JPH02102528A - Ashing process - Google Patents

Ashing process

Info

Publication number
JPH02102528A
JPH02102528A JP25491888A JP25491888A JPH02102528A JP H02102528 A JPH02102528 A JP H02102528A JP 25491888 A JP25491888 A JP 25491888A JP 25491888 A JP25491888 A JP 25491888A JP H02102528 A JPH02102528 A JP H02102528A
Authority
JP
Japan
Prior art keywords
resist
ashing
gas
plasma
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25491888A
Other languages
Japanese (ja)
Inventor
Masaharu Kashiwase
柏瀬 正晴
Takahiro Oga
隆裕 大賀
Akihiro Oka
岡 彰博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP25491888A priority Critical patent/JPH02102528A/en
Publication of JPH02102528A publication Critical patent/JPH02102528A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable degenerated resist to be reduced into ashes within a short time by a method wherein a mixed gas comprising oxygen, ozone and carbon fluoride gas is fed to produce plasma to reduce a resist into ashes. CONSTITUTION:A mixed gas comprising oxygen containing high concentration ozone, carbon fluoride gas such as tetrafluorometane(CF4), trifluoromethane(CHF3), hexafluoroethane(C2F6), etc., used as an etching gas in the manufacture of a semiconductor device is made plasmatic. Consequently, even if arsenic, phosphorus, boron, etc., are ion-implanted in the manufacturing process, sufficient ashing rate can be shown without increasing the high-frequency power for producing plasma. Through these procedures, a resist can be reduced into ashes within a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレジストの乾燥状態での除去方法に関するもの
で、特にレジストの灰化処理によるアッシング方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing a resist in a dry state, and particularly to an ashing method by ashing the resist.

(従来技術) IC1LSI等の半導体装置を製造する場合には、写真
処理技術あるいは、X線照射、電子線照射等で回路パタ
ーンが描かれたレジストを形成したシリコン等の基板に
各種の処理を施した後に該レジストを除去するためのア
ッシング処理が行われている。
(Prior art) When manufacturing semiconductor devices such as IC1LSI, various treatments are applied to a silicon substrate on which a resist with a circuit pattern is formed using photo processing techniques, X-ray irradiation, electron beam irradiation, etc. After that, an ashing process is performed to remove the resist.

レジストは過酸化水素を含有する硫酸等の酸化力のある
液体中へ浸漬して除去する湿式処理によって除去したり
、酸素プラズマ、紫外線、オゾンなどの乾式処理によっ
て除去している。液体を用いる湿式処理は廃液処理に手
数がかかり、また液体中に含まれる不純物が半導体装置
に悪影響を及ぼすという問題点があるので乾式処理が多
く用いられるようになっている。
The resist is removed by a wet process in which it is immersed in an oxidizing liquid such as sulfuric acid containing hydrogen peroxide, or by a dry process using oxygen plasma, ultraviolet rays, ozone, or the like. Wet processing using a liquid requires a lot of effort to dispose of waste liquid, and there are also problems in that impurities contained in the liquid have an adverse effect on semiconductor devices, so dry processing is increasingly used.

乾式処理の中心である酸素プラズマによる方法は、プラ
ズマを発生させる高周波の出力を大きくするとアッシン
グ性能は高まるものの、半導体の集積度が高まるにした
がってプラズマによって生じるイオンや電子の@射によ
る半導体装置の損傷が問題となっており、半導体装置に
損傷を生じることがないアッシング方法として、オゾン
や紫外線によるアッシング方法が有望視されている。
In the method using oxygen plasma, which is the mainstay of dry processing, the ashing performance improves by increasing the output of the high frequency wave that generates the plasma, but as the degree of integration of semiconductors increases, damage to semiconductor devices due to ions and electrons generated by the plasma increases. has become a problem, and ashing methods using ozone or ultraviolet light are considered promising as ashing methods that do not cause damage to semiconductor devices.

