JPH02102738A - Porous iron catalyst carrier and production thereof - Google Patents

Porous iron catalyst carrier and production thereof

Info

Publication number
JPH02102738A
JPH02102738A JP63255992A JP25599288A JPH02102738A JP H02102738 A JPH02102738 A JP H02102738A JP 63255992 A JP63255992 A JP 63255992A JP 25599288 A JP25599288 A JP 25599288A JP H02102738 A JPH02102738 A JP H02102738A
Authority
JP
Japan
Prior art keywords
powder
iron
porous
catalyst carrier
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255992A
Other languages
Japanese (ja)
Other versions
JPH064136B2 (en
Inventor
Yozo Takemura
竹村 洋三
Norio Mikami
三上 矩雄
Masaru Meguro
目黒 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63255992A priority Critical patent/JPH064136B2/en
Publication of JPH02102738A publication Critical patent/JPH02102738A/en
Publication of JPH064136B2 publication Critical patent/JPH064136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst carrier to which enough catalytic agents can be stuck with inexpensive iron powder, etc., by forming a three-dimensional network skeleton forming macropores and having a microporous coarse sintered surface. CONSTITUTION:Iron powder of about <=50mum average particle size is mixed with carbon and kneaded with a binder. The resulting kneaded material is stuck to a thermally decomposable network porous body as a skeleton, the porous body is removed by heating and self-reduction and sintering are carried out to obtain a catalyst carrier for a chemical apparatus, an apparatus for treating waste gas from an automobile, etc. The carrier is made of a porous sintered body having micropores 3 as well as macropores 1 formed by the iron skeleton 2. Enough catalytic agents such as noble metals and Cu group metals can be stuck to the carrier. The carrier is inexpensive.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、触媒の製造に用いられる触媒担体に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a catalyst carrier used in the production of a catalyst.

更に詳しくは、本触媒担体の例えば骨部に触媒剤を塗着
すると、化学装置や自動車廃ガス処理装置に用いる触媒
となる。
More specifically, when a catalytic agent is applied to, for example, the ribs of the present catalyst carrier, it becomes a catalyst for use in chemical equipment or automobile waste gas treatment equipment.

[従来の技vfI] 市販の三次元網目状のセラミックス多孔体は、骨部に触
媒剤を塗着して触媒として用いる事ができる。しかしこ
の骨部は平滑で滑り易いために触媒剤を十分な量塗着さ
せる事は難しい、またセラミックスは非電導体であり、
触媒剤を電気メツキで塗着させる事が困難で、触媒剤の
塗着手段が制約される。更にセラミックスは通電加熱が
できないために1例えば高温で触媒反応を行はせる場合
は、触媒反応させる通過流体を別途に高温に加熱するた
め、加熱装置が大規模となる。
[Conventional Technique vfI] A commercially available three-dimensional mesh ceramic porous body can be used as a catalyst by applying a catalyst agent to the bones. However, since this bone is smooth and slippery, it is difficult to apply a sufficient amount of catalyst, and ceramics are non-conductors.
It is difficult to apply the catalytic agent by electroplating, and the means for applying the catalytic agent are limited. Furthermore, since ceramics cannot be heated with electricity, for example, if a catalytic reaction is to be carried out at a high temperature, the passing fluid for the catalytic reaction must be separately heated to a high temperature, which requires a large-scale heating device.

特開昭51−98690号は、表面が平滑な金属三次元
網目状多孔体の骨格の表面に、例えば金属粉末を塗着し
焼き付けて該骨格の表面を粗製化し、粗製化した骨格の
表面に触媒剤を塗着した触媒である。
JP-A No. 51-98690 describes roughening the surface of the skeleton by coating and baking metal powder on the surface of the skeleton of a metal three-dimensional porous material having a smooth surface, and applying a powder to the surface of the roughened skeleton. This is a catalyst coated with a catalytic agent.

しかしこの方法の骨格表面の粗製化は、無電解めっき→
表面処理→金属粉末等の塗着→焼付による行うもので、
粗製化工程が複雑であり、又金属粉末等が高価であるた
め触媒担体も極めて高価となる。又平滑な金属の骨格の
表面に粗製化層を形成しても、骨格と粗製化層の結合が
弱く、触媒体の加熱や冷却を繰り返すと、粗製化層が剥
離し易い。
However, the roughening of the skeleton surface in this method is due to electroless plating→
This is done by surface treatment → application of metal powder, etc. → baking.
Since the roughening process is complicated and the metal powder etc. are expensive, the catalyst carrier is also extremely expensive. Furthermore, even if a roughened layer is formed on the surface of a smooth metal skeleton, the bond between the skeleton and the roughened layer is weak, and the roughened layer is likely to peel off when the catalyst body is repeatedly heated and cooled.

本発明者等は多孔体を安価に製造する方法を研究し、安
価な鉄粉等を用いた鉄の多孔体を発明して、特願昭63
−165884号、特願昭63−165885号、特願
昭63−197853号および特願昭63−21064
2号で特許出願した。
The inventors of the present invention researched methods for manufacturing porous bodies at low cost, invented a porous iron body using inexpensive iron powder, etc., and filed a patent application in 1983.
-165884, Japanese Patent Application No. 165885, Japanese Patent Application No. 1978, Japanese Patent Application No. 1978, Japanese Patent Application No. 1978, and Japanese Patent Application No. 1983-21064.
A patent application was filed for No. 2.

