material (1) and the low heat source (4); It is a heat pipe.

次に、上記のように構成されたこの実施例の磁気冷凍装
置の動作を説明する。
Next, the operation of the magnetic refrigeration system of this embodiment configured as described above will be explained.

さて、磁気発生器(2)をオンして高磁界を発生させる
と、その高磁界中に必る磁気作用物質(1)が発熱する
。この状態で、第1のヒートパイプ(13)の熱スイッ
チがオンされると、磁気作用物質(1)の熱が第1のピ
ー1−パイプ(13)を介して高熱源(3)に伝達され
る。それによって、磁気作用物質(1)のエントロピー
が第2図におけるB→Cへと移動し、高熱源(3)内の
液体状の高沸点冷媒(11)が第3図(a)に破線B→
Cで示すようにガス化する。そして、この高温ガス冷媒
をファン(9)の回転にて暖房に利用することにより、
第3図(a)に実線C−8で示すにうに潜熱が使用され
る。
Now, when the magnetic generator (2) is turned on to generate a high magnetic field, the magnetic substance (1) that is present in the high magnetic field generates heat. In this state, when the heat switch of the first heat pipe (13) is turned on, the heat of the magnetic substance (1) is transferred to the high heat source (3) via the first P1-pipe (13). be done. As a result, the entropy of the magnetic substance (1) moves from B to C in Figure 2, and the liquid high boiling point refrigerant (11) in the high heat source (3) moves to the dotted line B in Figure 3 (a). →
Gasify as shown in C. By using this high-temperature gas refrigerant for heating by rotating the fan (9),
Latent heat is used as shown by solid line C-8 in FIG. 3(a).

次に、前記第1のヒートパイプ(13)の熱スィッチを
オフすると共に、第2のヒートパイプ(14)の熱スィ
ッチをオンして、第2図にC→Dで示すように磁気作用
物質(1)を所定温度まで冷却した後、磁気発生器(2
)をオフする。すると、磁気作用物質〈1)は第2図に
おけるD→Aへと等温で吸熱を開始し、第2のヒートパ
イプ(14)を介して低熱源(4)から熱が吸収されて
、低熱源(4)内のガス状の低沸点冷媒(12)が第3
図(b)に破線D→Aで示すように液化される。そして
、この液化冷媒をファン(10)の回転にて冷房に使用
することにより、低沸点冷媒(12)は第3図(b)に
実線A→Dで示すように再びガス化する。
Next, the heat switch of the first heat pipe (13) is turned off, and the heat switch of the second heat pipe (14) is turned on, so that the magnetically active material After cooling (1) to a predetermined temperature, the magnetic generator (2
) off. Then, the magnetic substance <1) starts absorbing heat isothermally from D to A in Fig. 2, and heat is absorbed from the low heat source (4) via the second heat pipe (14). The gaseous low boiling point refrigerant (12) in (4) is the third
It is liquefied as shown by the broken line D→A in Figure (b). Then, by using this liquefied refrigerant for cooling by rotating the fan (10), the low boiling point refrigerant (12) is gasified again as shown by the solid line A→D in FIG. 3(b).

このように、上記実施例の磁気冷凍装置は、高磁界を発
生する磁気発生、器(2)と、前記磁気発生器(2)の
磁界の増加によって発熱し、前記磁界の減少によって吸
熱する磁気作用物質(1)と、前記磁気作用物質(1)
との間で熱スイッチ付きヒートパイプ<13)、(14
)を介して熱の交換を行う高熱源(3)及び低熱源(4
)と、前記高熱源(3)内に封入された高沸点冷媒(1
1)と、前記低熱源(4)内に封入された低沸点冷媒(
12)とから構成したものである。
As described above, the magnetic refrigeration apparatus of the above embodiment includes a magnetic generator (2) that generates a high magnetic field, and a magnetic generator (2) that generates heat when the magnetic field increases and absorbs heat when the magnetic field decreases. an active substance (1) and the magnetically active substance (1)
Heat pipe with thermal switch <13), (14
) A high heat source (3) and a low heat source (4) that exchange heat through
), and a high boiling point refrigerant (1) sealed in the high heat source (3).
1) and a low boiling point refrigerant (
12).

