JP2004211935A - Gas liquefier - Google Patents

Gas liquefier Download PDF

Info

Publication number
JP2004211935A
JP2004211935A JP2002379927A JP2002379927A JP2004211935A JP 2004211935 A JP2004211935 A JP 2004211935A JP 2002379927 A JP2002379927 A JP 2002379927A JP 2002379927 A JP2002379927 A JP 2002379927A JP 2004211935 A JP2004211935 A JP 2004211935A
Authority
JP
Japan
Prior art keywords
gas
pressure
refrigerator
condenser
atmospheric pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002379927A
Other languages
Japanese (ja)
Other versions
JP4409828B2 (en
Inventor
Mitsuru Suzuki
充 鈴木
Kunihiro Kuroki
邦広 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2002379927A priority Critical patent/JP4409828B2/en
Publication of JP2004211935A publication Critical patent/JP2004211935A/en
Application granted granted Critical
Publication of JP4409828B2 publication Critical patent/JP4409828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower a specified power by improving the efficiency of the liquefier of a gas liquefier. <P>SOLUTION: In this gas liquefier, gas supplied from the outside is cooled in order in the cooling stages 7, 8, 9 and 10 of a refrigerator by using a plurality of refrigerators 4 and 5 the refrigerators and condensed and liquefied by a condenser 21 finally cooled by the refrigerator 4 having a cooling capacity at a temperature below a gas liquefied temperature. The pressure of the outside supply gas is increased more than the atmospheric pressure, and returned to the atmospheric pressure on the upstream side of the condenser. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガス液化装置に係り、特に、ヘリウムガス液化装置として用いるのに好適な、冷凍機(好ましくはGMサイクル冷凍機等の蓄冷式冷凍機)を複数台使用し、外部から供給するガス(例えばヘリウムガス)を、その冷凍機の各冷却ステージにおいて順次冷却し、最終的にガス液化温度(例えば液体ヘリウム温度4.2K)以下で冷凍能力を有する冷凍機(例えば4KレベルのGM冷凍機(4K−GM冷凍機と称する)等)により冷却される凝縮器によって供給ガスを凝縮液化させるガス液化装置に関する。
【0002】
【従来の技術】
ヘリウムガス液化装置として、特許文献1に記載されているように、例えば4K−GM冷凍機等の蓄冷器式冷凍機を図1に示す如く複数台(図1では、4、5の2台)使用するものが提案されている。
【0003】
この蓄冷器式冷凍機4、5は、図1に示すように2段式が通常であり、冷凍を発生する膨張シリンダ部に第1段7、9と第2段8、10の2つの冷却ステージを有している。4K温度レベルのGM冷凍機では、第1段冷却ステージ7、9の温度は通常25K〜50Kレベル、第2段冷却ステージ8、10の温度は4Kレベルである。
【0004】
図において、2は凝縮液化された液体ヘリウムを蓄える液体ヘリウム容器、3は周囲と真空断熱されたクライオスタット、11は第1段熱接触部材、13は外部からのヘリウムガスの供給配管(予冷配管)、14は液体ヘリウム容器2からの蒸発配管、15は液体ヘリウム容器2への液化配管、16、17は熱交換器、21は凝縮器である。
【0005】
このようなヘリウムガス液化装置において、外部から供給配管13を介してヘリウムガスを供給して液化する場合、常温で大気圧(1atm)の供給ヘリウムガスをまず第1段冷却ステージ7、9で予冷し、次に第2段冷却ステージ8の凝縮器21に導いて凝縮液化させる。液化されるヘリウムガスは、液体ヘリウム容器2からの蒸発ガスや、ヘリウムボンベのガス等が対象となる。液体ヘリウムは通常ほぼ大気圧で貯液されており、供給されるガスは、液化装置内でほぼ大気圧で冷却、液化されている。
【0006】
このようなヘリウムガス液化装置において、第1段冷却ステージ7、9での冷却最低温度は、蓄冷器の効率等から25〜30Kが限界である。又、第2段冷却ステージ8、10における熱負荷は、第1段冷却ステージ温度のヘリウムガスを液化温度まで冷却するのに要する負荷であり、温度25〜30Kのガスを4.2Kガス温度まで冷却するための顕熱量と液化温度のガスを凝縮して液体とするに要する蒸発潜熱量との和となる。ヘリウムガスの顕熱量は比較的大きいため、図1に示した如く、一部のGM冷凍機5の第2段冷却ステージ10を4.2Kではなく6K温度ステージとして使用して、ガスをまず6K程度まで冷却し、最終的に残りのGM冷凍機4の第2段冷却ステージ10を4K温度ステージとして凝縮液化を行なう方法が特許文献1に記載されている。
【0007】
一方、特許文献2には、ジュールトムソン(JT)効果を利用した液化装置として、GM−JT式液化機が記載されている。これは、基本的に、図2に示す如く、10KレベルのGM冷凍機24に、熱交換器32、33、34、JT弁35、JT回路用圧縮機31等の機器から構成されるJT回路を付加した冷凍機である。
【0008】
図において、22は、GM冷凍機用の圧縮機、27、28は、それぞれ、GM冷凍機24の第1段、第2段冷却ステージである。
【0009】
このGM−JT式液化機では、JT回路用圧縮機31によってヘリウムガスを約15〜20atmに加圧し、GM冷凍機24の冷却ステージ27、28と熱交換器32、33、34によって順次冷却する。最終的に、数K、15atm程度のヘリウムガスを、JT弁35から膨張させてガスの一部を液化して液体ヘリウム容器等の冷凍負荷36に供給し、液化しなかった残りのガスは戻りガスとして圧縮機31で回収し、再度加圧循環させる。
【0010】
【特許文献1】
特開平11−118349号公報
【特許文献2】
特開平10−245208号公報
【0011】
【発明が解決しようとする課題】
しかしながら、特許文献1のヘリウムガス液化装置において、温度6Kのガスを4.2Kのガスにまで冷却する冷熱量(顕熱量)は、4.2Kのガスを液化するのに必要な冷熱量(潜熱量)の60%程度の大きさであり、この4K温度での負荷を低減することが、液化効率を改善する上でのポイントとなっていた。
【0012】
一方、特許文献2に記載のGM−JT式液化機では、本発明の一部の実施形態と同様にJT弁を使用してはいるが、全量を液化せず、一部が戻りガスとなっているため、熱交換器32、33、34やJT回路用圧縮機31が必要であり、構成が複雑であるという問題点を有していた。
【0013】
本発明は、前記従来の問題点を解決するべくなされたもので、簡単な構成で、液化効率を向上させて、所要動力を低減することを課題とする。
【0014】
