JPH064136B2 - Method for producing porous iron catalyst support - Google Patents
Method for producing porous iron catalyst supportInfo
- Publication number
- JPH064136B2 JPH064136B2 JP63255992A JP25599288A JPH064136B2 JP H064136 B2 JPH064136 B2 JP H064136B2 JP 63255992 A JP63255992 A JP 63255992A JP 25599288 A JP25599288 A JP 25599288A JP H064136 B2 JPH064136 B2 JP H064136B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron
- catalyst carrier
- catalyst
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 100
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 91
- 229910052742 iron Inorganic materials 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000843 powder Substances 0.000 claims description 71
- 210000000988 bone and bone Anatomy 0.000 claims description 40
- 239000003795 chemical substances by application Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 26
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 15
- 238000005245 sintering Methods 0.000 claims description 15
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 238000004898 kneading Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910001295 No alloy Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Catalysts (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、触媒の製造に用いられる触媒担体に関する。
更に詳しくは、本触媒担体の例えば骨部に触媒剤を塗着
すると、化学装置や自動車廃ガス処理装置に用いる触媒
となる。TECHNICAL FIELD The present invention relates to a catalyst carrier used for producing a catalyst.
More specifically, when a catalyst agent is applied to, for example, the bone portion of the present catalyst carrier, it becomes a catalyst used in a chemical device or an automobile waste gas treatment device.
[従来の技術] 市販の三次元網目状のセラミックス多孔体は、骨部に触
媒剤を塗着して触媒として用いる事ができる。しかしこ
の骨部は平滑で滑り易いために触媒剤を十分な量塗着さ
せる事は難しい。またセラミックスは非電導体であり、
触媒剤を電気メッキで塗着させる事が困難で、触媒剤の
塗着手段が制約される。更にセラミックスは通電加熱が
できないために、例えば高温で触媒反応を行はせる場合
は、触媒反応させる通過流体を別途に高温に加熱するた
め、加熱装置が大規模となる。[Prior Art] A commercially available three-dimensional mesh-like ceramic porous body can be used as a catalyst by coating a bone portion with a catalyst agent. However, it is difficult to apply a sufficient amount of the catalyst agent because the bones are smooth and slippery. Also, ceramics are non-conductors,
It is difficult to apply the catalyst agent by electroplating, which limits the means for applying the catalyst agent. Further, since ceramics cannot be electrically heated, for example, when a catalytic reaction is carried out at a high temperature, the passing fluid for the catalytic reaction is separately heated to a high temperature, so that the heating device becomes large in scale.
特開昭51-98690号は、表面が平滑な金属三次元網目状多
孔体の骨格の表面に、例えば金属粉末を塗着し焼き付け
て該骨格の表面を粗製化し、粗製化した骨格の表面に触
媒剤を塗着した触媒である。しかしこの方法の骨格表面
の粗製化は、無電解めっき→表面処理→金属粉末等の塗
着→焼付による行うもので、粗製化工程が複雑であり、
又金属粉末等が高価であるため触媒担体も極めて高価と
なる。又平滑な金属の骨格の表面に粗製化層を形成して
も、骨格と粗製化層の結合が弱く、触媒体の加熱や冷却
を繰り返すと、粗製化層が剥離し易い。JP-A-51-98690 discloses that the surface of a skeleton of a metal three-dimensional mesh-like porous body having a smooth surface is coated with, for example, metal powder and baked to roughen the surface of the skeleton. It is a catalyst coated with a catalyst agent. However, the roughening of the skeleton surface of this method is performed by electroless plating → surface treatment → coating of metal powder etc. → baking, and the roughening process is complicated,
Further, since the metal powder and the like are expensive, the catalyst carrier is also extremely expensive. Even if the roughened layer is formed on the surface of the smooth metal skeleton, the bond between the skeleton and the roughened layer is weak, and the roughened layer is easily peeled off when heating and cooling of the catalyst body are repeated.
本発明者等は多孔体を安価に製造する方法を研究し、安
価な鉄粉等を用いた鉄の多孔体を発明して、特願昭63-1
65884号(特開平2-19405号)、特願昭63-165885号(特
開平2-19406号)、特願昭63-197853号(特開平2-47206
号)および特願昭63-210642号(特開平2-61002号)で特
許出願した。The present inventors have studied a method for producing a porous body at low cost, and invented an iron porous body using an inexpensive iron powder or the like.
65884 (Japanese Patent Application Laid-Open No. 2-19405), Japanese Patent Application No. 63-165885 (Japanese Patent Application Laid-Open No. 2-19406), Japanese Patent Application No. 63-197853 (Japanese Patent Application Laid-Open No. 2-47206)
No.) and Japanese Patent Application No. 63-210642 (JP-A-2-61002).
本発明者等は更に、これらの鉄の多孔体を触媒担体とす
る研究を行い、本発明を完成するに至った。The present inventors have further carried out research using these porous iron bodies as catalyst carriers, and have completed the present invention.
