JPH02102548A - Thermal expansion adjusting material - Google Patents

Thermal expansion adjusting material

Info

Publication number
JPH02102548A
JPH02102548A JP63256303A JP25630388A JPH02102548A JP H02102548 A JPH02102548 A JP H02102548A JP 63256303 A JP63256303 A JP 63256303A JP 25630388 A JP25630388 A JP 25630388A JP H02102548 A JPH02102548 A JP H02102548A
Authority
JP
Japan
Prior art keywords
copper
layer
thermal expansion
alloy
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63256303A
Other languages
Japanese (ja)
Inventor
Kenji Yamaguchi
健司 山口
Yasuhiko Miyake
三宅 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63256303A priority Critical patent/JPH02102548A/en
Publication of JPH02102548A publication Critical patent/JPH02102548A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers

Abstract

PURPOSE:To improve a solderability while the superior thermal expansion adaptability of an Nb layer with a ceramics layer is maintained intact by a method wherein a thermal expansion adjusting material is constituted in such a way that copper layers or copper alloy layers are respectively cladded on both surfaces of the Nb layer and the thickness ratio of the copper layer: the Nb layer: the copper layer is set at a specified range. CONSTITUTION:Copper plates or copper alloy plate 1b and 1b, whose thickness are almost equal, are respectively cladded on both surfaces of an Nb plate 1a and the plates 1a, 1b and 1b are constituted into a thermal expansion adjustable clad material (a thermal expansion adjusting material) 1. The plate thickness ratio of the copper plate: the Nb plate: the copper plate is set at a range between 1:500:1 (about 0.4% of the coating volume percentage of Cu) and 15:70:15. As this result, a layer, to which a silver solder layer 4 comes into contact, is not the Nb layer but is changed into the copper layer 1b and a difference between this silver soldering and a silver soldering with the copper layer itself is eliminated. Thereby, a significant improvement and a stabilization of a solderability can be accomplished without impairing the thermal expansion adaptability of the Nb layer with an Al2O3 ceramics layer 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パラゲージ型半導体デバイスにおけるセラミ
ックス基板と封止部品との銀ろう付は接合などにおいて
、熱膨張差を具合よく整合させ得る熱膨張調整材に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for silver soldering between a ceramic substrate and a sealing component in a paragauge type semiconductor device, using a thermal expansion method that can suitably match the difference in thermal expansion. This relates to adjustment materials.

[従来の技術] 例えばパッケージ型の半導体デバイスにおいては、第4
図に示すように、AJ203セラミックス基板3を銀ろ
う2により筐体1−に接合し、前記セラミックス基板3
にパワー用ダイオードの如きSiチップ5を半田4によ
り接合することが行なわれている。
[Prior Art] For example, in a packaged semiconductor device, the fourth
As shown in the figure, an AJ203 ceramic substrate 3 is bonded to the casing 1- with silver solder 2, and the ceramic substrate 3
A Si chip 5 such as a power diode is bonded by solder 4 to the device.

この場合、筐体とセラミックス基板との銀ろう付けにお
いては、約800〜900℃の高温に加熱されるなめ、
Al2Oaセラミックスと筐体との熱膨張の整合を得る
必要があり、筐体側の材料には一般にその熱膨張係数が
セラミックスに近いコバールやモリブデンが使用されて
いるが、ニオブ(以下Nb )のような低膨張性金属又
は合金を使用することも試みられている。
In this case, in silver soldering between the housing and the ceramic substrate, it is heated to a high temperature of about 800 to 900 degrees Celsius, so
It is necessary to match the thermal expansion between Al2Oa ceramics and the casing. Kovar or molybdenum, whose coefficient of thermal expansion is close to that of ceramics, is generally used as the material for the casing, but materials such as niobium (hereinafter referred to as Nb) Attempts have also been made to use low expansion metals or alloys.

[発明が解決しようとする課題] 筐体として使用されるNbに上記AJ203セラミック
スを銀ろう付けする場合、Nb表面における銀ろう(、
’1−28%Cu合金など)との濡れ性が悪く、ろう付
は部が不安定となり信頼性に欠けるばかりでなく、ろう
付は後の剥離のおそれを生じさせるなどとかくの問題を
残していた。
[Problems to be Solved by the Invention] When silver soldering the above AJ203 ceramics to Nb used as a casing, silver soldering (,
(1-28% Cu alloy, etc.), brazing not only makes the parts unstable and lacks reliability, but also leaves problems such as the risk of peeling later. Ta.