【課題を解決するための手段】
本発明は、冷凍機を複数台使用し、外部から供給するガスを、その冷凍機の各冷却ステージにおいて順次冷却し、最終的にガス液化温度以下で冷凍能力を有する冷凍機により冷却される凝縮器によって供給ガスを凝縮液化させるガス液化装置において、外部供給ガスの圧力を大気圧より高くすると共に、前記凝縮器の上流側で圧力を大気圧に戻すようにして、前記課題を解決したものである。
【0015】
又、前記圧力を、絞り弁又はオリフィスを用いて大気圧に戻すようにしたものである。
【0016】
又、前記凝縮器に、液化されたガスを移送するためのトランスファチューブを設けて、別の液体容器に挿入して運転できるようにしたものである。
【0017】
【発明の実施の形態】
以下図面を参照して、4K−GM冷凍機を2台使用する場合を例にとって、本発明の実施形態を詳細に説明する。
【0018】
本実施形態は、図1に示したような従来例と同様のヘリウムガス液化装置において、図3に示す如く、外部から供給配管13を介して供給されるヘリウムガスの圧力を、大気圧レベルではなく、4〜7atmに高めると共に、熱交換器16に代えて熱交換器41、42を設けて、それぞれGM冷凍機5、4の第1段冷却ステージ9、7で60K、30Kに冷却し、更に、熱交換器17の出側に、例えばJT弁のような絞り弁44を設けて、凝縮器21の入側で圧力を大気圧(1atm)に戻すようにしたものである。
【0019】
他の点に関しては、図1に示した従来例と同様であるので、詳細な説明は省略する。
【0020】
本実施形態においては、供給配管13から供給されるヘリウムガスを、2台のGM冷凍機5、4の第1段冷却ステージ9、7でほぼ30Kまで冷却し、次にGM冷凍機5の第2段冷却ステージ10でほぼ6Kまで冷却する。次に、GM冷凍機4の第2段冷却ステージ8の凝縮器21で凝縮液化するが、該凝縮器21の前に設けられた絞り弁44によって、ヘリウムガスを大気圧レベルまで膨張させてから凝縮器21に供給する。従って、凝縮液化された液体ヘリウムは、液体ヘリウム容器2に、従来と同様にほぼ大気圧で貯液される。
【0021】
このようにして、絞り弁44により、6K、数atmのヘリウムガスを1atmに自由膨張させると、ジュールトムソン効果によって、圧力4atmでは約30%、7atmでは約50%のガスが液化し、残りは4.2Kのガスとなる。従って、凝縮器21では、残りの70〜50%の4.2Kガスを凝縮すれば全量を液化できる。よって、外部供給ヘリウムガスを数atmで供給することにより、従来のように約1atmで供給した場合に比べて、冷凍機第2段冷却ステージ8の4.2K冷凍負荷を1/2〜1/3に低減することができる。
【0022】
なお、膨張前の圧力値には、その温度によって液化率が最大となる値が存在する。6Kのガスを1atmまで膨張させる場合、液化率は圧力が約7atmの場合に最大となる。圧送ポンプの吐出圧力が低い場合等では、圧力が4atm程度であっても効率上は相当に有用である。なお、液化率が最大となる圧力は温度によって異なり、例えば膨張前ガス温度が5Kの場合には4atm、7Kの場合には11atm、8Kの場合は14atm程度である。
【0023】
ここで、供給配管13に供給されるガスの圧力を数atmとすることは、ボンベガスの場合は、もともとボンベ圧力が高い(150atm程度)ので、減圧するだけであり、特に問題はない。なお、液体ヘリウム蒸発ガスを回収して液化する場合、蒸発ガスは1atmであることが多いので加圧する必要はあるが、もともと蒸発ガスを回収して液化装置へ圧送するためにもポンプは必要であり、数atmに加圧することは、装置的にも比較的容易である。
【0024】
なお前記第1実施形態においては、GM冷凍機4、5と液体ヘリウム容器2が共に同じクライオスタット3内に収納されていたが、本発明の適用対象はこれに限定されず、図4に示す第2実施形態のように、凝縮器21にトランスファチューブ50を設けて、別の液体ヘリウム容器52に挿入して運転するような構成とすることもできる。
【0025】
図において、54は本発明に係る絞り弁、56は供給ガスの圧力を調整するための圧力調整弁、58は安全弁である。
【0026】
なお、前記実施形態においては、いずれも冷凍機として4K−GM冷凍機が用いられていたが、本発明の適用対象はこれに限定されず、他の蓄冷器式冷凍機や、蓄冷器式以外の冷凍機を用いたものにも同様に適用できることは明らかである。液化するガスの種類もヘリウムに限定されず、絞り弁44の代りに単純なオリフィス等の他の絞り部を設けても良い。
【0027】
【発明の効果】
本発明によれば、構成を複雑化することなく、液化効率を向上させて、所要動力を低減することが可能となる。
【0028】
なお、本発明の実施形態では、特許文献2のJT弁と同様の作用を有すると解することも可能と見られる絞り弁を使用してはいるが、本発明の対象である液化サイクルでは、最終的に4K−GM冷凍機等で全量を液化する方式であり、戻りガスがないため、熱交換器、JT回路用圧縮機を有しない点で特許文献2より有利である。
【図面の簡単な説明】
【図1】特開平11−118349号に記載された従来のヘリウムガス液化装置の構成を示す断面図
【図2】特開平10−245208号に記載されたGM−JT式液化機の構成を示すフロー図
【図3】本発明の第1実施形態の構成を示す断面図
【図4】同じく第2実施形態の構成を示す断面図
【符号の説明】
2、52…液体ヘリウム容器
3…クライオスタット
4、5…GM冷凍機
7、8、9、10…冷却ステージ
21…凝縮器
44、54…絞り弁
50…トランスファチューブ
56…圧力調整弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas liquefaction apparatus, and in particular, uses a plurality of refrigerators (preferably regenerative refrigerators such as a GM cycle refrigerator) suitable for use as a helium gas liquefaction apparatus, and supplies gas supplied from outside. (For example, helium gas) is sequentially cooled in each cooling stage of the refrigerator, and finally a refrigerator having a refrigerating capacity at a gas liquefaction temperature (for example, liquid helium temperature of 4.2 K) or lower (for example, a 4K level GM refrigerator). (Referred to as a 4K-GM refrigerator) and the like.
[0002]
[Prior art]
As described in Patent Document 1, as a helium gas liquefaction apparatus, for example, a plurality of regenerator refrigerators such as a 4K-GM refrigerator are shown in FIG. 1 (two in FIG. 1, four and five). What to use has been proposed.
[0003]
The regenerator refrigerators 4 and 5 are usually of a two-stage type as shown in FIG. 1, and two cooling units of a first stage 7, 9 and a second stage 8, 10 are provided in an expansion cylinder part for generating refrigeration. It has a stage. In a GM refrigerator having a 4K temperature level, the temperatures of the first cooling stages 7 and 9 are usually 25K to 50K levels, and the temperatures of the second cooling stages 8 and 10 are 4K levels.