[発明が解決しようとする課題] 即ち本発明は、骨部が三次元網目状で孔径が100μm
〜10mmの貫通した空孔(以下マクロ空孔と略記す
る)を形成すると共に骨部が孔径が10μm〜100μ
mの無数の空孔(以下ミクロ空孔と略記する)を有する
粗い焼結表面よりなり、触媒剤を骨部に塗着する際に、
粗い焼結面や、ミクロ空孔や、あるいはミクロ空孔に浸
み込んだ触媒剤のアンカー作用によって、十分な量の触
媒剤を塗着させる事が可能な触媒担体の製造方法であ
り、また触媒担体が電導性であるために例えば電気めっ
き等の広範囲な触媒剤の塗着手段が可能であり、更に触
媒担体を直接通電あるいは誘導加熱して触媒を所望の温
度とする事ができるために、コンパクトな装置にも適用
できる触媒担体を提供するものである。又本発明は粉砕
が容易な鉄粉等を使用した、安価な触媒担体を提供する
ものである。[Problems to be Solved by the Invention] That is, according to the present invention, the bone portion has a three-dimensional mesh shape and the pore diameter is 100 μm.
A pierced hole of 10 mm to 10 mm (hereinafter abbreviated as macro hole) is formed and the bone portion has a hole diameter of 10 μm to 100 μ
It consists of a rough sintered surface having m innumerable pores (hereinafter abbreviated as micropores), and when the catalyst agent is applied to the bone part,
A method for producing a catalyst carrier that allows a sufficient amount of a catalyst agent to be applied by a rough sintering surface, micropores, or the anchoring action of the catalyst agent that has penetrated into the micropores. Since the catalyst carrier is electrically conductive, a wide range of means for applying a catalyst agent such as electroplating is possible, and furthermore, the catalyst carrier can be directly energized or induction heated to bring the catalyst to a desired temperature. The present invention provides a catalyst carrier applicable to a compact device. The present invention also provides an inexpensive catalyst carrier using iron powder or the like that can be easily pulverized.
[課題を解決するための手段] 即ち本発明は (1)平均粒径が50μ以下の鉄粉、酸化鉄粉、表面を酸
化させた鉄粉から選ばれる1種又は2種以上を、あるいは
更に平均粒径が50μ以下の炭素粉を混合して、炭素と
酸素の含有量が下記1式の母材用粉末を製造する第1工
程と、該母材用粉末を結合剤と混練し熱分解性網目状多
孔体の骨格に塗着する第2工程と、第2工程の生成物を
加熱し熱分解性網目状多孔体を除去し更に塗着物を自己
還元焼結せしめる第3工程とを有する、鉄の骨部が多孔
体のマクロ空孔を形成しかつ該鉄の骨部はミクロ空孔を
有する鉄の焼結体よりなる、多孔質の鉄の触媒担体の製
造法 [C]>2.1 }…1 4/3([C]-2)<[0]<4/3([C]+7) 但し[C]:母材用粉末の炭素含有量(重量%) [O]:母材用粉末の酸素含有量(重量%) であり、また (2)平均粒径が50μ以下の、鉄粉、酸化鉄粉、表面を
酸化させた鉄粉から選ばれる1種又は2種以上と、平均粒
径が50μ以下の熱分解剤粉と、あるいは更に平均粒径
が50μ以下の炭素粉とを混合して母材用粉末を製造す
る第1工程と、該母材用粉末を結合剤と混練し熱分解性
網目状多孔体の骨格に塗着する第2工程と、第2工程の
生成物を加熱し熱分解剤粉と熱分解性網目状多孔体を除
去し更に塗着物を自己還元焼結せしめる第3工程とを有
する、鉄の骨部が多孔体のマクロ空孔を形成しかつ該鉄
の骨部はミクロ空孔を有する鉄の焼結体よりなる、多孔
質の鉄の触媒担体の製造法であり、 (3)熱分解剤粉が有機物粉末、炭酸塩粉末から選ばれる1
又は2以上よりなる熱分解剤粉である、前記(2)に記載
の、多孔質の触媒担体の製造法であり、また (4)自己還元焼結が、800〜1200℃に加熱する自己還元焼
結である、前記(1)または(2)または(3)に記載の、多孔
質の鉄の触媒担体の製造法である。[Means for Solving the Problems] That is, the present invention provides (1) one or more selected from iron powder having an average particle size of 50 μ or less, iron oxide powder, and iron powder having a surface oxidized, or further The first step of producing carbon powder having an average particle size of 50μ or less to produce a base metal powder having the following carbon and oxygen contents, and kneading the base metal powder with a binder to thermally decompose the powder. Having a second step of applying to the skeleton of the porous porous mesh body, and a third step of heating the product of the second step to remove the thermally decomposable porous mesh body and further subjecting the coated material to self-reduction sintering , A method for producing a porous iron catalyst carrier [C]> 2.1, in which the iron skeletons form porous macropores and the iron skeletons are made of an iron sintered body having micropores [C]> 2.1 }… 1 4/3 ([C] -2) <[0] <4/3 ([C] +7) However, [C]: Carbon content of powder for base material (wt%) [O]: Mother The oxygen content (% by weight) of the powder for wood, and (2) average One or more selected from iron powder, iron oxide powder, and iron powder whose surface is oxidized, having a diameter of 50μ or less, and a thermal decomposition agent powder having an average particle size of 50μ or less, or further having an average particle size of A first step of producing a base material powder by mixing with carbon powder of 50 μm or less, and a second step of kneading the base material powder with a binder and applying the mixture to the skeleton of the thermally decomposable mesh-like porous body. And a third step of heating the product of the second step to remove the heat decomposing agent powder and the heat decomposable mesh-like porous body and further subjecting the adhered material to self-reduction sintering, the macro of iron bone parts being a porous body (3) A method for producing a porous iron catalyst carrier, wherein pores are formed and the iron bones are made of a sintered body of iron having micropores. 1 selected from salt powder
Or a thermal decomposition agent powder consisting of 2 or more, according to (2), a method for producing a porous catalyst carrier, and (4) self-reduction sintering, self-reduction heating to 800 ~ 1200 ℃. The method for producing a porous iron catalyst carrier according to (1), (2) or (3) above, which is sintering.