本発明者等は更に、これらの鉄の多孔体を触媒担体とす
る研究を行い、本発明を完成するに至った。
The present inventors further conducted research on using these iron porous bodies as catalyst carriers, and completed the present invention.

[発明が解決しようとする課題] 即ち本発明は、骨部が三次元網目状でマクロ空孔を形成
すると共に骨部がミクロ空孔を有する粗い焼結表面より
なり、触媒剤を骨部に塗着する際に、粗い焼結面や、ミ
クロ空孔や、あるいはミクロ空孔に浸み込んだ触媒剤の
アンカー作用によって、十分な量の触媒剤を塗着させる
事が可能な触媒担体であり、また触媒担体が電導性であ
るために例えば電気めっき等の広範囲な触媒剤の塗着手
段が可能であり、更に触媒担体を直接通電あるいは誘導
加熱して触媒を所望の温度とする事ができるために、コ
ンパクトな装置にも適用できる触媒担体を提供するもの
である。
[Problems to be Solved by the Invention] In other words, the present invention provides a method in which the bone portion has a three-dimensional network shape and forms macro-pores, and the bone portion has a rough sintered surface having micro-pores, and the catalyst agent is applied to the bone portion. A catalyst carrier that allows a sufficient amount of catalyst to be applied during coating due to the rough sintered surface, micropores, or the anchoring action of the catalyst that has penetrated into the micropores. Furthermore, since the catalyst carrier is electrically conductive, a wide range of methods for applying the catalyst agent, such as electroplating, are possible, and furthermore, the catalyst carrier can be heated to the desired temperature by direct current application or induction heating. Therefore, the present invention provides a catalyst carrier that can be applied to compact devices.

又本発明は粉砕が容易な鉄粉等を使用した、安価な触媒
担体を提供するものである。
Further, the present invention provides an inexpensive catalyst carrier using iron powder or the like that is easily pulverized.

[課題を解決するための手段] 即ち本発明は (1)鉄の骨部が多孔体のマクロ空孔を形成しかっ該鉄
の骨部はミクロ空孔を有する焼結体よりなることを特徴
とする、多孔質の鉄の触媒担体であり、また (2)鉄の骨部が合金元素を含有する鉄の背部である、
前記(1)に記載の多孔質の鉄の触媒担体であり、また (3)平均粒径が50μ以下の鉄粉、酸化鉄粉、表面を
酸化させた鉄粉から選ばれる1種または2種以上を、あ
るいは更に平均粒径が50μ以下の炭素粉を混合して、
炭素と酸素の含有量が下記1式の母材用粉末を製造する
第1工程と、該母材用粉末を結合剤と混練し熱分解性網
目状多孔体の骨格に塗着する第2工程と、第2工程の生
成物を加熱し熱分解性網目状多孔体を除去し更に塗看物
を自己還元焼結せしめる第3工程とを有する、鉄の背部
が多孔体のマクロ空孔を形成しかつ該鉄の骨部はミクロ
空孔を有する鉄の焼結体よりなる、多孔質の鉄の触媒担
体の製造法 但し[C]:母材用粉末の炭素含有量(重量%)[0]
;母材用粉末の酸素含有量(重量%)であり、また (4)平均粒径が50μ以下の、鉄粉、酸化鉄粉1表面
を酸化させた鉄粉から選ばれる1種又は2種以上と、平
均粒径が50μ以下の熱分解剤粉と、あるいは更に平均
粒径が50μ以下の炭素粉とを混合して母材用粉末を製
造する第1工程と、該母材用粉末を結合剤と混練し熱分
解性網目状多孔体の骨格に塗着する第2工程と、第2工
程の生成物を加熱し熱分解剤粉と熱分解性網目状多孔体
を除去し更に塗着物を自己還元焼結せしめる第3工程と
を有する。鉄の骨部が多孔体のマクロ空孔を形成しがつ
該鉄の骨部はミクロ空孔を有する鉄の焼結体よりなる。
[Means for Solving the Problems] That is, the present invention is characterized in that (1) the iron rib portion forms macro pores of a porous body, and the iron rib portion is made of a sintered body having micro pores. (2) the iron skeleton is an iron back containing alloying elements;
The porous iron catalyst carrier according to (1) above, and (3) one or two selected from iron powder with an average particle size of 50 μ or less, iron oxide powder, and iron powder with an oxidized surface. By mixing the above or further carbon powder with an average particle size of 50μ or less,
A first step of producing a base material powder with a carbon and oxygen content of the following formula, and a second step of kneading the base material powder with a binder and applying it to the skeleton of the pyrolyzable network porous body. and a third step of heating the product of the second step to remove the pyrolyzable network porous material and further self-reducing sintering of the coated material to form macropores in the porous material at the back of the iron. A method for producing a porous iron catalyst carrier in which the iron skeleton is made of an iron sintered body having micropores.However, [C]: Carbon content (wt%) of the base material powder [0 ]
the oxygen content (wt%) of the powder for the base material, and (4) one or two types selected from iron powder and iron powder whose surface has been oxidized, with an average particle size of 50μ or less. A first step of producing a base material powder by mixing the above and a pyrolysis agent powder with an average particle size of 50μ or less, or carbon powder with an average particle size of 50μ or less, and a step of manufacturing the base material powder. A second step of kneading with a binder and applying it to the skeleton of the pyrolyzable network porous material; heating the product of the second step to remove the pyrolytic agent powder and the pyrolytic network porous material; and a third step of self-reducing sintering. The iron rib portion forms macro pores of a porous body, and the iron rib portion is made of a sintered iron body having micro pores.