[0004]
In the figure, 2 is a liquid helium container for storing condensed and liquefied liquid helium, 3 is a cryostat insulated from the surroundings, 11 is a first-stage thermal contact member, 13 is a supply pipe for helium gas from outside (pre-cooling pipe). , 14 is an evaporation pipe from the liquid helium container 2, 15 is a liquefaction pipe to the liquid helium container 2, 16 and 17 are heat exchangers, and 21 is a condenser.
[0005]
In such a helium gas liquefaction apparatus, when helium gas is supplied from outside via the supply pipe 13 and liquefied, helium gas supplied at normal temperature and atmospheric pressure (1 atm) is first pre-cooled in the first cooling stages 7 and 9. Then, it is led to the condenser 21 of the second cooling stage 8 to be condensed and liquefied. The helium gas to be liquefied is an evaporating gas from the liquid helium container 2, a gas in a helium cylinder, or the like. Liquid helium is usually stored at approximately atmospheric pressure, and the supplied gas is cooled and liquefied at approximately atmospheric pressure in a liquefier.
[0006]
In such a helium gas liquefaction apparatus, the minimum cooling temperature in the first cooling stages 7 and 9 is limited to 25 to 30K due to the efficiency of the regenerator. The heat load in the second cooling stages 8 and 10 is a load required to cool the helium gas at the first cooling stage temperature to the liquefaction temperature, and converts a gas having a temperature of 25 to 30K to a 4.2K gas temperature. It is the sum of the amount of sensible heat for cooling and the amount of latent heat of evaporation required to condense the gas at the liquefaction temperature into a liquid. Since the sensible heat of the helium gas is relatively large, as shown in FIG. 1, the second cooling stage 10 of some GM refrigerators 5 is used as a 6K temperature stage instead of 4.2K, and the gas is first cooled to 6K. Patent Document 1 describes a method of cooling to about the extent and finally condensing and liquefying the remaining second stage cooling stage 10 of the GM refrigerator 4 with the 4K temperature stage.
[0007]
On the other hand, Patent Literature 2 discloses a GM-JT liquefier as a liquefaction device utilizing the Joule-Thomson (JT) effect. Basically, as shown in FIG. 2, a JT circuit composed of equipment such as a heat exchanger 32, 33, 34, a JT valve 35, a JT circuit compressor 31, etc. This is a refrigerator to which is added.
[0008]
In the figure, 22 is a compressor for the GM refrigerator, and 27 and 28 are the first and second cooling stages of the GM refrigerator 24, respectively.
[0009]
In the GM-JT liquefier, the helium gas is pressurized to about 15 to 20 atm by the JT circuit compressor 31 and is sequentially cooled by the cooling stages 27 and 28 of the GM refrigerator 24 and the heat exchangers 32, 33 and 34. . Finally, a helium gas of several K and about 15 atm is expanded from the JT valve 35 to liquefy a part of the gas and supply it to a refrigeration load 36 such as a liquid helium container. The gas is recovered by the compressor 31 and circulated again under pressure.
[0010]
[Patent Document 1]
JP-A-11-118349 [Patent Document 2]
JP-A-10-245208
[Problems to be solved by the invention]
However, in the helium gas liquefaction apparatus disclosed in Patent Document 1, the amount of cold energy (sensible heat) for cooling a gas at a temperature of 6K to a gas at 4.2K is the amount of cold energy (latent heat) required to liquefy the 4.2K gas. Volume) of about 60%, and reducing the load at this 4K temperature was a point in improving the liquefaction efficiency.