第1図は本発明の多孔質の鉄の触媒担体の骨部を拡大し
た例を示す図である。即ち本発明の触媒担体は鉄の骨部
2がマクロ空孔1を形成し、かつ鉄の骨部は多数のミクロ
空孔3を有する焼結体で形成されている。後で述べる如
く本発明の触媒担体は、粉末原料を混練して混練物を熱
分解性網目状多孔体、例えばウレタンオフォームや有機
質三次元織物(株式会社有沢製作所製)等の骨格に塗着
して製造するが、熱分解性三次元網目状多孔体の網目の
大きさを選択する事によって、孔径が100μ〜10m
mの貫通空孔型のマクロ空孔1を形成することができ
る。又後で述べる如く本発明の触媒担体は、CやOを含
有する粉末原料を用いあるいは熱分解剤粉を含有する粉
末原料を用いるが、自己還元焼結等の過程で発生するCO
ガスや熱分解剤粉の熱分解によって、孔径が10〜10
0μの無数のミクロ空孔を鉄の骨部に形成させる。FIG. 1 is a diagram showing an enlarged example of a bone portion of a porous iron catalyst carrier of the present invention. That is, the catalyst carrier of the present invention is an iron bone part.
2 forms macro pores 1, and the iron skeleton is formed of a sintered body having a large number of micro pores 3. As will be described later, in the catalyst carrier of the present invention, a powder raw material is kneaded to apply the kneaded product to the skeleton of a thermally decomposable mesh-like porous body such as urethane oform or organic three-dimensional woven fabric (Arisawa Manufacturing Co., Ltd.) However, the pore size is 100 μm to 10 m by selecting the size of the mesh of the thermally decomposable three-dimensional mesh-like porous body.
It is possible to form m through-hole type macropores 1. Further, as will be described later, the catalyst carrier of the present invention uses a powder raw material containing C or O or a powder raw material containing a thermal decomposition agent powder, but CO generated in the process of self-reduction sintering or the like.
Pore size is 10 to 10 due to thermal decomposition of gas and thermal decomposition agent powder
Countless micropores of 0μ are formed in the iron bone.
本発明の触媒担体は骨部がマクロ空孔1を形成し、更に
骨部は表面が粗い焼結体でありかつミクロ空孔3を有し
ているため、触媒剤を触媒担体の骨部に塗着する際は、
従来の例えば特開昭51-98690とは異なり、骨部の表面に
更に粗製化層を形成する必要がなく、骨部に直接に触媒
剤を塗着するが、本発明では触媒剤は骨部の粗い表面や
ミクロ空孔やマクロ空孔に浸み込んだ触媒剤のアンカー
作用等によって、十分な量の触媒剤が塗着でき、触媒剤
は強い力で骨部に塗着するため、触媒剤の剥離を防止す
る。In the catalyst carrier of the present invention, the bone portion forms macropores 1, and the bone portion has a rough surface and is a sintered body and has micropores 3. When applying,
Unlike the prior art, for example, JP-A-51-98690, it is not necessary to further form a roughening layer on the surface of the bone portion, and the catalyst agent is directly applied to the bone portion. A sufficient amount of the catalyst agent can be applied due to the anchoring action of the catalyst agent that has penetrated into the rough surface of the micropores and macropores, and the catalyst agent can be applied to the bone part with a strong force. Prevent peeling of the agent.
本発明の触媒担体に塗着する触媒剤としては、Pt,Pd,Rh
等の白金属やCu,Ag,Au等の銅族やNd,Ce,La,Th等の希土
類やMn,Cr,Ni,Al,Ba等やあるいはこれ等の化合物が使用
できる。又触媒剤の塗着方法も、触媒担体が導電性であ
るため、電気めっき等の塗着手段も可能であり、又触媒
担体を通電あるいは誘導加熱して昇温する事が容易であ
るため、塗着温度が任意に選定でき、又塗着後の触媒剤
の乾燥や焼付けや熱処理等を従来よりも簡易に行う事が
できる。The catalyst agent to be applied to the catalyst carrier of the present invention, Pt, Pd, Rh
A white metal such as Cu, a copper group such as Cu, Ag, and Au, a rare earth element such as Nd, Ce, La, and Th, Mn, Cr, Ni, Al, Ba, or a compound thereof can be used. Further, also in the method of applying the catalyst agent, since the catalyst carrier is conductive, a coating means such as electroplating is also possible, and it is easy to raise the temperature by energizing or inductively heating the catalyst carrier, The coating temperature can be arbitrarily selected, and drying, baking, heat treatment, etc. of the catalyst agent after coating can be performed more easily than before.