本発明の目的は、上記した銀ろう付は上での懸念を解消
し、Nbの有するセラミックスとのすぐれた熱膨張整合
性をそのまま維持しつつろう付は性を大巾に改善した熱
膨張調整材を提供しようとするものである。
The purpose of the present invention is to eliminate the above-mentioned concerns about silver brazing, and to greatly improve thermal expansion properties while maintaining the excellent thermal expansion consistency with ceramics that Nb has. The aim is to provide materials.

[課題を解決するための手段] 本発明は、Nbの両面に銅又は銅合金をクラッドし、銅
・Nb ・銅の厚さ比が15ニア0:15から1:50
0:1の範囲となるように構成したものである。
[Means for Solving the Problems] The present invention clads both sides of Nb with copper or a copper alloy, and the thickness ratio of copper/Nb/copper is 15 near 0:15 to 1:50.
It is configured to have a range of 0:1.

[作用] 上記の構成比であれば、Nbの有するセラミックスとの
熱膨張整合性を害することなく表面に銅層を有すること
によるろう付は性の大r11な改善と安定化を達成する
ことができ、半導体デバイスとしての信頼性の向上に寄
与することができる。
[Effect] With the above composition ratio, it is possible to achieve significant improvement and stabilization of brazing properties by having a copper layer on the surface without impairing the thermal expansion compatibility with ceramics that Nb has. This can contribute to improving the reliability of semiconductor devices.

[実施例] 以下に、本発明について実施例を参照し説明する。[Example] The present invention will be described below with reference to Examples.

本発明においては、第1図に示すようにNb1aの両面
にほぼ同じ厚さの銅又は銅合金tb。
In the present invention, as shown in FIG. 1, copper or copper alloy tb is coated on both sides of Nb1a with approximately the same thickness.

1bをクラ・グドし、熱膨張調整可能なりラッド材1に
構成する。
1b is made into a rad material 1 which can be adjusted in thermal expansion.

両面にほぼ同じ厚さにクラッドするのは、加熱の際の反
りを防止し熱的安定性を確保するためである。
The reason why both sides are clad with approximately the same thickness is to prevent warping during heating and ensure thermal stability.

銅又は銅合金をクラッドするのは、AJ203セラミッ
クス3と接合させる際に、銅が銀ろうとの濡れ性ならび
に接合性においてとくにすぐれている上、熱伝導性にも
すぐれているためである。
The reason why copper or a copper alloy is used for cladding is that copper has particularly excellent wettability and bondability with silver solder when bonded to AJ203 ceramic 3, and also has excellent thermal conductivity.

すなわち、本発明に係るクラツド材1を用いることによ
り銀ろう2が接するのは第4図の従来例のようにNbで
はなく第2図に示すように銅層1bとなり、銅そのもの
との銀ろう付けと変るところがなく、良好な熱伝導性と
相俟って安定かつすぐれた接合を得ることができる。
That is, by using the clad material 1 according to the present invention, the silver solder 2 comes into contact with the copper layer 1b as shown in FIG. 2 instead of Nb as in the conventional example shown in FIG. There is no difference from bonding, and combined with good thermal conductivity, a stable and excellent bond can be obtained.

第3図は、上記のようにして得た本発明に係るクラツド
材とAjzO3セラミックスとの熱Mj張量の温度によ
る変化を示すR図である。
FIG. 3 is an R diagram showing the change in thermal Mj tensile strength of the clad material according to the present invention obtained as described above and the AjzO3 ceramics depending on the temperature.

第3図かられかるように、熱WB’31の観点からみる
と、クラツド材における銅の板厚比が小さいほどその熱
膨張量がセラミックスに近接してくることになる。しか
し、銅・Nb ・銅の板厚比が1:500 : 1 (
Cu被覆体積率約0.4%)よりも小さくなると、銅の
厚さが不足気味となり、前記したろう付は性の改善がや
や不十分となる上、銅のすぐれた熱伝導性に基く熱放散
能力も低下し好ましくない。
As can be seen from FIG. 3, from the viewpoint of thermal WB'31, the smaller the plate thickness ratio of copper in the cladding material, the closer the amount of thermal expansion thereof will be to that of ceramics. However, the plate thickness ratio of copper/Nb/copper is 1:500:1 (
If the Cu coating volume ratio is smaller than approximately 0.4%, the thickness of the copper will be insufficient, and the above-mentioned brazing will not be able to improve the properties sufficiently, and the heat resistance due to the excellent thermal conductivity of copper will be insufficient. The dissipation ability also decreases, which is not preferable.