(発明が解決しようとする問題点) 半導体装置の製造工程においては、数回のレジストの除
去工程があるので、レジストのアッシング工程での処理
時間を短縮することは半導体装置の生産性を上げるうえ
で重要な意義を持っている。
(Problems to be Solved by the Invention) In the manufacturing process of semiconductor devices, there are several resist removal steps, so shortening the processing time in the resist ashing step is an effective way to increase the productivity of semiconductor devices. has important significance.

このため、高速でレジストをアッシングする方法が求め
られている。ところが、乾式処理の中心である酸素プラ
ズマによるアッシング方法は、プラズマを発生させる高
周波電力を大きくすることによってレジストのアッシン
グ速度は大きくなるものの、プラズマの発生にともなっ
て有害なイオンや電子が発生する。特に集積度が高まっ
て微細となった半導体装置における、絶縁膜の破壊やチ
ャージアップ等の半導体の電気的特性への悪影響などが
問題となる。
Therefore, a method of ashing the resist at high speed is required. However, in the ashing method using oxygen plasma, which is the mainstay of dry processing, although the resist ashing speed increases by increasing the high-frequency power used to generate the plasma, harmful ions and electrons are generated as the plasma is generated. Particularly in semiconductor devices that have become more highly integrated and miniaturized, problems such as damage to the electrical characteristics of the semiconductor, such as breakdown of an insulating film and charge-up, have become a problem.

このようなプラズマによる半導体装置への悪影響を防止
するために、プラズマ発生用の高周波電力を100ない
し200Wに低下させると共にプラズマ発生チャンバー
内へオゾンを含む混合ガスを供給することによって、4
00ないし700Wの高周波電力を与えた場合と同等の
処理速度を得る方法が提案されている。 (特公昭53
−24302号)。ところが、このような方法では、単
に熱的に硬化したレジストを比較的短時間で除去するこ
とが可能であるが、半導体製造工程に於いて各種の処理
を受けたレジストについてはレジストのアッシング速度
が小さくなる。特に半導体の製造工程において、砒素、
燐、硼素等をイオン注入した場合には注入したイオンと
レジストの高分子化合物が化学反応をしてレジストが酸
化に対して極めて大きな抵抗性を有する物質に変質する
ものとみられ、除去速度が大変小さくなる。
In order to prevent such negative effects on semiconductor devices due to plasma, the high frequency power for plasma generation is lowered to 100 to 200 W and a mixed gas containing ozone is supplied into the plasma generation chamber.
A method has been proposed to obtain a processing speed equivalent to that obtained by applying high frequency power of 00 to 700 W. (Tokuko 53
-24302). However, with this method, it is possible to simply remove thermally hardened resist in a relatively short time, but the ashing speed of resist that has been subjected to various treatments in the semiconductor manufacturing process is slow. becomes smaller. Especially in the semiconductor manufacturing process, arsenic,
When ions such as phosphorus or boron are implanted, the implanted ions and the polymeric compound of the resist appear to undergo a chemical reaction that transforms the resist into a substance that has extremely high resistance to oxidation, resulting in a very slow removal rate. becomes smaller.

例えば「月刊Sem1conductor  Worl
dj第7巻第5号第49ページから第50ページ(19
88年5月号)には、イオン注入後のレジスト残渣につ
いて記載されており、イオン注入を行ったレジストは酸
素プラズマに対して大きな抵抗を示し、燐を注入したも
のは、イオン注入していないレジストの場合の残渣が4
インチウェハで99個であるのに対して2496個の残
渣があり、更に砒素をイオン注入したものは8474個
の残渣が残存することが明らかにされている。
For example, “Monthly Sem1conductor World
dj Vol. 7 No. 5 Pages 49 to 50 (19
(May 1988 issue) describes the resist residue after ion implantation, stating that ion-implanted resists exhibit large resistance to oxygen plasma, and phosphorus-implanted resists do not have ion-implanted resists. Residue in case of resist is 4
It has been revealed that there are 2,496 residues compared to 99 in inch wafers, and that 8,474 residues remain in wafers in which arsenic ions have been implanted.