更に本発明の触媒担体を用いた触媒体は、触媒担体を直
接通電あるいは誘導加熱して触媒体を容易に所望の温度
に加熱できるため、例えば本発明を、高温で触媒反応さ
せる触媒の担体として用いると、従来とは異なり、触媒
反応させる流体を別途に加熱する必要がなく、装置が簡
単化されあるいは操業コストを節減できる。Further, the catalyst body using the catalyst carrier of the present invention can easily heat the catalyst body to a desired temperature by directly energizing or inductively heating the catalyst carrier. Therefore, for example, the present invention can be used as a carrier of a catalyst for catalytic reaction at high temperature. When used, unlike the prior art, there is no need to separately heat the fluid for catalytic reaction, which simplifies the device or saves operating costs.
本発明の触媒担体の骨部は多数のミクロ空孔を有する
が、マトリックスが強靱な鉄で形成されているために触
媒担体として十分な強度と靱性を有する。又後に述べる
如く本発明の触媒担体は混練物を熱分解性三次元網目状
多孔体の骨格に塗着する第2工程を経て製造されるが、
熱分解性三次元網目状多孔体の形状や混練物の塗着厚さ
を調整する事によって、太い骨格に形成すると、更に十
分な強度と靱性を有する多孔質の触媒担体となる。触媒
担体の骨部の強度や靱性や耐食性等は又、鉄の骨部を合
金鋼あるいはステンレス鋼の合金元素を含有する骨部と
する事によって、更に大幅に改善する事ができる。本発
明では必要に応じてMn,Ni,P,Cr,Mo,Cu,Al,Siの1又は2以
上の合金成分を溶鉄に含有せしめ、以後これを粉砕した
鉄粉を、後で述べる第1工程の鉄粉として用いるが、こ
れ等の合金元素を含有した骨部からなる触媒担体が得ら
れる。合金元素の含有はまた、後で述べる第1工程で、
例えば合金元素を含有しない鉄粉に前記の合金粉を添加
混合する事によっても達せられる。The bone portion of the catalyst carrier of the present invention has a large number of micropores, but since the matrix is made of tough iron, it has sufficient strength and toughness as a catalyst carrier. Further, as will be described later, the catalyst carrier of the present invention is produced through the second step of applying the kneaded material to the skeleton of the thermally decomposable three-dimensional network porous body,
When a thick skeleton is formed by adjusting the shape of the thermally decomposable three-dimensional mesh-like porous body and the coating thickness of the kneaded product, a porous catalyst carrier having further sufficient strength and toughness can be obtained. The strength, toughness, corrosion resistance, etc. of the bone portion of the catalyst carrier can be further improved by making the iron bone portion a bone portion containing an alloying element of alloy steel or stainless steel. In the present invention, Mn, Ni, P, Cr, Mo, Cu, Al, Si containing 1 or 2 or more alloy components of molten iron as necessary, and then iron powder crushed thereafter, the first described below. Although used as iron powder in the process, a catalyst carrier composed of bones containing these alloying elements can be obtained. The inclusion of alloying elements is also the first step described later,
For example, it can be achieved by adding and mixing the above alloy powder to iron powder containing no alloy element.
次に請求項(1)に記載の、本発明の触媒担体の製造法を
説明する。Next, a method for producing the catalyst carrier of the present invention according to claim (1) will be described.
製造方法の第1工程では、平均粒径が50μ以下の、鉄
粉、酸化鉄粉、表面を酸化させた鉄粉、炭素粉を用い、
下記1式の炭素および酸素含有量の母材粉末を製造す
る。In the first step of the manufacturing method, iron powder, iron oxide powder, iron powder whose surface is oxidized, and carbon powder having an average particle diameter of 50 μm or less are used.
A base material powder having the following carbon and oxygen contents is prepared.
[C]>2.1 }…1 4/3([C]−2)<[0]<4/3([C]+7 但し[C]:母材用粉末の炭素含有量(重量%) [O]:母材用粉末の酸素含有量(重量%) 次に第2工程では、この混合粉末を結合剤、例えばCM
C,ポリアクリル酸、水ガラス等の水溶液と混練して、
混練物を熱分解性網目状多孔体、例えばウレタンフォー
ムの骨格に塗着する。塗着は例えばスプレー法やロール
スキーズ法等で行う事ができる。[C]> 2.1} ... 1 4/3 ([C] -2) <[0] <4/3 ([C] +7 where [C]: carbon content of powder for base material (wt%) [O ]: Oxygen content of powder for base material (wt%) Next, in the second step, this mixed powder is used as a binder, for example, CM.
After kneading with an aqueous solution of C, polyacrylic acid, water glass, etc.,
The kneaded material is applied to the skeleton of a thermally decomposable mesh-like porous body, for example, urethane foam. The application can be performed by, for example, a spray method or a roll skies method.