上記の熱放散の意味からすれば、銅の板厚比は大きい方
が好ましいことになるが、第3図からもわかるように銅
の板厚比が大きくなると熱膨張量が次第に増大しセラミ
ックスとの整合性が悪くなる。
From the above-mentioned meaning of heat dissipation, a larger copper plate thickness ratio is preferable, but as can be seen from Figure 3, as the copper plate thickness ratio increases, the amount of thermal expansion gradually increases and consistency becomes worse.

従って、銅・Nb −銅の板厚比の上限としては15ニ
ア0:15までが限度となるのである。
Therefore, the upper limit of the copper/Nb-copper plate thickness ratio is 15 near 0:15.

なお、銅層については純銅であっても差支えはないが、
合金成分を2重量%以下添架したCu5n合金、Cu−
Ag合金、Cu−Zr合金、Cu−P合金、Cu−Zn
合金あるいはCu −AJ 20s複合材などを用いれ
ば、ろう付は性の改善と同時に耐熱性の改善をも実現す
ることができ、非常に好ましいということができる。
Note that the copper layer may be made of pure copper, but
Cu5n alloy, Cu-
Ag alloy, Cu-Zr alloy, Cu-P alloy, Cu-Zn
If an alloy or a Cu-AJ 20s composite material is used, brazing can improve not only the properties but also the heat resistance, which is very preferable.

実施例1゜ 冷間圧延圧接により銅層・Nb層・銅層の各板厚が10
μm: t、98mm: 10μmとなるようにして銅
・Nb ・銅クラツド材(全板厚2.0IIIffi)
を製作した。こめクラツド材をメタルキャップに加工し
、これとA1tO3セラミックスとをAgろう(Aa−
28%Cu合金)で接合してセラミックバラゲージを組
立てなところ、ろう付は性も良好でしかも室温に冷却し
た後もAjzOsセラミックスとの熱膨張差によるAg
ろうの剥離もなく、良好なパッケージを得ることができ
た。
Example 1: Each plate thickness of the copper layer, Nb layer, and copper layer was 10 mm by cold rolling and welding.
Copper/Nb/Copper clad material (total thickness 2.0IIIffi) so that μm: t, 98mm: 10μm
was produced. The cladding material is processed into a metal cap, and this and A1tO3 ceramics are bonded with Ag wax (Aa-
28% Cu alloy) to assemble the ceramic barrier gauge, brazing has good properties and even after cooling to room temperature, Ag
A good package was obtained without peeling of the wax.

実施例2゜ 耐熱性の複合材であるCu−0,1%AJ1203複合
材(軟化温度600℃)とNbとを組合せ、第1図の断
面形状になるよう3層構造のクラツド材に冷間圧延圧接
した。さらに、800’Cで金属接合を十分にするため
の拡散加熱処理後、仕上圧延を行ない、全板厚が1.0
圓、 Cu  AJI 20s  ・Nb −Cu  AJ2
03の板厚比を0.02:0.96:0.02としてな
る本発明に係るクラツド材を製作した。
Example 2 A heat-resistant composite material, Cu-0.1% AJ1203 composite material (softening temperature 600°C), was combined with Nb, and a three-layered cladding material was cold-rolled to have the cross-sectional shape shown in Figure 1. Rolled and pressure welded. Furthermore, after diffusion heat treatment at 800'C to ensure sufficient metal bonding, finish rolling is performed to reduce the total plate thickness to 1.0
En, Cu AJI 20s ・Nb -Cu AJ2
A clad material according to the present invention was manufactured with a thickness ratio of 0.03 to 0.02:0.96:0.02.

このクラツド材をメタルキャップに加工し、AJ203
セラミックスとAgろう(Ag−28%Cu合金)を用
い温度900℃で接合し、マルチレイヤー型のセラミッ
クパラゲージに組立てた。
This clad material is processed into a metal cap, and AJ203
Ceramics and Ag solder (Ag-28% Cu alloy) were bonded at a temperature of 900°C and assembled into a multi-layer ceramic paragauge.

Agろうによるろう付は性はきわめて良好で、しかも室
温に冷却してもAJ203セラミックスの熱膨張差によ
る割れもなく、A(Jろうの剥離もみとめられず、良好
なパッケージを得ることができた。これを実装試験した
結果、熱抵抗の変動も少く良好な熱伝導性を示すことが
わがっな。
Brazing with Ag solder had extremely good properties, and even after cooling to room temperature, there was no cracking due to the difference in thermal expansion of AJ203 ceramics, and no peeling of the A (J solder) was observed, making it possible to obtain a good package. As a result of mounting tests, it was found that there was little variation in thermal resistance and that it exhibited good thermal conductivity.