したがって、この実施例の磁気冷凍装置によれば、磁界
の増加によって磁気作用物質(1)が発熱した熱は、第
1の熟スイッチ付きヒートパイプ(13)を介して高熱
源(3〉内の高沸点冷媒(11)に与えられて、その冷
媒(11)のガス化のための潜熱として使用され、また
、磁界の減少によって磁気作用物質(1)が吸熱する熱
は、第2の熱スイッチ付きピー1〜パイプ(14)を介
して低熱源(4)内の低沸点冷媒(12)から吸収され
て、その冷媒(12)の液化のための潜熱として使用さ
れる。このために、装置の運転にともない高熱源(3)
及び低熱源(4)の温度レベルが変動することはなく、
その温+Iレベルが常に一定に保たれ、連続して暖冷房
に利用することができる。
Therefore, according to the magnetic refrigeration system of this embodiment, the heat generated by the magnetic substance (1) due to the increase in the magnetic field is transferred to the high heat source (3) through the first heat pipe (13) with a heat switch. The heat given to the high boiling point refrigerant (11) and used as latent heat for gasification of the refrigerant (11), and also absorbed by the magnetically active material (1) due to the reduction of the magnetic field, is transferred to the second heat switch. It is absorbed from the low boiling point refrigerant (12) in the low heat source (4) through the pipe (14) and used as latent heat for the liquefaction of the refrigerant (12). High heat source (3) due to operation of
and the temperature level of the low heat source (4) does not change,
The temperature +I level is always kept constant and can be used continuously for heating and cooling.

なお、上記実施例ではこの発明を空気調和用の冷凍装置
に具体化したが、この発明の用途はこれに限定されるも
のではなく、前記実施例におけるファンを省略して、こ
の発明を物品冷却用の冷凍装置に適用することも可能で
ある。
In addition, in the above embodiment, this invention was embodied in a refrigeration system for air conditioning, but the application of this invention is not limited to this. It is also possible to apply it to refrigeration equipment for

[発明の効果] 以上のように、この発明の磁気冷凍装置は、磁気発生器
から発生される磁界の増加によって発熱し、前記磁界の
減少によって吸熱する磁気作用物質を設け、磁気作用物
質との間で熱スイッチ付きピー1〜パイプを介して熱の
交換を行う高熱源及び低熱源を設け、高熱源内には高沸
点冷媒を封入すると共に、低熱源内には低沸点冷媒を封
入したものでおるため、高熱源及び低熱源の温度レベル
を常に一定に保つことができて、連続運転を行うことが
できる。
[Effects of the Invention] As described above, the magnetic refrigeration device of the present invention is provided with a magnetically acting substance that generates heat due to an increase in the magnetic field generated by the magnetic generator and absorbs heat due to a decrease in the magnetic field, and is provided with a magnetically active substance that generates heat due to an increase in the magnetic field generated by the magnetic generator and absorbs heat due to a decrease in the magnetic field. A high heat source and a low heat source are installed to exchange heat through a pipe with a heat switch, and a high boiling point refrigerant is sealed in the high heat source, and a low boiling point refrigerant is sealed in the low heat source. Therefore, the temperature level of the high heat source and low heat source can always be kept constant, and continuous operation can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による磁気冷凍装置の概略
構成図、第2図はこの発明の一実施例による磁気冷凍装
置で用いた磁気作用物質の温度−エントロピー線図、第
3図(a)及び第3図(b)はそれぞれ高沸点冷媒及び
低沸点冷媒のモリエル線図、第4図は従来構成の磁気冷
凍装置を示す概略構成図である。 図において、 1:磁気作用物質    2:la磁気発生器:高熱源
       4:低熱源 11:高沸点冷媒   12:低沸点冷媒13;第1の
熱スイッチ付きヒートパイプ14:第2の熱スイッチ付
きヒートパイプである。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。 代理人 弁理士 大台 地相 外2名 第1図 14:第2の熱スイッチ付きじ一ドパイア第3図(a) 第3図(b) 工〉タルr:’− 高温、tオ楳(R−22) エン’71Lじ− イC!シ眉し点、ン9・セ某
FIG. 1 is a schematic configuration diagram of a magnetic refrigeration system according to an embodiment of the present invention, FIG. 2 is a temperature-entropy diagram of a magnetic substance used in a magnetic refrigeration system according to an embodiment of the present invention, and FIG. a) and FIG. 3(b) are Mollier diagrams of a high boiling point refrigerant and a low boiling point refrigerant, respectively, and FIG. 4 is a schematic diagram showing a conventional magnetic refrigeration system. In the figure, 1: Magnetic substance 2: LA magnetic generator: High heat source 4: Low heat source 11: High boiling point refrigerant 12: Low boiling point refrigerant 13; Heat pipe with first heat switch 14: Heat with second heat switch It's a pipe. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts. Agent: Patent attorney Odai, 2 others Fig. 1 14: Same-door pipe with second heat switch Fig. 3 (a) Fig. 3 (b) R-22) En'71Lji-iC! A frowning point, N9.