[0012]
On the other hand, in the GM-JT type liquefier described in Patent Document 2, the JT valve is used as in some embodiments of the present invention, but the entire amount is not liquefied, and a part of the liquefied gas is returned gas. Therefore, the heat exchangers 32, 33, and 34 and the compressor 31 for the JT circuit are required, and there is a problem that the configuration is complicated.
[0013]
The present invention has been made to solve the above-mentioned conventional problems, and has an object to improve liquefaction efficiency and reduce required power with a simple configuration.
[0014]
[Means for Solving the Problems]
The present invention uses a plurality of refrigerators, sequentially cools gas supplied from the outside in each cooling stage of the refrigerator, and finally condenses cooled by a refrigerator having a refrigerating capacity below the gas liquefaction temperature. In a gas liquefaction apparatus for condensing and liquefying a supply gas by a vessel, the pressure of the external supply gas is made higher than the atmospheric pressure, and the pressure is returned to the atmospheric pressure on the upstream side of the condenser to solve the above problem. is there.
[0015]
Further, the pressure is returned to the atmospheric pressure by using a throttle valve or an orifice.
[0016]
Further, a transfer tube for transferring the liquefied gas is provided in the condenser so that the condenser can be operated by being inserted into another liquid container.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings, taking a case where two 4K-GM refrigerators are used as an example.
[0018]
In the present embodiment, in a helium gas liquefaction apparatus similar to the conventional example as shown in FIG. 1, as shown in FIG. 3, the pressure of helium gas supplied from the outside via a supply pipe 13 is reduced at atmospheric pressure level. Instead, the heat exchangers are increased to 4 to 7 atm, and heat exchangers 41 and 42 are provided in place of the heat exchanger 16 and cooled to 60K and 30K in the first cooling stages 9 and 7 of the GM refrigerators 5 and 4, respectively. Further, a throttle valve 44 such as a JT valve is provided on the outlet side of the heat exchanger 17 so that the pressure is returned to the atmospheric pressure (1 atm) on the inlet side of the condenser 21.
[0019]
Other points are the same as those of the conventional example shown in FIG.
[0020]
In this embodiment, the helium gas supplied from the supply pipe 13 is cooled to approximately 30K by the first cooling stages 9 and 7 of the two GM refrigerators 5 and 4, and then the GM refrigerator 5 The two-stage cooling stage 10 cools to approximately 6K. Next, the liquid is condensed and liquefied in the condenser 21 of the second cooling stage 8 of the GM refrigerator 4, and after the helium gas is expanded to the atmospheric pressure level by the throttle valve 44 provided in front of the condenser 21. It is supplied to the condenser 21. Accordingly, the condensed and liquefied liquid helium is stored in the liquid helium container 2 at substantially the same atmospheric pressure as in the related art.
[0021]
In this way, when helium gas of 6K and several atm is freely expanded to 1 atm by the throttle valve 44, about 30% of the gas is liquefied at a pressure of 4atm and about 50% at a pressure of 7atm due to the Joule-Thomson effect, and the rest is It becomes 4.2K gas. Therefore, in the condenser 21, the entire amount can be liquefied by condensing the remaining 70 to 50% of the 4.2K gas. Therefore, by supplying the externally supplied helium gas at a few atm, the 4.2K refrigeration load of the second stage cooling stage 8 of the refrigerator is reduced by 1/2 to 1/1, as compared with the conventional case where the helium gas is supplied at about 1 atm. 3 can be reduced.