多孔質の鉄の触媒担体の製造法であり。This is a method for producing porous iron catalyst carriers.

(5)熱分解剤粉が有機物粉末、炭酸塩粉末から選ばれ
るl又は2以上よりなる熱分解剤粉である、前記(4)
に記載の、多孔質の触媒担体の製造法であり、また (6)自己還元焼結が、800〜1200℃に加熱する
自己還元焼結である。前記(3)または(4)または(
5)に記載の、多孔質の鉄の触媒担体の製造法である。
(5) The above-mentioned (4), wherein the pyrolysis agent powder is a pyrolysis agent powder consisting of one or two or more selected from organic powders and carbonate powders.
(6) Self-reduction sintering is self-reduction sintering that is heated to 800 to 1200°C. (3) or (4) or (
5), the method for producing a porous iron catalyst carrier.

第1図は本発明の多孔質の鉄の触媒担体の骨部を拡大し
た例を示す図である。即ち本発明の触媒担体は鉄の骨部
2がマクロ空孔lを形成し、かつ鉄の骨部は多数のミク
ロ空孔3を有する焼結体で形成されている。後で述べる
如く本発明の触媒担体は、粉末原料を混練して混線物を
熱分解性網目状多孔体5例えばウレタンフオームの骨格
に塗着して製造するが、ウレタンフオームのフオーム孔
径を選択する事によって、孔径がlOOμ〜io+am
の貫通空孔型のマクロ空孔lを形成することができる。
FIG. 1 is an enlarged view of an example of the bone portion of the porous iron catalyst carrier of the present invention. That is, in the catalyst carrier of the present invention, the iron skeleton 2 forms macropores 1, and the iron skeleton is formed of a sintered body having a large number of micropores 3. As will be described later, the catalyst carrier of the present invention is produced by kneading powder raw materials and applying the mixture onto the framework of a thermally decomposable network porous material 5, for example, a urethane foam, but the pore size of the urethane foam is selected. Depending on the situation, the pore size may vary from lOOμ to io+am
A through-hole type macro hole l can be formed.

又後で述べる如く本発明の触媒担体は、Cや0を含有す
る粉末原料を用いあるいは熱分解剤粉を含有する粉末原
料を用いるが、自己還元焼結等の過程で発生するCOガ
スや熱分解剤粉の熱分解によって、孔径が10〜100
μの無数のミクロ空孔を鉄の骨部に形成させる。
As will be described later, the catalyst carrier of the present invention uses a powder raw material containing C or 0 or a powder raw material containing pyrolysis agent powder, but it does not contain CO gas or heat generated during the process of self-reducing sintering. Due to thermal decomposition of the decomposer powder, the pore size increases from 10 to 100.
Numerous micro-pores of μ are formed in the steel frame.

本発明の触媒担体は骨部がマクロ空孔1を形成し、更に
骨部は表面が粗い焼結体でありかつミクロ空孔3を有し
ているため、触媒剤を触媒担体の骨部に塗着する際は、
従来の例えば特開昭51−98690とは異なり、骨部
の表面に更に粗製化層を形成する必要がなく、骨部に直
接に触媒剤を塗着するが1本発明では触媒剤は骨部の粗
い表面やミクロ空孔やミクロ空孔に浸み込んだ触媒剤の
アンカー作用等によって、十分な量の触媒剤が塗着でき
In the catalyst carrier of the present invention, the bone portion forms macro pores 1, and the bone portion is a sintered body with a rough surface and has micro pores 3, so that the catalyst agent is applied to the bone portion of the catalyst carrier. When painting,
Unlike the conventional method, for example, JP-A-51-98690, there is no need to further form a roughening layer on the surface of the bone, and the catalyst is applied directly to the bone. A sufficient amount of catalyst can be applied due to the rough surface, micropores, and the anchoring effect of the catalyst that has penetrated into the micropores.

触媒剤は強い力で骨部に塗着するため、触媒剤の剥離を
防止する。
The catalytic agent is applied to the bone with strong force, which prevents the catalytic agent from peeling off.

本発明の触媒担体に塗着する触媒剤としては。The catalyst agent applied to the catalyst carrier of the present invention includes:

Pt、Pd、Rh等の白金属やcu*Ag+Au等の銅
族やNd、Ca。
White metals such as Pt, Pd, Rh, copper group such as cu*Ag+Au, Nd, Ca.

La 、 Th等の希土類やMn、Cr、Ni、A O
、Ba等やあるいはこれ等の化合物が使用できる。又触
媒剤の塗着方法も、触媒担体が導電性であるため、電気
めっき等の塗着手段も可能であり、又触媒担体を通電あ
るいは誘導加熱して昇温する事が容易であるため、塗着
温度が任意に選定でき、又塗着後の触媒剤の乾燥や焼付
けや熱処理等を従来よりも簡易に行う事ができる。
Rare earths such as La, Th, Mn, Cr, Ni, A O
, Ba, etc., or compounds thereof can be used. As for the method of applying the catalyst agent, since the catalyst carrier is electrically conductive, coating methods such as electroplating are also possible, and the catalyst carrier can be easily heated by passing electricity or by induction heating. The coating temperature can be arbitrarily selected, and drying, baking, heat treatment, etc. of the catalyst after coating can be performed more easily than before.

更に本発明の触媒担体を用いた触媒体は、触媒担体を直
接通電あるいは誘導加熱して触媒体を容易に所望の温度
に加熱できるため、例えば本発明を、高温で触媒反応さ
せる触媒の担体として用いると、従来とは異なり、触媒
反応させる流体を別途に加熱する必要がなく、装置が簡
単化されあるいは操業コストを節減できる。
Further, since the catalyst body using the catalyst carrier of the present invention can be easily heated to a desired temperature by directly applying electricity or induction heating to the catalyst carrier, the present invention can be used, for example, as a carrier for a catalyst that performs a catalytic reaction at a high temperature. When used, unlike conventional methods, there is no need to separately heat the fluid for catalytic reaction, which simplifies the equipment and reduces operating costs.

本発明の触媒担体の骨部は多数のミクロ空孔を有するが
、マトリックスが強靭な鉄で形成されているために触媒
担体として十分な強度と靭性を有する。又後に述べる如
く本発明の触媒担体は混線物をウレタンフオームの骨格
に塗着する第2工程を経て製造されるが、ウレタンフオ
ームの形状や混線物の塗着厚さを調整する事によって、
太い骨格に形成すると、更に十分な強度と靭性を有する
多孔質の触媒担体となる。
Although the bone portion of the catalyst carrier of the present invention has a large number of micropores, since the matrix is made of strong iron, it has sufficient strength and toughness as a catalyst carrier. As will be described later, the catalyst carrier of the present invention is manufactured through the second step of coating the crosstalk material on the skeleton of the urethane foam, but by adjusting the shape of the urethane foam and the coating thickness of the crosswire material,
When formed into a thick skeleton, it becomes a porous catalyst carrier with even more sufficient strength and toughness.

触媒担体の骨部の強度や靭性や耐食性等は又、鉄の骨部
を合金鋼あるいはステンレス鋼の合金元素を含有する骨
部とする事によって、更に大幅に改善するSがテキル0
例えばMn、Ni、P、Cr、Mo、CtgA Q 。
The strength, toughness, corrosion resistance, etc. of the catalyst support bones can be further improved significantly by replacing the iron bones with alloy steel or stainless steel bones containing alloy elements.
For example, Mn, Ni, P, Cr, Mo, CtgA Q .

Siの1又は2以上の合金成分を溶鉄に含有せしめ、以
後これを粉砕した鉄粉を、後で述べる第1工程の鉄粉と
して用いると、これ等の合金元素を含有した骨部からな
る触媒担体が得られる6合金元素の含有はまた、後で述
べる第1工程で、例えば合金元素を含有しない鉄粉に前
記の合金粉を添加混合する事によっても達せられる。
When one or more alloy components of Si are contained in molten iron and the iron powder obtained by pulverizing this is used as the iron powder in the first step described later, a catalyst consisting of bones containing these alloying elements can be obtained. The inclusion of the six alloying elements to obtain a support can also be achieved by, for example, adding and mixing the above-mentioned alloying powder to iron powder containing no alloying elements in the first step described later.

次に請求項(3)に記載の、本発明の触媒担体の製造法
を説明する。
Next, a method for manufacturing a catalyst carrier of the present invention as set forth in claim (3) will be explained.

製造方法の第1工程では、平均粒径が50μ以下の、鉄
粉、酸化鉄粉、表面を酸化させた鉄粉、炭素粉を用い、
下記1式の炭素および酸素含有量の母材粉末を製造する
In the first step of the manufacturing method, iron powder, iron oxide powder, iron powder with an oxidized surface, and carbon powder with an average particle size of 50 μ or less are used,
A matrix powder having a carbon and oxygen content of the following formula is prepared.

但し[C]:母材用粉末の炭素含有量(重量%)[O]
:母材用粉末の酸素含有量(重量%)次に第2工程では
、この混合粉末を結合剤1例えばCMC、ポリアクリル
酸、水ガラス等の水溶液と混練して、混線物を熱分解性
網目状多孔体、例えばウレタンフオームの骨格に塗着す
る。塗着は例えばスプレー法やロールスキーズ法等で行
う事ができる。
However, [C]: Carbon content (weight%) of powder for base material [O]
:Oxygen content (wt%) of powder for base material Next, in the second step, this mixed powder is kneaded with an aqueous solution of binder 1, such as CMC, polyacrylic acid, water glass, etc., to make the mixed material thermally decomposable. It is applied to the skeleton of a porous network material, such as urethane foam. The coating can be performed, for example, by a spray method, a roll skies method, or the like.

次に第3工程では、第2工程の生成物を熱処理炉で加熱
する0例えば不活性ガス雰囲気の熱処理炉を用いて、3
50℃×10分加熱するとウレタンフオームの骨格は熱
分解して除去される。更に800℃〜1200℃に加熱
し自己還元焼結せしめると本発明の多孔質の鉄の触媒担
体が得られる。既に述べた如く本発明では、炭素と酸素
を含有する母材用粉末を用い、自己還元焼結によってC
Oガスを発生させるが、このCOガスの発生によって鉄
の骨部に多数のミクロ空孔が形成される。
Next, in the third step, the product of the second step is heated in a heat treatment furnace, for example, using a heat treatment furnace in an inert gas atmosphere.
When heated at 50° C. for 10 minutes, the urethane foam skeleton is thermally decomposed and removed. Further heating to 800° C. to 1200° C. and self-reductive sintering yields the porous iron catalyst carrier of the present invention. As already mentioned, in the present invention, a base material powder containing carbon and oxygen is used, and carbon is reduced by self-reducing sintering.
O gas is generated, and many micro-pores are formed in the steel frame due to the generation of CO gas.

母材用粉末が[C]>2.1で4/3([C] −2)
 > [01の場合は、ミクロ空孔の数が少なく触媒担
体として好ましくない、また[01>4/3([cl+
7)の場合は、成形物の担体強度が弱い。
When the base material powder is [C] > 2.1, it is 4/3 ([C] -2)
> [01 has a small number of micropores and is not preferred as a catalyst carrier, and [01>4/3 ([cl+
In case 7), the carrier strength of the molded product is weak.

本発明では自己還元焼結は800〜1200℃で行う。In the present invention, self-reducing sintering is performed at 800 to 1200°C.

800℃以下では酸化鉄の自己還元が十分起らず。At temperatures below 800°C, self-reduction of iron oxide does not occur sufficiently.

又金属多孔体としては強度が低く実用に耐えない。Moreover, as a metal porous body, the strength is low and it cannot be put to practical use.

又1200℃以上では過焼結化が起り、骨部の表面の粗
度がなくなり且つミクロ空孔が収縮現象を起して触媒担
体としての性能が減じる。
Moreover, at temperatures above 1200° C., oversintering occurs, the surface roughness of the bone portion disappears, and the micropores shrink, reducing the performance as a catalyst carrier.

第2図は母材用粉末の[C]及び[0]と、鉄の骨部の
ミクロ空孔の体積比の関係を示す図である。
FIG. 2 is a diagram showing the relationship between [C] and [0] of the base material powder and the volume ratio of micropores in the steel frame.

図中Aは請求項(3)の例であるが、母材用粉末の[C
]及び[0]を選択して、ミクロ空孔の体積比を調整す
る事ができる。
A in the figure is an example of claim (3), and [C
] and [0] to adjust the volume ratio of micropores.

本発明の触媒担体を製造する鉄粉は、例えばアトマイズ
ド鉄粉や電解鉄粉の如く高価な原料を使用してもよいが
、炭素含有量が2.1%以上の鉄粉は粉砕性が優れ従っ
て安価に製造できるために好ましい。又[C]が2.1
%以上の鉄粉は湿式粉砕にて容易に表面を酸化させた鉄
粉となる。
Although expensive raw materials such as atomized iron powder or electrolytic iron powder may be used for the iron powder used to produce the catalyst carrier of the present invention, iron powder with a carbon content of 2.1% or more has excellent crushability. Therefore, it is preferable because it can be manufactured at low cost. Also, [C] is 2.1
% or more becomes iron powder whose surface is easily oxidized by wet grinding.

本発明の母材用粉末は何れも平均粒径が50μ以下であ
る。一般の粉末合金の焼結法とは異なり、本発明では高
圧プレス等を用いないで、混線物を熱分解性網目状多孔
体の骨格に塗着せしめて焼成する。平均粒径が50μ以
上では混線物がスラリー状態とならず、塗着しずらく、
又焼結粒子間の結合力が不十分となる。
All of the powders for base material of the present invention have an average particle size of 50 μm or less. Unlike the general sintering method for powder alloys, the present invention does not use a high-pressure press or the like, but instead applies the mixed material to the skeleton of the pyrolyzable network porous body and sinters it. If the average particle size is 50μ or more, the contaminant will not form a slurry and will be difficult to apply.
Moreover, the bonding force between the sintered particles becomes insufficient.

次に請求項(4)に記載の、本発明の触媒担体の製造法
を説明する。この方法では母材用粉末は、鉄粉、酸化鉄
粉、表面を酸化させた鉄粉から選ばれる1種又は2種以
上と、熱分解剤粉と、必要に応じて炭素粉とで形成され
ている。尚上記の各粉の平均粒径は、請求項(3)の場
合と同様に、何れも50μ以下である。この方法の熱分
解剤粉とは、プラスチック粉末や有機高分子材料粉末や
オガ屑等の有機物粉末や、あるいは石灰石粉末等の炭酸
塩粉末をいう、請求項(4)に記載の方法は、この母材
用粉末を用いて、請求項(3)に記載した第2工程と第
3工程を施して、触媒担体を製造する。熱分解剤粉は第
3工程で分解させ、同時にあるいは後処理して消失させ
ることができるが、分解、消失した跡がミクロ空孔とな
って、鉄の骨部のミクロ空孔を一層増加させることとな
る。
Next, a method for producing a catalyst carrier according to the present invention according to claim (4) will be explained. In this method, the base material powder is formed from one or more selected from iron powder, iron oxide powder, and iron powder with an oxidized surface, pyrolyzer powder, and carbon powder if necessary. ing. Incidentally, the average particle size of each of the above-mentioned powders is 50 μm or less, as in the case of claim (3). The method according to claim (4), wherein the pyrolysis agent powder in this method refers to organic powder such as plastic powder, organic polymer material powder, and sawdust, or carbonate powder such as limestone powder. Using the base material powder, the second and third steps described in claim (3) are performed to produce a catalyst carrier. The pyrolysis agent powder can be decomposed in the third step and disappeared at the same time or through post-treatment, but the traces of decomposition and disappearance become micropores, further increasing the number of micropores in the steel frame. That will happen.

しかし本発明者等の知見では、熱分解剤粉の混合比率が
50%を超えると、第2工程で混練物を良好なスラリー
状態に維持する事が困難で、ウレタンフオームの骨格へ
の塗着性が不良となる。
However, according to the findings of the present inventors, if the mixing ratio of the pyrolyzer powder exceeds 50%, it is difficult to maintain the kneaded material in a good slurry state in the second step, and the coating on the urethane foam skeleton becomes difficult. Sexuality becomes poor.

従って熱分解剤粉の混合量は50%以下とする事が好ま
しい、第2図のBに熱分解剤粉として平均粒径が10μ
のプラスチック粉を50%混合した母材粉末を用いた例
を示したが、熱分解剤粉を用いる事によって、骨部に含
まれるミクロ空孔をいちじるしく増加させることができ
る。
Therefore, it is preferable that the amount of pyrolysis agent powder mixed is 50% or less.
An example was shown in which a matrix powder containing 50% of plastic powder was used; however, by using a pyrolytic agent powder, the number of micropores contained in the bones can be significantly increased.

[実施例1] 第1表の母材用粉末をCMCの水溶液で混練し。[Example 1] The base material powder shown in Table 1 was kneaded with an aqueous CMC solution.

孔径が2mmのウレタンフオームの骨格にスプレー法で
IIIIlの厚さに塗着し、第2表の熱処理を行って1
00mm X 100a@X 10mmの多孔質の鉄の
板状触媒担体を製作した。
It was coated on a urethane foam skeleton with a pore diameter of 2 mm to a thickness of III1 by a spray method, and then subjected to the heat treatment shown in Table 2.
A porous iron plate-shaped catalyst carrier measuring 0.00 mm x 100 mm x 10 mm was manufactured.

第     1     表 得られた多孔質の触媒担体の空孔の状態を第2表に併せ
示した。この触媒担体は何れも骨部が多孔体のマクロ空
孔を形成しかつ鉄の骨部は表面が粗い焼結体で多数のミ
クロ空孔を有していた。
Table 1 The state of the pores in the obtained porous catalyst carrier is also shown in Table 2. In all of these catalyst carriers, the ribs formed macropores in a porous body, and the iron ribs were a sintered body with a rough surface and had many micropores.

第    2    表 $:骨部のミクロ空孔の体積比 [実施例2] 第2表のNo2の触媒担体を塩化白金溶液に浸漬し、そ
の後50Aの電流を30分間通電して、600℃に直接
通電加熱して触媒体を製造した。この触媒体を4枚用い
て、第3図に示す反応容器で酸化触媒として使用した。
Table 2 $: Volume ratio of micropores in the bone [Example 2] The catalyst carrier No. 2 in Table 2 was immersed in a platinum chloride solution, and then a current of 50 A was applied for 30 minutes to directly heat it to 600°C. A catalyst body was produced by heating with electricity. Four sheets of this catalyst body were used as an oxidation catalyst in a reaction vessel shown in FIG.

処理ガスとして常温の混合ガスを使用したが、触媒担体
を300℃に直接通電加熱すると処理後のガスは約20
0℃で、酸化効率も98%で、優れた触媒性能を示して
いた。
A mixed gas at room temperature was used as the processing gas, but when the catalyst carrier was directly heated to 300°C, the gas after processing was approximately 20°C.
At 0°C, the oxidation efficiency was 98%, indicating excellent catalytic performance.

[実施例3] 含クロム鉄を粒鉄処理した後、湿式粉砕によって平均粒
径5μの表面酸化した鉄粉(C:3.5%、Si:0.
01%、Mn:0.8%、Cr:10%、P:0.01
%、s:o、oos%、酸素:8幻を得た。この表面酸
化した鉄粉に50%体積比のプラスチック粉末(平均粒
径lOμ)を混合し、CMCと水で混練し、ウレタンフ
オームに浸漬塗着した後、熱処理(乾燥:100℃x 
lhr、脱脂:350℃×20分。
[Example 3] After chromium-containing iron was treated with granular iron, surface oxidized iron powder (C: 3.5%, Si: 0.5%, Si: 0.5%) was wet-milled to have an average particle size of 5 μm.
01%, Mn: 0.8%, Cr: 10%, P: 0.01
%, s: o, oos%, oxygen: 8 phantoms were obtained. This surface-oxidized iron powder is mixed with 50% volume ratio of plastic powder (average particle size lOμ), kneaded with CMC and water, applied to urethane foam by dip coating, and then heat treated (drying: 100°C x
lhr, degreasing: 350°C x 20 minutes.

自己還元=800℃X30分、焼結:1100℃×30
分、窒素雰囲気)を行い、触媒担体を製作した。この触
媒担体は骨部のミクロ空孔の体積比が55%であった。
Self-reduction = 800℃ x 30 minutes, sintering: 1100℃ x 30 minutes
(min., nitrogen atmosphere) to produce a catalyst carrier. In this catalyst carrier, the volume ratio of micropores in the bone portion was 55%.

この触媒担体にMnO□やCuO粉の混練液の触媒剤(
アルミゾール)を塗着したが、触媒担体の骨部は表面が
粗く多数のミクロ気泡があるため、塗着は容易であり、
又塗着後800℃で焼付けたが、触媒剤を厚く塗着して
も、触媒層の剥離はなかった。
This catalyst carrier is coated with a catalyst agent of a kneading solution of MnO□ and CuO powder
Alumisol) was applied, but the surface of the catalyst carrier bones is rough and there are many microbubbles, so it is easy to apply the coating.
After coating, the coating was baked at 800°C, but the catalyst layer did not peel off even when a thick coating of the catalyst agent was applied.