このような問題に対処するために、イオン注入後のレジ
ストには酸素プラズマによる乾式処理だけでは対処する
ことはできないので、強酸による湿式処理が不可欠とさ
れていた。また、乾式によるレジストのアッシング方法
として半導体装置に与える影響が小さい方法として注目
を受けているオゾンを加熱下のレジストに作用させてレ
ジストを灰化するレジストのアッシング方法は、絶縁膜
の破壊、チャージアップなどの半導体装置の特性に及ぼ
す悪影響は極めて少ないものの、酸素プラズマによるア
ッシングの場合以上にイオン注入した場合には除去速度
が極めて小さくなる。
In order to deal with such problems, it has been considered essential to wet-process the resist using a strong acid, since dry processing using oxygen plasma alone cannot deal with the resist after ion implantation. In addition, the resist ashing method, which uses ozone to act on the heated resist to ash the resist, is attracting attention as a dry resist ashing method that has less impact on semiconductor devices. Although there is very little adverse effect on the characteristics of the semiconductor device such as ashing, the removal rate becomes extremely low if ions are implanted more than in the case of ashing using oxygen plasma.

(問題点を解決するための手段) そこで、本発明者らは酸素プラズマによる処理装置内へ
供給する処理ガス中に添加する反応性のガスに着目する
ことにより、プラズマ化する高周波エネルギーが小さく
とも大きなアッシング速度が得られ、特にイオン注入後
のレジストの灰化において大きな効果を発揮することを
見いだした。
(Means for Solving the Problems) Therefore, the present inventors focused on a reactive gas added to the processing gas supplied into the processing apparatus using oxygen plasma, and found that even if the high frequency energy for turning into plasma is small, It has been found that a high ashing rate can be obtained and that this method is particularly effective in ashing the resist after ion implantation.

すなわち、レジストを除去する処理室内へ高濃度のオゾ
ンを含む酸素と半導体装置の製造においてエツチングガ
スとして使われているテトラフルオロメタン(CF4)
、)リフルオロメタン(CHF3)、ヘキサフルオロエ
タン(CaFs) 等の弗素化炭素ガスを混合するもの
で、プラズマを発生させるための高周波電力が低出力で
あるにもかかわらず、極めて大きなアッシング速度が得
られるレジストのアッシング方法であり、砒素、燐、硼
素などをイオン注入後のレジストであっても処理室内へ
導入する高周波電力の出力を大きくすることなく十分な
除去速度が得られるのである。
In other words, oxygen containing a high concentration of ozone and tetrafluoromethane (CF4), which is used as an etching gas in the manufacture of semiconductor devices, are present in the processing chamber where the resist is removed.
, ) is a mixture of fluorinated carbon gases such as refluoromethane (CHF3) and hexafluoroethane (CaFs), and despite the low output of high-frequency power used to generate plasma, it achieves an extremely high ashing rate. This is a method of ashing the resulting resist, and even if the resist has been ion-implanted with arsenic, phosphorous, boron, etc., a sufficient removal rate can be obtained without increasing the output of high-frequency power introduced into the processing chamber.

(作用) 高濃度のオゾンを含む酸素と半導体装置の製造において
エツチングガスとして使われているテトラフルオロメタ
ン(CF4)、)リフルオ口メタン(CHFs)、ヘキ
サフルオロエタン(C2F11)等の弗素化炭素ガスを
混合したガスをプラズマ化したことにより、製造工程に
おいて砒素、燐、硼素などをイオン注入した場合であっ
てもプラズマ発生用の高周波電力を増大させることなく
十分なアッシング速度が得られるので、半導体装置の大
量製造に寄与するところが大である。
(Function) Oxygen containing high concentrations of ozone and fluorinated carbon gases such as tetrafluoromethane (CF4), refluoromethane (CHFs), and hexafluoroethane (C2F11), which are used as etching gases in the manufacture of semiconductor devices. By turning a mixed gas into plasma, even when ions such as arsenic, phosphorus, and boron are implanted during the manufacturing process, a sufficient ashing rate can be obtained without increasing the high-frequency power for plasma generation. This greatly contributes to the mass production of devices.