次に第3工程では、第2工程の生成物を熱処理炉で加熱
する。例えば不活性ガス雰囲気の熱処理炉を用いて、35
0℃×10分加熱すると熱分解性三次元網目状多孔体の骨
格は熱分解して除去される。更に800℃〜1200℃に加熱
し自己還元焼結せしめると本発明の多孔質の鉄の触媒担
体が得られる。既に述べた如く本発明では、炭素と酸素
を含有する母材用粉末を用い、自己還元焼結によってCO
ガスを発生させるが、このCOガスの発生によって鉄の骨
部に多数のミクロ空孔が形成される。母材用粉末が[C]
>2.1で4/3([C]−2)>[0]の場合は、ミクロ空孔の数
が少なく触媒担体として好ましくない。また[0]>4/3
([C]+7)の場合は、成形物の担体強度が弱い。Next, in the third step, the product of the second step is heated in a heat treatment furnace. For example, using a heat treatment furnace in an inert gas atmosphere,
When heated at 0 ° C for 10 minutes, the skeleton of the thermally decomposable three-dimensional network porous body is thermally decomposed and removed. The porous iron catalyst carrier of the present invention is obtained by further heating at 800 ° C. to 1200 ° C. and performing self-reduction sintering. As described above, according to the present invention, the base metal powder containing carbon and oxygen is used, and CO
A gas is generated, and a large number of micropores are formed in the bone part of the iron by the generation of this CO gas. Base material powder is [C]
In the case of> 2.1 and 4/3 ([C] -2)> [0], the number of micropores is small, which is not preferable as a catalyst carrier. Also [0]> 4/3
In the case of ([C] +7), the carrier strength of the molded product is weak.
本発明では自己還元焼結は800〜1200℃で行う。800℃以
下では酸化鉄の自己還元が十分起らず、又金属多孔体と
しては強度が低く実用に耐えない。又、1200℃以上では
過焼結化は起り、骨部の表面の粗度がなくなり且つミク
ロ空孔が収縮現象を起して触媒担体としての性能が減じ
る。In the present invention, the self-reduction sintering is performed at 800 to 1200 ° C. At 800 ° C or lower, the self-reduction of iron oxide does not occur sufficiently, and the strength of the porous metal body is low and it cannot be put to practical use. Further, at 1200 ° C. or higher, over-sintering occurs, the surface roughness of the bone portion disappears, and the micropores contract to reduce the performance as a catalyst carrier.
第2図は母材用粉末の[C]及び[O]と、鉄の骨部のミクロ
空孔の体積比の関係を示す図である。FIG. 2 is a diagram showing the relationship between [C] and [O] of the base material powder and the volume ratio of the micropores in the iron bone portion.
図中Aは請求項(1)の例であるが、母材用粉末の[C]及び
[O]を選択して、ミクロ空孔の体積比を調整する事がで
きる。In the figure, A is an example of claim (1), but [C] of the powder for the base material and
By selecting [O], the volume ratio of micropores can be adjusted.
本発明の触媒担体を製造する鉄粉は、例えばアトマイズ
ド鉄粉や電解鉄粉の如く高価な原料を使用してもよい
が、炭素含有量が2.1%以上の鉄粉は粉砕性が優れ従っ
て安価に製造できるために好ましい。又[C]が2.1%以上
の鉄粉は湿式粉砕にて容易に表面を酸化させた鉄粉とな
る。The iron powder for producing the catalyst carrier of the present invention may use expensive raw materials such as atomized iron powder and electrolytic iron powder, but iron powder having a carbon content of 2.1% or more has excellent pulverizability and is therefore inexpensive. It is preferable because it can be manufactured. In addition, iron powder with a [C] of 2.1% or more becomes iron powder whose surface is easily oxidized by wet grinding.
本発明の母材用粉末は何れも平均粒径が50μ以下であ
る。一般の粉末合金の焼結法とは異なり、本発明では高
圧プレス等を用いないで、混練物を熱分解性網目状多孔
体の骨格に塗着せしめて焼成する。平均粒径が50μ以
上では混練物がスラリー状態とならず、塗着しずらく、
又焼結粒子間の結合力が不十分となる。The base material powders of the present invention all have an average particle size of 50 μm or less. Unlike the general powder alloy sintering method, in the present invention, the kneaded product is applied to the skeleton of the thermally decomposable mesh-like porous body and fired without using a high-pressure press or the like. When the average particle size is 50 μm or more, the kneaded product does not become a slurry state and is difficult to be applied,
In addition, the bonding force between the sintered particles becomes insufficient.
次に請求項(2)に記載の、本発明の触媒担体の製造法を
説明する。この方法では母材用粉末は、鉄粉、酸化鉄
粉、表面を酸化させた鉄粉から選ばれる1種又は2種以
上と、熱分解剤粉と、必要に応じて炭素粉とで形成され
ている。尚上記の各粉の平均粒径は、請求項(1)の場合
と同様に、何れも50μ以下である。この方法の熱分解
剤粉とは、プラスチック粉末や有機高分子材料粉末やオ
ガ屑等の有機物粉末や、あるいは石灰石粉末等にの炭酸
塩粉末をいう。請求項(2)に記載の方法は、この母材用
粉末を用いて、請求項(1)に記載した第2工程と第3工
程を施して、触媒担体を製造する。熱分解剤粉は第3工
程で分解させ、同時にあるいは後処理して消失させるこ
とができるが、分解、消失した跡がミクロ空孔となっ
て、鉄の骨部のミクロ空孔を一層増加させることとな
る。Next, a method for producing the catalyst carrier of the present invention according to claim (2) will be described. In this method, the base material powder is formed of one or more selected from iron powder, iron oxide powder, and iron powder whose surface has been oxidized, a thermal decomposition agent powder, and carbon powder if necessary. ing. The average particle size of each powder is 50 μm or less, as in the case of claim (1). The thermal decomposition agent powder of this method refers to an organic powder such as a plastic powder, an organic polymer material powder, and sawdust, or a carbonate powder such as limestone powder. In the method described in claim (2), the catalyst support is manufactured by using the powder for a base material and performing the second step and the third step described in claim (1). The thermal decomposition agent powder can be decomposed in the third step and eliminated at the same time or by post-treatment, but the traces of decomposition and disappearance become micropores, further increasing the micropores in the iron bone part. It will be.