[発明の効果] 本発明の触媒担体は三次元網目状の骨部がマクロ空孔を
形成しているため、骨部に触媒剤を塗着すると、通過す
る流体と触媒との接触面積が太きい触媒体となる。
[Effects of the Invention] In the catalyst carrier of the present invention, the three-dimensional network-like bone portions form macropores, so when a catalyst agent is applied to the bone portions, the contact area between the passing fluid and the catalyst is increased. Becomes a strong catalyst.

本発明の触媒担体の骨部はミクロ空孔を有する粗い表面
の焼結体であるため、骨部に粗製化層を形成する必要が
なく、そのまま触媒剤を塗着しても、十分な厚さの触媒
剤を容易に塗着できる。
Since the bone portion of the catalyst support of the present invention is a sintered body with a rough surface having micro-pores, there is no need to form a roughening layer on the bone portion, and even if the catalyst agent is applied as is, a sufficient thickness can be obtained. The catalyst agent can be easily applied.

本発明の触媒担体は導電性であるため1例えば電気めっ
き等の導電性を利用した触媒剤の塗着手段が可能となる
。また本発明の触媒担体を直接通電あるいは誘導加熱す
ることによって、簡易な方法で、最高の触媒反応の温度
に触媒を加熱できる。
Since the catalyst carrier of the present invention is electrically conductive, it is possible to apply a catalyst agent using electrical conductivity, such as electroplating. Furthermore, by directly applying electricity or inductively heating the catalyst carrier of the present invention, the catalyst can be heated to the maximum temperature for catalytic reaction in a simple manner.

本発明は、粉砕が容易で安価な鉄粉や酸化鉄粉や表面酸
化鉄粉等を主な粉体として使用するため、原料コストが
安く、従って安価に製造できる。
Since the present invention uses iron powder, iron oxide powder, surface oxidized iron powder, etc., which are easy to crush and are inexpensive, as the main powder, the raw material cost is low, and therefore, it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の触媒担体の骨部を拡大した例を示す図
。 第2図は母材用粉末と骨部のミクロ空孔の発生との関係
の例を示す図。 第3図は本発明の触媒担体を用いた触媒の使用例を示−
す図 である。 l:マクロ空孔、 2:鉄の骨部、 3:ミクロ空孔、
 4:触媒、 5:処理ガス、 6:触媒反応容器、 
7:触媒担体加熱用電源。 第1図 特許出願人  新日本製鐵株式会社
FIG. 1 is a diagram showing an enlarged example of the bone portion of the catalyst carrier of the present invention. FIG. 2 is a diagram showing an example of the relationship between base material powder and the generation of micropores in bone parts. Figure 3 shows an example of the use of a catalyst using the catalyst carrier of the present invention.
This is a diagram. 1: macro pores, 2: iron skeleton, 3: micro pores,
4: Catalyst, 5: Processing gas, 6: Catalyst reaction vessel,
7: Power source for heating the catalyst carrier. Figure 1 Patent applicant Nippon Steel Corporation

Claims (6)