[0022]
The pressure value before expansion has a value at which the liquefaction rate becomes maximum depending on the temperature. When a 6K gas is expanded to 1 atm, the liquefaction rate is maximum when the pressure is about 7 atm. In the case where the discharge pressure of the pressure pump is low, the efficiency is considerably useful even if the pressure is about 4 atm. The pressure at which the liquefaction rate becomes maximum varies depending on the temperature. For example, when the gas temperature before expansion is 5K, it is about 4 atm, when it is 7K, it is about 11 atm, and when it is 8K, it is about 14 atm.
[0023]
Here, setting the pressure of the gas supplied to the supply pipe 13 to several atm only involves reducing the pressure in the case of cylinder gas because the cylinder pressure is originally high (about 150 atm), and there is no particular problem. When recovering and liquefying liquid helium evaporating gas, it is necessary to increase the pressure because the evaporating gas is often at 1 atm. However, a pump is also necessary to recover the evaporating gas and pump it to the liquefaction device. Yes, pressurizing to several atm is relatively easy in terms of equipment.
[0024]
In the first embodiment, the GM refrigerators 4 and 5 and the liquid helium container 2 are both housed in the same cryostat 3, but the present invention is not limited to this, and the present invention is not limited to this. As in the second embodiment, a configuration in which a transfer tube 50 is provided in the condenser 21 and inserted into another liquid helium container 52 for operation can be adopted.
[0025]
In the drawing, 54 is a throttle valve according to the present invention, 56 is a pressure adjusting valve for adjusting the pressure of the supplied gas, and 58 is a safety valve.
[0026]
In each of the above embodiments, a 4K-GM refrigerator is used as a refrigerator. However, the application of the present invention is not limited to this, and other regenerator refrigerators and other than regenerator refrigerators It is apparent that the present invention can be similarly applied to the one using the refrigerator. The type of gas to be liquefied is not limited to helium, and another throttle unit such as a simple orifice may be provided instead of the throttle valve 44.
[0027]
【The invention's effect】
According to the present invention, it is possible to improve the liquefaction efficiency and reduce the required power without complicating the configuration.
[0028]
In the embodiment of the present invention, a throttle valve which is considered to have the same effect as the JT valve of Patent Document 2 is used, but in the liquefaction cycle which is the object of the present invention, This is a system in which the entire amount is finally liquefied by a 4K-GM refrigerator or the like. Since there is no return gas, there is no heat exchanger or JT circuit compressor, which is more advantageous than Patent Document 2.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a conventional helium gas liquefaction apparatus described in JP-A-11-118349. FIG. 2 is a view showing a configuration of a GM-JT type liquefier described in JP-A-10-245208. FIG. 3 is a cross-sectional view showing the configuration of the first embodiment of the present invention. FIG. 4 is a cross-sectional view showing the configuration of the second embodiment.
2, 52 liquid helium container 3 cryostat 4, 5 GM refrigerator 7, 8, 9, 10, cooling stage 21 condenser 44, 54 throttle valve 50 transfer tube 56 pressure regulating valve