しかし本発明者等の知見では、熱分解剤粉の混合比率が
50%を超えると、第2工程で混練物を良好なスラリー状
態に維持する事が困難で、熱分解性三次元網目状多孔体
の骨格への塗着性が不良となる。However, according to the knowledge of the present inventors, the mixing ratio of the thermal decomposition agent powder is
If it exceeds 50%, it is difficult to maintain the kneaded material in a good slurry state in the second step, and the coating property to the skeleton of the thermally decomposable three-dimensional network-like porous body becomes poor.
従って熱分解剤粉の混合量は50%以下とする事が好まし
い。第2図のBに熱分解剤粉として平均粒径が10μの
プラスチック粉を50%混合した母材粉末を用いた例を示
したが、熱分解剤粉を用いる事よって、骨部に含まれる
ミクロ空孔をいちじるしく増加させることができる。Therefore, it is preferable that the amount of the thermal decomposition agent powder mixed is 50% or less. Fig. 2B shows an example in which 50% plastic powder having an average particle size of 10 µ is mixed as the base material powder as the thermal decomposition agent powder, but by using the thermal decomposition agent powder, it is included in the bone part. It is possible to greatly increase the number of micro holes.
[実施例1] 第1表の母材用粉末をCMCの水溶液で混練し、孔径が2m
mのウレタンフォームの骨格にスプレー法で1mmの厚さ
に塗着し、第2表の熱処理に行って100mm×100mm×10mm
の多孔質の鉄の板状触媒担体を製作した。[Example 1] The powder for a base material shown in Table 1 was kneaded with an aqueous solution of CMC, and the pore diameter was 2 m.
100 mm x 100 mm x 10 mm by applying 1 mm thickness by spraying method to the skeleton of urethane foam of m, and conducting the heat treatment of Table 2.
A porous iron plate-shaped catalyst carrier was manufactured.
*:骨部のミクロ空孔の体積比 得られた多孔質の触媒担体の空孔の状態を第2表に併せ
示した。この触媒担体は何れも骨部が多孔体のマクロ空
孔を形成しかつ鉄の骨部は表面が粗い焼結体で多数のミ
クロ空孔を有していた。 *: Volume ratio of micropores in bone part Table 2 also shows the state of pores in the obtained porous catalyst carrier. In each of the catalyst carriers, the bone portion formed porous macropores, and the iron bone portion was a sintered body having a rough surface and had a large number of micropores.
[実施例2] 第2表のNo2の触媒担体を塩化白金溶液に浸漬し、その
後50Aの電流を30分間通電して、600℃に直接通電
加熱して触媒体を製造した。この触媒体を4枚用いて、
第3図に示す反応容器で酸化触媒として使用した。処理
ガスとして常温の混合ガスを使用したが、触媒担体を30
0℃に直接通電加熱すると処理後のガスは約200℃で、酸
化効率も98%で、優れた触媒性能を示していた。[Example 2] The catalyst carrier No. 2 in Table 2 was immersed in a platinum chloride solution, and then a current of 50 A was applied for 30 minutes, and the catalyst was directly heated to 600 ° C to produce a catalyst body. Using 4 sheets of this catalyst,
It was used as an oxidation catalyst in the reaction vessel shown in FIG. Although the mixed gas at room temperature was used as the processing gas, the catalyst carrier was
When directly heated to 0 ° C, the gas after treatment was about 200 ° C and the oxidation efficiency was 98%, indicating excellent catalytic performance.
[実施例3] 含クロム鉄を粒鉄処理した後、湿式粉砕によって平均粒
径5μの表面酸化した鉄粉(C:3.5%,Si:0.01%,Mn:0.8%,C
r:10%,P:0.01%,S:0.005%,酸素:8%)を得た。この表面酸
化して鉄粉に50%体積比のプラスチック粉末(平均粒径
10μ)を混合し、CMCと水で混練し、ウレタフォームに
浸漬塗着した後、熱処理(乾燥:100℃×1hr,脱脂:35
0℃×20分,自己還元:800℃×30分,焼結:1100×30
分,窒素雰囲気)を行い、触媒担体を製作した。この触
媒担体は骨部のミクロ空孔の体積比が55%であった。Example 3 Surface-oxidized iron powder (C: 3.5%, Si: 0.01%, Mn: 0.8%, C) having an average particle size of 5 μ by wet pulverization after treating chromium-containing iron with granular iron
r: 10%, P: 0.01%, S: 0.005%, oxygen: 8%) were obtained. This surface oxidizes 50% volume ratio of plastic powder to iron powder (average particle size
10μ), mixed with CMC and water, dip-coated on ureta foam, and then heat treated (drying: 100 ℃ × 1hr, degreasing: 35
0 ℃ × 20 minutes, Self-reduction: 800 ℃ × 30 minutes, Sintering: 1100 × 30
Min., Nitrogen atmosphere) to produce a catalyst carrier. This catalyst carrier had a volume ratio of micropores in the bone portion of 55%.
この触媒担体にMnO2やCuO粉の混練液の触媒剤(アルミ
ゾール)を塗着したが、触媒担体の骨部は表面が粗く多
数のミクロ気泡があるため、塗着は容易であり、又塗着
後800℃で焼付けたが、触媒剤を厚く塗着しても、触媒
層の剥離はなかった。This catalyst carrier was coated with a catalyst agent (aluminazole) of a kneading liquid of MnO 2 or CuO powder, but the bone part of the catalyst carrier has a rough surface and has many micro bubbles, so the coating is easy. After coating, baking was performed at 800 ° C, but even if the catalyst agent was applied thickly, the catalyst layer did not peel off.
[発明の効果] 本発明の方法による触媒担体は三次元網目状の骨部がマ
クロ空孔を形成しているため、骨部に触媒剤を塗着する
と、通過する流体と触媒との接触面積が大きい触媒体と
なる。[Effect of the invention] In the catalyst carrier according to the method of the present invention, the three-dimensional mesh-shaped bone portion forms macropores. Therefore, when the catalyst agent is applied to the bone portion, the contact area between the fluid passing therethrough and the catalyst is increased. Results in a large catalyst body.
本発明の方法による触媒担体の骨部はミクロ空孔を有す
る粗い表面の焼結体であるため、骨部に粗製化層を形成
する必要がなく、そのまま触媒剤を塗着しても、十分な
厚さの触媒剤を容易に塗着できる。Since the bone part of the catalyst carrier according to the method of the present invention is a sintered body with a rough surface having micropores, it is not necessary to form a roughening layer on the bone part, and it is sufficient to apply the catalyst agent as it is. A catalyst agent having a different thickness can be easily applied.
本発明の方法による触媒担体は導電性であるため、例え
ば電気めっき等の導電性を利用した触媒剤の塗着手段が
可能となる。また触媒担体を直接通電あるいは誘導加熱
することによって、簡易な方法で、最高の触媒反応の温
度に触媒を加熱できる。Since the catalyst carrier according to the method of the present invention is conductive, it is possible to provide a means for applying a catalyst agent using conductivity, such as electroplating. Further, by directly energizing or inductively heating the catalyst carrier, the catalyst can be heated to the maximum catalytic reaction temperature by a simple method.
本発明は、粉砕が容易で安価な鉄粉や酸化鉄粉や表面酸
化鉄粉等を主な粉体として使用するため、原料コストが
安く、従って安価に製造できる。In the present invention, iron powder, iron oxide powder, surface iron oxide powder, and the like, which are easy to pulverize and are inexpensive, are used as the main powder, so that the raw material cost is low and therefore the manufacturing cost is low.
第1図は本発明の触媒担体の骨部を拡大した例を示す
図、 第2図は母材用粉末と骨部のミクロ空孔の発生との関係
の例を示す図、 第3図は本発明の触媒担体を用いた触媒の使用例を示す
図 である。 1:マクロ空孔、2:鉄の骨部、3:ミクロ空孔、4:
触媒、5:処理ガス、6:触媒反応容器、7:触媒担体
加熱用電源。FIG. 1 is a diagram showing an enlarged example of the bone portion of the catalyst carrier of the present invention, FIG. 2 is a diagram showing an example of the relationship between the powder for base material and the generation of micropores in the bone portion, and FIG. FIG. 3 is a diagram showing an example of use of a catalyst using the catalyst carrier of the present invention. 1: Macro pores, 2: Steel bone parts, 3: Micro pores, 4:
Catalyst, 5: processing gas, 6: catalyst reaction vessel, 7: power source for heating catalyst carrier.