実施例3゜ 0.2m厚さのCu−o、t%zr合金素条と1.0m
厚さのNb素条と0.2市厚さのCu −0,1%Zr
合金素条とを3層に重ね合せ、冷間圧延圧接および仕上
圧延して、板厚1.0m+の3MM造のクラツド材を製
作した。このクラツド材を金属基板としてこれに厚さ1
.0市のAjzO3セラミックスをAgろう(Ag−2
2%Cu−18%Zn−5%Sn合金)を用いて接合し
、さらにAJ1203セラミックス上にパワー用のSi
ダイードを半田付けして、第2図に示すような構成より
なるデバイスを作製しな、この場合、AQろう付は温度
700℃から室温に冷却したが、Al2O3セラミック
スの割れもなく良好なろう付けを行なうことができた。
Example 3゜0.2m thick Cu-O, t%zr alloy strip and 1.0m thick
Thick Nb strip and 0.2mm thick Cu-0.1%Zr
A 3MM clad material with a thickness of 1.0 m+ was produced by stacking three layers of alloy strips, cold rolling, and finish rolling. This clad material is used as a metal substrate and a thickness of 1
.. Ag waxing of AjzO3 ceramics in 0 city (Ag-2
2%Cu-18%Zn-5%Sn alloy), and then Si for power on AJ1203 ceramics.
A device having the structure shown in Fig. 2 was manufactured by soldering the die. In this case, AQ brazing was performed by cooling the temperature from 700°C to room temperature, but good brazing was achieved without cracking of the Al2O3 ceramics. I was able to do this.

これを実装試験した結果、熱による半田の疲労もなく良
好な表面実装メタル基板を得ることかできな。
As a result of a mounting test of this, it was possible to obtain a good surface mount metal board without solder fatigue due to heat.

応用例1゜ 上記実施例においては冷間圧延圧接により3層構造の銅
・Nb ・銅クラツド材を製作したが、さらに板厚比を
1 : 500 : 1と小さくし板厚を1.0mとす
るような場合には、N、b板の両面に約2μm厚の銅を
蒸着法を含む気相法あるいは電気めっき法を用いて被着
させ製造することが可能であることがわかった。
Application example 1゜In the above example, a three-layer structure copper/Nb/copper clad material was produced by cold rolling welding, but the plate thickness ratio was further reduced to 1:500:1 and the plate thickness was 1.0 m. In such a case, it has been found that it is possible to manufacture the N and b plates by depositing copper with a thickness of about 2 μm on both sides using a vapor phase method including a vapor deposition method or an electroplating method.

応用例2゜ 上記実施例ではNb板(純度99.90%以上)を利用
したが、Nb−10%Cu合金(焼結材)を利用するこ
とにより銅被覆厚さを薄くし、しかも銅・Nb−10%
Cu焼結圧延材・銅の接着性を良好ならしめた3層構造
のクラツド材を簡単に製造できることがわかった。
Application example 2゜In the above example, Nb plate (purity of 99.90% or more) was used, but by using Nb-10% Cu alloy (sintered material), the copper coating thickness can be reduced, and copper Nb-10%
It has been found that it is possible to easily produce a three-layered cladding material with good adhesion between Cu sintered and rolled material and copper.

[発明の効果] 以上の通り、本発明によればつぎのようなすぐれた効果
を奏することができる。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects can be achieved.

(1)  AJ 203セラミツクスと熱膨張の傾きが
類似し、ろう付は温度900℃から室温に冷却してもセ
ラミックスが割れたり剥離したりするおそれのない熱膨
張整合性のある材料を得ることができる。
(1) The slope of thermal expansion is similar to that of AJ 203 ceramics, and brazing makes it possible to obtain a material with thermal expansion consistency that prevents the ceramic from cracking or peeling even when cooled from 900°C to room temperature. can.

(2)  銅・Nb −銅クラツド材は、加工性がNb
単体よりも改善され、Agろう付けの信頼性が高く、パ
ッケージ部品として製品の歩留りを向上できる利点を有
する。
(2) Copper/Nb - Copper clad material has Nb workability.
It has the advantage that it is improved over a single unit, has high reliability of Ag brazing, and can improve product yield as a package component.

(3)  銅・Nb ・銅クラツド材の板厚構成比を1
5ニア0:15から1:500:1まで自由に変えるこ
とによって700〜900℃の高温における熱膨張を調
整できる。
(3) The plate thickness composition ratio of copper/Nb/copper clad material is 1
Thermal expansion at high temperatures of 700 to 900°C can be adjusted by freely changing the ratio of 0:15 to 1:500:1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るクラツド材の構成を示す断面図、
第2図は本発明に係るクラツド材をバラゲージ用材止材
とし半導体を実装した様子を示す説明断面図、第3図は
温度と熱膨張との関係を示す線図、第4図は従来のパッ
ケージの実装状況を示す説明見取図である。 1:熱膨張調整材、 1 a : Nb、 1b=銅又は銅合金、 2:銀ろう、 3 : A1 セラミックス、 二半田、 5 : チップ。
FIG. 1 is a sectional view showing the structure of the cladding material according to the present invention;
Fig. 2 is an explanatory cross-sectional view showing how a semiconductor is mounted using the clad material according to the present invention as a barrier gauge material, Fig. 3 is a diagram showing the relationship between temperature and thermal expansion, and Fig. 4 is a conventional package. It is an explanatory sketch showing the implementation situation of. 1: thermal expansion adjusting material, 1 a: Nb, 1 b = copper or copper alloy, 2: silver solder, 3: A1 ceramics, two solders, 5: chip.

Claims (2)

【特許請求の範囲】[Claims] (1)ニオブ板の両面にほぼ同じ厚さの銅又は銅合金を
被覆した3層複合材よりなり、銅層・ニオブ層・銅層の
比を15:70:15(銅被覆体積率30%)から1:
500:1(銅被覆体積率0.4%)の範囲としてなる
熱膨張調整材。
(1) Made of a three-layer composite material in which both sides of a niobium plate are coated with copper or copper alloy of approximately the same thickness, the ratio of copper layer, niobium layer, and copper layer is 15:70:15 (copper coating volume ratio 30%). ) to 1:
A thermal expansion adjusting material in the range of 500:1 (copper coating volume ratio 0.4%).
(2)銅層として合金成分の添加量が2重量%以下のC
u−Sn合金、Cu−Ag合金、Cu−Zr合金、Cu
−P合金、Cu−Zn合金あるいはCu−Al_2O_
3複合材を用いてなる請求項1記載の熱膨張調整材。
(2) C with an alloy component added in an amount of 2% by weight or less as a copper layer
u-Sn alloy, Cu-Ag alloy, Cu-Zr alloy, Cu
-P alloy, Cu-Zn alloy or Cu-Al_2O_
2. The thermal expansion adjusting material according to claim 1, comprising a three-component composite material.
JP63256303A 1988-10-12 1988-10-12 Thermal expansion adjusting material Pending JPH02102548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63256303A JPH02102548A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63256303A JPH02102548A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Publications (1)

Publication Number Publication Date
JPH02102548A true JPH02102548A (en) 1990-04-16

Family

ID=17290788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63256303A Pending JPH02102548A (en) 1988-10-12 1988-10-12 Thermal expansion adjusting material

Country Status (1)

Country Link
JP (1) JPH02102548A (en)

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
US8299604B2 (en) Bonded metal and ceramic plates for thermal management of optical and electronic devices
JPS60177635A (en) Manufacture of good heat conductive substrate
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH0777280B2 (en) Bonding method
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
US4448605A (en) Ductile brazing alloys containing reactive metals
JP2018524250A (en) Method for making a composite material
JPWO2006016479A1 (en) Heat sink member and manufacturing method thereof
KR19990045105A (en) Board
US4606981A (en) Ductile brazing alloys containing reactive metals
JPS60177634A (en) Manufacture of power semiconductor modular substrate
JPH0586662B2 (en)
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JP4951932B2 (en) Power module substrate manufacturing method
JPH02102548A (en) Thermal expansion adjusting material
US6699571B1 (en) Devices and methods for mounting components of electronic circuitry
JPH02102551A (en) Thermal expansion adjusting material
JPH08102570A (en) Ceramic circuit board
JPH0222831A (en) Thermal-expansion adjusting material for high-temperature use
JPH02102549A (en) Thermal expansion adjusting material
JPH02102550A (en) Thermal expansion adjusting material
JP2503775B2 (en) Substrate for semiconductor device
JP2607700Y2 (en) Lightweight substrates for semiconductor devices