(実施例) 以下添付の図面に基づいて本発明の方法を実施する装置
について説明する。
(Example) An apparatus for carrying out the method of the present invention will be described below based on the attached drawings.

処理室1の試料台2にはレジスト3を除去すべき半導体
装置4を載置している。処理室内にはプラズマを発生さ
せる電極5が取り付けられており、外部の高周波電源6
から13.56MH2の高周波電力が供給される。また
処理室内へ気体を供給する供給管7、圧力制御弁8およ
びオゾンなどの処理ガスの排気系9が取り付けらている
。供給管にはオゾン発生装置10からの配管と弗素化炭
素ガス貯槽11からの配管がそれぞれ流量制御弁12.
13を介して取り付けられている。プラズマ発生はこの
ようなラジオ周波数の電流に限らず2.45GHzのマ
イクロ波電流を使用することができる。処理ガスを励起
するプラズマは直接処理室内で発生させても、別室にお
いて発生させてものを処理室内へ導入させてもよい。ま
た、本発明のアッシング方法は、紋様式の装置、バッチ
式の装置のいずれにおいても適用することができる。
A semiconductor device 4 from which a resist 3 is to be removed is placed on a sample stage 2 in a processing chamber 1 . An electrode 5 for generating plasma is installed inside the processing chamber, and an external high frequency power source 6 is connected to the processing chamber.
13.56MH2 high frequency power is supplied from Further, a supply pipe 7 for supplying gas into the processing chamber, a pressure control valve 8, and an exhaust system 9 for processing gas such as ozone are attached. The supply pipes include a pipe from the ozone generator 10 and a pipe from the fluorinated carbon gas storage tank 11, each connected to a flow control valve 12.
It is attached via 13. Plasma generation is not limited to such a radio frequency current; a 2.45 GHz microwave current can also be used. The plasma that excites the processing gas may be generated directly within the processing chamber, or may be generated in a separate chamber and introduced into the processing chamber. Further, the ashing method of the present invention can be applied to either a pattern-type device or a batch-type device.

実施例1 処理室内に供給する処理ガスとして(1)酸素のみ、 
(2)濃度80 、OOOPPMのオゾンを含有する酸
素、 (3)酸素にテトラフルオロメタンを添加したガ
ス、 (4)m度80.000PPM(7)、オゾン含
有酸素にテトラフルオロメタンを混合したガスをそれぞ
れ3 cc/分の流量で供給し、処理室内を0.35t
orの圧力に減圧した。処理室内に設けた電極には13
.56M1lZの高周波電力を供給した。
Example 1 As the processing gas supplied into the processing chamber (1) only oxygen,
(2) Oxygen containing ozone at a concentration of 80 OOPPPM, (3) Gas containing oxygen with tetrafluoromethane added, (4) Gas containing ozone and tetrafluoromethane at a concentration of 80,000 PPM (7) Gas containing ozone and tetrafluoromethane are supplied at a flow rate of 3 cc/min each, and the inside of the processing chamber is 0.35 t.
The pressure was reduced to or. There are 13 electrodes installed in the processing chamber.
.. A high frequency power of 56M11Z was supplied.

供給した高周波電力は70Wであった。The high frequency power supplied was 70W.

アッシング処理するレジストは砒素を8.0X1016
CI−2イオン注入したものを用いた。各々のガスを用
いた場合のアッシング速度は表1のとおりである。酸素
、オゾン、弗素化炭素の混合ガスを処理ガスとした場合
のレジストと酸化シリコンのエツチング量との選択比は
1000であり、製造する半導体装置に対して何等悪影
響を及ぼさないものである。
The resist to be ashed contains 8.0x1016 arsenic.
A material implanted with CI-2 ions was used. Table 1 shows the ashing speed when using each gas. When a mixed gas of oxygen, ozone, and fluorinated carbon is used as the processing gas, the etching selectivity between the resist and silicon oxide is 1000, which does not have any adverse effect on the semiconductor device being manufactured.

表1 実施例2 オゾン含有酸素に添加するテトラフルオロメタンの量と
アッシング速度との関係を調べたところ、イオン注入を
行っていないレジストについてはテトラフルオロエタン
の添加量と共にアッシングレートは大きくなっていくが
、砒素をイオン注入したレジストでは、添加量が10%
まではアッシング速度は増加するが、その後はアッシン
グ速度は低下する。
Table 1 Example 2 When we investigated the relationship between the amount of tetrafluoromethane added to ozone-containing oxygen and the ashing rate, we found that for resists without ion implantation, the ashing rate increased with the amount of tetrafluoroethane added. However, in a resist with arsenic ion implantation, the amount added is 10%.
The ashing speed increases until then, but after that the ashing speed decreases.

(発明の効果) 以上詳述したように本発明の方法は、プラズマ化する高
周波電力が低出力にもかかわらず、処理ガスとしてオゾ
ンガスを含有する酸素ガスに弗素化炭素ガスを用いるこ
とによって、低出力の高周波電力での酸素プラズマによ
るアッシングでは灰化に長時間を要するイオン注入によ
り注入イオンと化学反応して変質したレジストも短時間
で灰化できるという効果を何している。
(Effects of the Invention) As detailed above, the method of the present invention achieves low output by using fluorinated carbon gas as an oxygen gas containing ozone gas as a processing gas, despite the low output of high-frequency power for plasma generation. Ashing using oxygen plasma using output high-frequency power has the effect that even resist that has been altered due to chemical reaction with the implanted ions due to ion implantation, which takes a long time to ash, can be ashed in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のアッシング方法を実施するためのア
ッシング装置である。 1・・・・処理室 2・・φφ試料台 3・・・・レジスト 4・・・・半導体装置 5・・拳・プラズマ発生用電極 6・III・高周波電源 711・・・供給管 8 ・ 9 ・ ・圧力制御弁 ・排気系 ・オゾン発生装置 ・弗素化炭素ガス貯槽 ・流量制御弁 拳流量制御弁
FIG. 1 shows an ashing device for carrying out the ashing method of the present invention. 1...Processing chamber 2...φφ sample stage 3...Resist 4...Semiconductor device 5...Fist/plasma generation electrode 6/III/High frequency power source 711...Supply pipes 8/9・ ・Pressure control valve・Exhaust system・Ozone generator・Fluorinated carbon gas storage tank・Flow control valveFist flow control valve

Claims (3)

【特許請求の範囲】[Claims] (1)酸素、オゾン及び弗素化炭素ガスの混合ガスを供
給してプラズマを発生させてレジストを灰化処理するこ
とを特徴とするアッシング方法。
(1) An ashing method characterized by supplying a mixed gas of oxygen, ozone, and fluorinated carbon gas to generate plasma and ashing the resist.
(2)弗素化炭素ガスがテトラフルオロメタン、トリフ
ルオロメタン、またはヘキサフルオロエタンであること
を特徴とする特許請求の範囲第1項に記載のアッシング
方法。
(2) The ashing method according to claim 1, wherein the fluorinated carbon gas is tetrafluoromethane, trifluoromethane, or hexafluoroethane.
(3)レジストがイオン注入後のレジストであることを
特徴とする特許請求の範囲第1項または第2項のいずれ
かに記載のアッシング方法。
(3) The ashing method according to claim 1 or 2, wherein the resist is a resist after ion implantation.
JP25491888A 1988-10-12 1988-10-12 Ashing process Pending JPH02102528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25491888A JPH02102528A (en) 1988-10-12 1988-10-12 Ashing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25491888A JPH02102528A (en) 1988-10-12 1988-10-12 Ashing process

Publications (1)

Publication Number Publication Date
JPH02102528A true JPH02102528A (en) 1990-04-16

Family

ID=17271667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25491888A Pending JPH02102528A (en) 1988-10-12 1988-10-12 Ashing process

Country Status (1)

Country Link
JP (1) JPH02102528A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553469A2 (en) * 1992-01-27 1993-08-04 Siemens Aktiengesellschaft Plasma-etching process for the rapid and damage-free cleaning of reaction chambers and principally in the deposition or etching of layers on silicon substrats
US5688410A (en) * 1994-12-29 1997-11-18 Sharp Kabushiki Kaisha Method of ashing resist and apparatus therefor
WO2001048804A1 (en) * 1999-12-29 2001-07-05 Lam Research Corporation In situ post-etch photoresist and polymer stripping and dielectric etch chamber cleaning
JP2003133290A (en) * 2001-10-26 2003-05-09 Seiko Epson Corp Apparatus for stripping resist, method for stripping resist, and method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216330A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Plasma ashing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216330A (en) * 1986-03-18 1987-09-22 Fujitsu Ltd Plasma ashing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553469A2 (en) * 1992-01-27 1993-08-04 Siemens Aktiengesellschaft Plasma-etching process for the rapid and damage-free cleaning of reaction chambers and principally in the deposition or etching of layers on silicon substrats
EP0553469A3 (en) * 1992-01-27 1994-11-23 Siemens Ag Plasma-etching process for the rapid and damage-free cleaning of reaction chambers and principally in the deposition or etching of layers on silicon substrats
US5688410A (en) * 1994-12-29 1997-11-18 Sharp Kabushiki Kaisha Method of ashing resist and apparatus therefor
WO2001048804A1 (en) * 1999-12-29 2001-07-05 Lam Research Corporation In situ post-etch photoresist and polymer stripping and dielectric etch chamber cleaning
JP2003133290A (en) * 2001-10-26 2003-05-09 Seiko Epson Corp Apparatus for stripping resist, method for stripping resist, and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
CN1053764C (en) Beam caused electrographic technology
JP3391410B2 (en) How to remove resist mask
US6848455B1 (en) Method and apparatus for removing photoresist and post-etch residue from semiconductor substrates by in-situ generation of oxidizing species
CN101023201B (en) Apparatus for the optimization of atmospheric plasma in a plasma processing system
US6417080B1 (en) Method of processing residue of ion implanted photoresist, and method of producing semiconductor device
US8716143B1 (en) Plasma based photoresist removal system for cleaning post ash residue
US20060201911A1 (en) Methods of etching photoresist on substrates
JPH02119134A (en) Treatment method for silicon surface
US5503964A (en) Resist removing method
JP2008085231A (en) Method of removing residual organic matter on substrate
JP3728165B2 (en) Ion-implanted photoresist residue processing method and semiconductor device manufacturing method
JPH02102528A (en) Ashing process
JP3198667B2 (en) How to remove resist
JPS5936257B2 (en) How to remove resist material
JPH01200628A (en) Dry etching
JPS6236826A (en) Ashing method
JPH06349786A (en) Manufacture of semiconductor device
JP2007103509A (en) Resist processing apparatus
KR20030049086A (en) System and method for dry cleaning of substrate
JP4464342B2 (en) Resist removal method
Horiike Emerging etching techniques
JPS63273321A (en) Removal of resist
JP2002158210A (en) Resist removing method
JPH07118475B2 (en) Substrate surface treatment method
JPH04304632A (en) Resist removing method