Claims (4)
面を酸化させた鉄粉から選ばれる1種又は2種以上を、あ
るいは更に平均粒径が50μ以下の炭素粉を混じて、混合
し、炭素と酸素の含有量が下記1式の母材用粉末を製造
する第1工程と、該母材用粉末を結合剤と混練し熱分解
性網目状多孔体の骨格に塗着する第2工程と、第2工程
の生成物を加熱し熱分解性網目状多孔体を除去し更に塗
着物を自己還元焼結せしめる第3工程とを有する、鉄の
骨部が孔径が100μm〜10mmの貫通した空孔を形
成しかつ該鉄の骨部は孔径が10μm〜100μmの無
数の空孔を有する焼結体よりなる、多孔質の鉄の触媒担
体の製造法 [C]>2.1 }…1 4/3([C]-2)<[0]<4/3([C]+7) 但し[C]:母材用粉末の炭素含有量(重量%) [O]:母材用粉末の酸素含有量(重量%)1. An iron powder having an average particle size of 50 μ or less, iron oxide powder, iron powder having an oxidized surface, or one or more kinds selected from them, or further mixed with carbon powder having an average particle size of 50 μ or less. Then, the mixture is mixed and the first step of producing a powder for a base material having a carbon and oxygen content of the following formula 1: Having a second step of adhering and a third step of heating the product of the second step to remove the thermally decomposable mesh-like porous body and further subjecting the adherend to self-reduction sintering, the bone portion of iron having a pore diameter of 100 μm Method for producing a porous iron catalyst carrier [C]> 2.1, which comprises a sintered body having through holes of -10 mm formed therein and the bone portion of the iron having a number of holes having a hole diameter of 10 μm to 100 μm. }… 1 4/3 ([C] -2) <[0] <4/3 ([C] +7) However, [C]: Carbon content of powder for base material (wt%) [O]: Mother Oxygen content (% by weight) of material powder
表面を酸化させた鉄粉から選ばれる1種又は2種以上と、
平均粒径が50μ以下の熱分解剤粉と、あるいは更に平
均粒径が50μ以下の炭素粉とを混合して母材用粉末を製
造する第1工程と、該母材用粉末を結合剤と混練し熱分
解性網目状多孔体の骨格に塗着する第2工程と、第2工
程の生成物を加熱し熱分解剤粉と熱分解性網目状多孔体
を除去し更に塗着物を自己還元焼結せしめる第3工程と
を有する、鉄の骨部が孔径が100μm〜10mmの貫通
した空孔を形成しかつ該鉄の骨部は孔径が10μm〜1
00μmの無数の空孔を有する焼結体よりなる、多孔質
の鉄の触媒担体の製造法2. Iron powder, iron oxide powder, having an average particle size of 50 μm or less,
With one or two or more selected from iron powder whose surface is oxidized,
A first step of producing a base material powder by mixing a thermal decomposition agent powder having an average particle diameter of 50 μm or less, or carbon powder having an average particle diameter of 50 μm or less, and the base material powder as a binder. Second step of kneading and applying to the skeleton of the thermally decomposable network porous body, heating the product of the second step to remove the thermally decomposing agent powder and the thermally decomposable network porous body, and further self-reducing the coating material. And a third step of sintering, wherein the iron skeleton forms through holes having a pore diameter of 100 μm to 10 mm, and the iron skeleton has a pore diameter of 10 μm to 1
Method for producing a porous iron catalyst carrier comprising a sintered body having innumerable pores of 00 μm
選ばれる1又は2以上よりなる熱分解剤粉である、請求項
(2)に記載の、多孔質の鉄の触媒担体の製造法3. The thermal decomposition agent powder is a thermal decomposition agent powder composed of one or more selected from organic powder and carbonate powder.
The method for producing a porous iron catalyst carrier according to (2)
る自己還元焼結である、請求項(1)または(2)または(3)
に記載の、多孔質の鉄の触媒担体の製造法4. The self-reduction sintering is self-reduction sintering in which the temperature is heated to 800 to 1200 ° C. (1) or (2) or (3)
Of a porous iron catalyst carrier described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63255992A JPH064136B2 (en) | 1988-10-13 | 1988-10-13 | Method for producing porous iron catalyst support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63255992A JPH064136B2 (en) | 1988-10-13 | 1988-10-13 | Method for producing porous iron catalyst support |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02102738A JPH02102738A (en) | 1990-04-16 |
JPH064136B2 true JPH064136B2 (en) | 1994-01-19 |
Family
ID=17286395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63255992A Expired - Lifetime JPH064136B2 (en) | 1988-10-13 | 1988-10-13 | Method for producing porous iron catalyst support |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH064136B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69229661T2 (en) * | 1991-04-26 | 1999-12-30 | Citizen Watch Co., Ltd. | Method for producing a connection structure for a semiconductor arrangement |
-
1988
- 1988-10-13 JP JP63255992A patent/JPH064136B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02102738A (en) | 1990-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1075969C (en) | Method for producing porous bodies | |
US3150011A (en) | Shaped metal parts having a superficial double skeleton catalyst structure | |
KR100218212B1 (en) | Method of preparing metallic porous body, electrode substrate for battery and process for preparing the same | |
CA2257456C (en) | Durable electrode coatings | |
JPS62120403A (en) | Titanium composite body having porous surface and its manufacture | |
WO1997031738A1 (en) | Porous materials and method for producing | |
TWI311162B (en) | Catalyst composition and deposition method | |
JP3054746B2 (en) | Electroplating method for non-conductive material | |
KR20140087714A (en) | Manufacturing method of metal foam and metal foam manufactured thereby | |
Sotiropoulos et al. | Nickel incorporation into a hollow fibre microporous polymer: a preparation route for novel high surface area nickel structures | |
GB1574007A (en) | Cermets | |
CA1337034C (en) | Activated metal and method of preparing | |
JPH0134652B2 (en) | ||
JPH064136B2 (en) | Method for producing porous iron catalyst support | |
TWI278008B (en) | Process for preparing a non-conductive substrate for electroplating | |
JPH02254108A (en) | Tantalum sintered body and its production | |
TW200522811A (en) | Structure of low temperature and conductive layers and fabrication methods thereof | |
CN114014411B (en) | High-activity three-dimensional particle electrode material for treating spraying wastewater and preparation method thereof | |
JPH0820831A (en) | Production of metallic porous body | |
JP2002317289A (en) | Hydrogen generating electrode | |
JP3175168B2 (en) | Ozone water generator | |
JP4705222B2 (en) | Method for producing porous plate material | |
JP2901278B2 (en) | Water treatment filter and method for producing the same | |
JPS57207183A (en) | Production of cathode | |
CN107180910B (en) | A kind of preparation method of Nano silver grain load aluminic acid magnesium material and material obtained |