【特許請求の範囲】[Claims] (1)鉄の骨部が多孔体のマクロ空孔を形成しかつ該鉄
の骨部はミクロ空孔を有する焼結体よりなることを特徴
とする、多孔質の鉄の触媒担体
(1) A porous iron catalyst carrier characterized in that the iron skeleton forms macro-pores of a porous body, and the iron skeleton is made of a sintered body having micro-pores.
(2)鉄の骨部が、合金元素を含有する鉄の骨部である
、請求項(1)に記載の多孔質の鉄の触媒担体
(2) The porous iron catalyst carrier according to claim (1), wherein the iron skeleton is an iron skeleton containing an alloying element.
(3)平均粒径が50μ以下の鉄粉、酸化鉄粉、表面を
酸化させた鉄粉から選ばれる1種又は2種以上を、ある
いは更に平均粒径が50μ以下の炭素粉を混じて、混合
し、炭素と酸素の含有量が下記1式の母材用粉末を製造
する第1工程と、該母材用粉末を結合剤と混練し熱分解
性網目状多孔体の骨格に塗着する第2工程と、第2工程
の生成物を加熱し熱分解性網目状多孔体を除去し更に塗
着物を自己還元焼結せしめる第3工程とを有する、鉄の
骨部が多孔体のマクロ空孔を形成しかつ該鉄の骨部はミ
クロ空孔を有する焼結体よりなる、多孔質の鉄の触媒担
体の製造法 [C]>2.1…1 4/3([C]−2)<[O]<4/3([C]+7)
…1 但し[C]:母材用粉末の炭素含有量(重量%) [O]:母材用粉末の酸素含有量(重量%)
(3) Mixing one or more selected from iron powder, iron oxide powder, and surface-oxidized iron powder with an average particle size of 50 μ or less, or further carbon powder with an average particle size of 50 μ or less, A first step of mixing to produce a base material powder with a carbon and oxygen content of the following formula 1, and kneading the base material powder with a binder and applying it to the skeleton of the pyrolyzable network porous body. a second step, and a third step of heating the product of the second step to remove the pyrolyzable network porous material and further sintering the coated material by self-reduction. Method for manufacturing a porous iron catalyst carrier, which is made of a sintered body that forms pores and the iron skeleton has micropores [C]>2.1...1 4/3 ([C]-2 )<[O]<4/3([C]+7)
...1 However, [C]: Carbon content (weight%) of base material powder [O]: Oxygen content (weight%) of base material powder
(4)平均粒径が50μ以下の、鉄粉、酸化鉄粉、表面
を酸化させた鉄粉から選ばれる1種又は2種以上と、平
均粒径が50μ以下の熱分解剤粉と、あるいは更に平均
粒径が50μ以下の炭素粉とを混合して母材用粉末を製
造する第1工程と、該母材用粉末を結合剤と混練し熱分
解性網目状多孔体の骨格に塗着する第2工程と、第2工
程の生成物を加熱し熱分解剤粉と熱分解性網目状多孔体
を除去し更に塗着物を自己焼結せしめる第3工程とを有
する、鉄の骨部が多孔体のマクロ空孔を形成しかつ該鉄
の骨部はミクロ空孔を有する焼結体よりなる、多孔質の
鉄の触媒担体の製造法
(4) one or more selected from iron powder, iron oxide powder, and surface-oxidized iron powder with an average particle size of 50μ or less; and pyrolyzer powder with an average particle size of 50μ or less, or A first step of producing a base material powder by further mixing carbon powder with an average particle size of 50μ or less, and kneading the base material powder with a binder and applying it to the skeleton of the pyrolyzable network porous body. and a third step of heating the product of the second step to remove the pyrolytic agent powder and the pyrolytic reticulated porous material, and further self-sintering the coated material. A method for producing a porous iron catalyst carrier comprising a sintered body that forms macro pores in a porous body and the iron skeleton has micro pores.
(5)熱分解剤粉が有機物粉末、炭酸塩粉末から選ばれ
る1又は2以上よりなる熱分解剤粉である、請求項(4
)に記載の、多孔質の鉄の触媒担体の製造法
(5) Claim (4) wherein the pyrolysis agent powder is a pyrolysis agent powder consisting of one or more selected from organic substance powder and carbonate powder.
), the method for producing a porous iron catalyst carrier
(6)自己還元焼結が、800℃〜1200℃に加熱す
る自己還元焼結である、請求項(3)または(4)また
は(5)に記載の、多孔質の鉄の触媒担体の製造法
(6) Production of a porous iron catalyst carrier according to claim (3), (4), or (5), wherein the self-reducing sintering is heating at 800°C to 1200°C. law
JP63255992A 1988-10-13 1988-10-13 Method for producing porous iron catalyst support Expired - Lifetime JPH064136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255992A JPH064136B2 (en) 1988-10-13 1988-10-13 Method for producing porous iron catalyst support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255992A JPH064136B2 (en) 1988-10-13 1988-10-13 Method for producing porous iron catalyst support

Publications (2)

Publication Number Publication Date
JPH02102738A true JPH02102738A (en) 1990-04-16
JPH064136B2 JPH064136B2 (en) 1994-01-19

Family

ID=17286395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255992A Expired - Lifetime JPH064136B2 (en) 1988-10-13 1988-10-13 Method for producing porous iron catalyst support

Country Status (1)

Country Link
JP (1) JPH064136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433822A (en) * 1991-04-26 1995-07-18 Citizen Watch Co., Ltd. Method of manufacturing semiconductor device with copper core bumps

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433822A (en) * 1991-04-26 1995-07-18 Citizen Watch Co., Ltd. Method of manufacturing semiconductor device with copper core bumps

Also Published As

Publication number Publication date
JPH064136B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
US5640669A (en) Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
EP0120243B1 (en) Process for the removal of carbon residues during sintering of ceramics
US3150011A (en) Shaped metal parts having a superficial double skeleton catalyst structure
WO1997031738A1 (en) Porous materials and method for producing
JP4051569B2 (en) Method for producing intermetallic compound porous material
CN1152802A (en) Electrode substrate of electric cell and making technology
US3481789A (en) Catalyst body and gas diffusion electrode and fuel cell therewith
JPH02254108A (en) Tantalum sintered body and its production
JPH1046268A (en) Manufacture of porous ni-cr alloy
JPH02102738A (en) Porous iron catalyst carrier and production thereof
CN1086628A (en) Multilayer ceramic capacitor
JP3983362B2 (en) Porous composite ceramics and method for producing the same
JPH0820831A (en) Production of metallic porous body
US20200263306A1 (en) Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
JP3468493B2 (en) Battery electrode substrate and method of manufacturing the same
KR102612696B1 (en) Method for producing an open pore molded body formed of metal with a modified surface and a molded body manufactured using the method
Gopakumar et al. Metal-shell char particulate composites using copper-coated particles
JP2904217B2 (en) Water treatment filter manufacturing method
JP3796321B2 (en) Method for producing sintered material using tin-coated copper powder
JP2019056158A (en) Method for joining electronic component and method for manufacturing joined body
RU2772522C2 (en) Method for producing an open-pore shaped body which has a modified surface and is made of metal, and a shaped body obtained by said method
JPH03226534A (en) Metallic porous body and its manufacture
JPH01184206A (en) Manufacture of plate-shaped porous sintered compact
JPH01168869A (en) Production of composite powder
AT225010B (en) Process for the production of porous electrode bodies serving as carriers of the active material for alkaline accumulators