Claims (3)

冷凍機を複数台使用し、外部から供給するガスを、その冷凍機の各冷却ステージにおいて順次冷却し、最終的にガス液化温度以下で冷凍能力を有する冷凍機により冷却される凝縮器によって供給ガスを凝縮液化させるガス液化装置において、
外部供給ガスの圧力を大気圧より高くすると共に、
前記凝縮器の上流側で圧力を大気圧に戻すようにしたことを特徴とするガス液化装置。
Using a plurality of refrigerators, a gas supplied from the outside is sequentially cooled in each cooling stage of the refrigerator, and finally supplied gas by a condenser cooled by a refrigerator having a refrigerating capacity below the gas liquefaction temperature. In a gas liquefaction device for condensing and liquefying
While increasing the pressure of the external supply gas above atmospheric pressure,
A gas liquefaction apparatus wherein the pressure is returned to the atmospheric pressure on the upstream side of the condenser.
前記圧力を、絞り弁又はオリフィスを用いて大気圧に戻すようにしたことを特徴とする請求項1に記載のガス液化装置。The gas liquefaction apparatus according to claim 1, wherein the pressure is returned to the atmospheric pressure by using a throttle valve or an orifice. 前記凝縮器に、液化されたガスを移送するためのトランスファチューブを設けたことを特徴とする請求項1に記載のガス液化装置。The gas liquefaction apparatus according to claim 1, wherein a transfer tube for transferring the liquefied gas is provided in the condenser.
JP2002379927A 2002-12-27 2002-12-27 Gas liquefaction equipment Expired - Fee Related JP4409828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379927A JP4409828B2 (en) 2002-12-27 2002-12-27 Gas liquefaction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379927A JP4409828B2 (en) 2002-12-27 2002-12-27 Gas liquefaction equipment