Claims (1)

【特許請求の範囲】[Claims] (1) 高磁界を発生する磁気発生器と、 前記磁気発生器の磁界の増加によって発熱し、前記磁界
の減少によつて吸熱する磁気作用物質と、前記磁気作用
物質との間に熱スイッチ付きヒートパイプを介して熱の
交換を行う高熱源及び低熱源と、 前記高熱源内に封入された高沸点冷媒と、 前記低熱源内に封入された低沸点冷媒と を具備することを特徴とする磁気冷凍装置。
(1) A magnetic generator that generates a high magnetic field, a magnetic substance that generates heat when the magnetic field of the magnetic generator increases and absorbs heat when the magnetic field decreases, and a thermal switch provided between the magnetic substance and the magnetic substance. It is characterized by comprising a high heat source and a low heat source that exchange heat via a heat pipe, a high boiling point refrigerant sealed in the high heat source, and a low boiling point refrigerant sealed in the low heat source. Magnetic refrigeration equipment.
JP25629688A 1988-10-12 1988-10-12 Magnetic pefrigerator Pending JPH02103348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25629688A JPH02103348A (en) 1988-10-12 1988-10-12 Magnetic pefrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25629688A JPH02103348A (en) 1988-10-12 1988-10-12 Magnetic pefrigerator

Publications (1)

Publication Number Publication Date
JPH02103348A true JPH02103348A (en) 1990-04-16

Family

ID=17290688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25629688A Pending JPH02103348A (en) 1988-10-12 1988-10-12 Magnetic pefrigerator

Country Status (1)

Country Link
JP (1) JPH02103348A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657557B1 (en) * 2005-09-06 2006-12-14 주식회사 대우일렉트로닉스 Apparatus and method for controlling fixed temperature of refrigerator
CN102317710A (en) * 2009-02-17 2012-01-11 制冷技术应用股份有限公司 Magnetocaloric heat generator
CN103175343A (en) * 2013-04-08 2013-06-26 漆黎 Vacuum heat pipe electromagnetic field magnetic refrigeration prototype
JP2015141016A (en) * 2014-01-28 2015-08-03 三星電子株式会社Samsung Electronics Co.,Ltd. Magnetic refrigerator and cooling device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100657557B1 (en) * 2005-09-06 2006-12-14 주식회사 대우일렉트로닉스 Apparatus and method for controlling fixed temperature of refrigerator
CN102317710A (en) * 2009-02-17 2012-01-11 制冷技术应用股份有限公司 Magnetocaloric heat generator
CN103175343A (en) * 2013-04-08 2013-06-26 漆黎 Vacuum heat pipe electromagnetic field magnetic refrigeration prototype
JP2015141016A (en) * 2014-01-28 2015-08-03 三星電子株式会社Samsung Electronics Co.,Ltd. Magnetic refrigerator and cooling device including the same
US9970690B2 (en) 2014-01-28 2018-05-15 Samsung Electronics Co., Ltd. Magnetic refrigerator and device including the same

Similar Documents

Publication Publication Date Title
JPS592477B2 (en) Absorption liquid for absorption refrigerators
KR20010105225A (en) Apparatus and method for providing refrigeration at a very cold temperature
JPH0357389B2 (en)
US4697425A (en) Oxygen chemisorption cryogenic refrigerator
Little Microminiature refrigerators for Joule-Thomson cooling of electronic chips and devices
JPH02103348A (en) Magnetic pefrigerator
JP2548962B2 (en) heat pump
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2004211935A (en) Gas liquefier
JPS5944498B2 (en) Exhaust heat utilization equipment
JPS6196373A (en) Engine-heat pump device
JP2004028375A (en) Refrigerating equipment combined with absorption type and compression type and operating method thereof
JPS60129574A (en) Absorption and compression type refrigerator
JPH04160A (en) Refrigerating apparatus
JPH1038409A (en) Heat pump type air conditioner
JPH0643646Y2 (en) Refrigerator flow path
SU652415A1 (en) Cryogenic plant
JPS636355A (en) Heating or hot-water supply method
JPS6218856Y2 (en)
JPH09106906A (en) Conductive cooling superconducting magnet
Jones Oxygen chemisorption cryogenic refrigerator
JPH0221504B2 (en)
JPH01150763A (en) Waste heat recovery chilling unit
JPH01247968A (en) Apparatus for cooling and heating
JPS6273073A (en) Cryogenic refrigerator