Publications (2)

Publication Number Publication Date
JP2004211935A true JP2004211935A (en) 2004-07-29
JP4409828B2 JP4409828B2 (en) 2010-02-03

Family

ID=32816294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379927A Expired - Fee Related JP4409828B2 (en) 2002-12-27 2002-12-27 Gas liquefaction equipment

Country Status (1)

Country Link
JP (1) JP4409828B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085700A (en) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp Helium condensing device
WO2013010183A1 (en) * 2011-07-14 2013-01-17 Quantum Design, Inc. Liquefier with pressure-controlled liquefaction chamber
CN103776237A (en) * 2012-10-22 2014-05-07 中国科学院理化技术研究所 Multi-refrigerator precooling in-band purification redundancy helium liquefying device
JP2015508882A (en) * 2012-02-10 2015-03-23 中船重工鵬力(南京)超低温技術有限公司Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cryogenic equipment for gas separation and purification based on small cryogenic refrigeration equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085700A (en) * 2005-09-26 2007-04-05 Taiyo Nippon Sanso Corp Helium condensing device
JP4570546B2 (en) * 2005-09-26 2010-10-27 大陽日酸株式会社 Helium condenser
WO2013010183A1 (en) * 2011-07-14 2013-01-17 Quantum Design, Inc. Liquefier with pressure-controlled liquefaction chamber
JP2014527610A (en) * 2011-07-14 2014-10-16 カンタム デザイン, インコーポレイテッドQuantum Design, Inc. Liquefaction apparatus with pressure controlled liquefaction chamber
US9671159B2 (en) 2011-07-14 2017-06-06 Quantum Design International, Inc. Liquefier with pressure-controlled liquefaction chamber
JP2015508882A (en) * 2012-02-10 2015-03-23 中船重工鵬力(南京)超低温技術有限公司Csic Pride (Nanjing) Cryogenic Technology Co., Ltd. Cryogenic equipment for gas separation and purification based on small cryogenic refrigeration equipment
EP2829830A4 (en) * 2012-02-10 2016-03-16 Csic Pride Nanjing Cryogenic Tech Co Ltd Low-temperature device for separating and purifying gas based on small-sized low-temperature refrigerating machine
CN103776237A (en) * 2012-10-22 2014-05-07 中国科学院理化技术研究所 Multi-refrigerator precooling in-band purification redundancy helium liquefying device
CN103776237B (en) * 2012-10-22 2015-12-02 中国科学院理化技术研究所 Multi-refrigerator precooling in-band purification redundancy helium liquefying device

Also Published As

Publication number Publication date
JP4409828B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
CN1289887C (en) Thermo-siphon method for providing refrigeration
EP1913117A1 (en) Lng bog reliquefaction apparatus
KR20070020162A (en) Apparatus and method for reliquefying boil-off gas, and lng carrier with the apparatus
US20150345834A1 (en) Refrigeration and/or liquefaction device, and corresponding method
KR101167148B1 (en) Boil-off gas reliquefying apparatus
US20200041201A1 (en) Refrigeration and/or liquefaction device, and associated method
JPH0515764A (en) Vacuum container with cooling device
JP4409828B2 (en) Gas liquefaction equipment
JP3668919B2 (en) Helium gas condensing liquefaction device
US6484516B1 (en) Method and system for cryogenic refrigeration
JP3638557B2 (en) Cryogenic cooling method and apparatus
JP2004019995A (en) Refrigeration device
JPH1114172A (en) Binary codling facility and binary cooling method utilizing heat storage of dry ice
JPS6266067A (en) Helium cooling device
JP2009540262A (en) Refrigerant and refrigeration system
JP4879606B2 (en) Cold supply system
JPH06323663A (en) Refrigerator
JPS62280571A (en) Method and device for precooling liquefying refrigerator
JPS6317360A (en) Cryogenic refrigerating method
JPH11108476A (en) Cryostatic cooling device
JPH02203162A (en) Heat accumulating refrigerator
JPH11132584A (en) Helium liquefaction refrigerating system
JPH06323664A (en) Refrigerator
JPS62261868A (en) Helium cooling device
JPH02176372A (en) Refrigerating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4409828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees