JP2008085231A - Method of removing residual organic matter on substrate - Google Patents

Method of removing residual organic matter on substrate Download PDF

Info

Publication number
JP2008085231A
JP2008085231A JP2006265986A JP2006265986A JP2008085231A JP 2008085231 A JP2008085231 A JP 2008085231A JP 2006265986 A JP2006265986 A JP 2006265986A JP 2006265986 A JP2006265986 A JP 2006265986A JP 2008085231 A JP2008085231 A JP 2008085231A
Authority
JP
Japan
Prior art keywords
layer
resist
substrate
organic matter
residual organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006265986A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamamoto
弘明 山本
Takashi Minamibounoki
孝至 南朴木
Shinji Masuoka
真二 増岡
Hiroki Ninomiya
啓樹 二宮
Masao Yamase
雅男 山瀬
Teruo Saito
輝夫 斉藤
Kazuya Yamaguchi
一哉 山口
Kenji Takashima
賢二 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E SQUARE KK
Square Kk E
Aqua Science Corp
Sharp Manufacturing Systems Corp
Original Assignee
E SQUARE KK
Square Kk E
Aqua Science Corp
Sharp Manufacturing Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E SQUARE KK, Square Kk E, Aqua Science Corp, Sharp Manufacturing Systems Corp filed Critical E SQUARE KK
Priority to JP2006265986A priority Critical patent/JP2008085231A/en
Publication of JP2008085231A publication Critical patent/JP2008085231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and efficient method of treating a residual organic matter which allows operations to be safely processed in a work operation, treatments to be facilitated and no environment problems to be caused. <P>SOLUTION: The method of treating a residual organic matter is provided with: a step of removing an altered layer, the step including plasma-treating a mixed gas made up of at least one of N<SB>2</SB>gas, O<SB>2</SB>gas, H<SB>2</SB>gas, water vapor and clean air under a pressure near the atmospheric pressure or a quasi ordinary pressure and removing the altered layer, the step including bringing the O radicals, the H radicals, the OH radicals or the N radicals into touch with a heated substrate to remove the altered layer produced on a surface of a resist; and a step of removing an unaltered layer, the step including falling-in-drops an ozone solution made by mixing an ozone water and a superheated water vapor, or only an ozone water, onto an organic matter including the resist to remove the unaltered layer of the resist under the altered layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

従来、半導体ウエハの製造工程は、まず、基板表面に、化学的気相蒸着法(CVD法)、あるいはスパッタリング法などで薄膜(酸化膜)を形成し、その薄膜上にフォトレジストを塗布し、それを露光、現像処理してレジストのパターンを形成し、そのレジストパターンを保護膜として、不用な薄膜をエッチングした後、イオン注入を行っていた。   Conventionally, a semiconductor wafer manufacturing process first forms a thin film (oxide film) on a substrate surface by a chemical vapor deposition method (CVD method) or a sputtering method, and applies a photoresist on the thin film. This was exposed and developed to form a resist pattern. Using the resist pattern as a protective film, unnecessary thin films were etched, and then ion implantation was performed.

そして、そのエッチングやイオン注入が終わると、不用となったレジストを除去する必要があり、その除去の方法として、酸(例えば、硫酸)と過酸化物の混合液、あるいは有機溶剤など、種々の薬液でレジストを分解または溶解して除去するのが一般的であった。   Then, after the etching and ion implantation are completed, it is necessary to remove the unnecessary resist, and various methods such as a mixed solution of acid (for example, sulfuric acid) and peroxide, or an organic solvent can be used. In general, the resist is removed by decomposition or dissolution with a chemical solution.

しかし、高濃度のイオン注入を行なった場合、レジストが変質しレジスト表面に変質層が形成された場合、該変質層を除去するのに薬液のみでは完全に除去できないという問題があった。また、薬液を使用する方法は、使用中は、上記した硫酸などは作業上及び管理上危険性が高く、使用後は、その廃液処理が必要となり環境汚染の問題が懸念されていた。   However, when ion implantation at a high concentration is performed, there is a problem that when the resist is altered and an altered layer is formed on the resist surface, the altered layer cannot be completely removed with only a chemical solution. Further, in the method of using a chemical solution, during use, the above-described sulfuric acid and the like are highly dangerous in terms of work and management, and after use, the waste liquid treatment is required and there is a concern about the problem of environmental pollution.

このため、低圧でのプラズマアッシング処理により前記変質層を含むレジストを除去する方法がとられていた。しかし、この低圧でのプラズマアッシング処理は減圧プロセスを含むため、真空排気装置や真空容器が必要となり装置コストが高くなり、また、プラズマ中へ基板が曝されることで、基板へのプラズマダメージを与えることが問題となっていた。   For this reason, a method has been adopted in which the resist including the altered layer is removed by plasma ashing at a low pressure. However, since this low pressure plasma ashing process includes a decompression process, a vacuum evacuation device and a vacuum vessel are required, which increases the cost of the device, and the substrate is exposed to the plasma, thereby causing plasma damage to the substrate. Giving was a problem.

また、プラズマアッシング処理だけでは完全にレジスト除去を行なうことができないため、残留レジストを除去するために結局薬液を用いる必要があった。   Further, since the resist cannot be completely removed only by the plasma ashing process, it is necessary to use a chemical solution in order to remove the residual resist.

そこで、作業中の安全性や環境保全の観点から、上記問題を有する薬品を使用しない方法として、近年、オゾン(O3)を用いる方法が提案されている。オゾンによるレジストの除去は、オゾンガスやオゾン溶液に、そのレジストなどの残留有機物が付着した基板を曝して、オゾンによって有機物を酸化分解させるものであり、その廃液の処理が容易であり、環境保全や作業中の安全性という要望に十分応えられるものである。 Therefore, from the viewpoint of safety during work and environmental protection, a method using ozone (O 3 ) has recently been proposed as a method not using the chemicals having the above problems. Resist removal with ozone involves exposing the substrate on which residual organic matter such as the resist adheres to ozone gas or an ozone solution, and oxidizing and decomposing the organic matter with ozone. It can fully meet the demand for safety during work.

しかしながら、このオゾンによる基板表面の残留有機物の除去は、時間がかかる、という作業効率上の問題や、分解途中の有機物が熱重合や架橋反応などによって極度に変質して硬化したものに対しては洗浄作用が小さく、全く除去されない場合もあった。   However, the removal of residual organic substances on the substrate surface by ozone takes time, and it is difficult to work on the problem that the organic substances in the process of decomposition are extremely denatured and cured by thermal polymerization or crosslinking reaction. In some cases, the cleaning action was small and not removed at all.

それらの不利な点に対処する発明として、大気圧付近下でのプラズマ照射とスチームあるいはオゾン水等の洗浄液との併用による方法が提案されている(特許文献1)。この方法はプラズマ照射による親水処理後、スチームによる膨潤効果、浮き上がり効果、若しくはオゾン水等の洗浄液による分解効果によりレジスト除去を行う方法である。
特開2006−49712号公報
As an invention to deal with these disadvantages, a method has been proposed in which plasma irradiation under atmospheric pressure is used in combination with a cleaning liquid such as steam or ozone water (Patent Document 1). In this method, after the hydrophilic treatment by plasma irradiation, the resist is removed by a swelling effect by steam, a floating effect, or a decomposition effect by a cleaning liquid such as ozone water.
JP 2006-49712 A

しかし、この方法では例えばイオン注入によりレジスト表面に変質層が形成されたレジストを除去する場合、変質層の表面改質が出来ずまたは改質したとしても多大な時間を要し、後の分解が進まず実用的な時間ではレジスト除去ができないため、結局後処理が必要となっていた。   However, in this method, for example, when removing a resist having a deteriorated layer formed on the resist surface by ion implantation, the surface of the deteriorated layer cannot be modified or even if it is modified, it takes a lot of time and subsequent decomposition is required. Since the resist could not be removed in a practical time without progressing, post-processing was eventually necessary.

そこで、本発明は、上記方法を改良し、作業時には安全に作業が行え、その処理が容易で、環境問題を起こさず、安価で後処理を必要としない効率的な残留有機物の処理方法の提供を目的とする。   Therefore, the present invention improves the above-described method and provides an efficient method for treating residual organic matter that can be safely performed at the time of work, is easy to process, does not cause environmental problems, and is inexpensive and does not require post-treatment. With the goal.

上記目的を達成するために、本発明は、レジスト表面に形成された変質層と該変質層下で変質していないレジスト未変質層などの有機物が表面に残留している基板の残留有機物除去方法において、大気圧付近の圧力下又は準常圧下で、少なくともN2ガス、O2ガス、H2ガス、水蒸気、クリーンエアーのいずれか一種により構成される単体ガス又は混合ガスをプラズマ処理し、該プラズマ処理で生成したNラジカル、Oラジカル、Hラジカル、OHラジカルのいずれかを加熱した基板表面に接触させ前記変質層を除去する変質層除去工程と、オゾン水と過熱水蒸気とを混合してなるオゾン溶液又はオゾン水のみを前記レジスト未変質層に滴下し該レジスト未変質層を除去する未変質層除去工程とを備えることを特徴とする残留有機物除去方法である。 In order to achieve the above object, the present invention provides a method for removing residual organic substances from a substrate in which organic substances such as an altered layer formed on the resist surface and an unaltered resist layer not altered under the altered layer remain on the surface. A plasma treatment of a single gas or a mixed gas composed of at least one of N 2 gas, O 2 gas, H 2 gas, water vapor, and clean air under a pressure near atmospheric pressure or a sub-normal pressure, It is formed by mixing ozone layer and superheated steam with an altered layer removing step of removing any altered layer by contacting any one of N radical, O radical, H radical, and OH radical generated by plasma treatment with the heated substrate surface. A residual organic matter removing method comprising: an unaltered layer removal step of dropping only the ozone solution or ozone water onto the unaltered resist layer and removing the resist unaltered layer A.

また本発明は、上記変質層除去工程において、前記プラズマ及び前記ラジカルが、前記レジスト未変質層に直接照射又は接触しないことを特徴とする。   Further, the present invention is characterized in that, in the deteriorated layer removing step, the plasma and the radical do not directly irradiate or contact the unmodified resist layer.

また本発明は、上記変質層除去工程において、前記基板の加熱温度を、前記変質層に前記ラジカルによる除去が可能な活性化エネルギーを供与できる温度以上に設定したことを特徴とする。   Further, the present invention is characterized in that, in the deteriorated layer removing step, the heating temperature of the substrate is set to be equal to or higher than a temperature at which activation energy that can be removed by the radicals is supplied to the deteriorated layer.

また本発明は、上記構成の残留有機物除去方法において、前記変質層除去工程にて、前記ラジカルを照射するラジカル照射ノズルが前記基板の板面に沿って相対移動する工程を備え、前記未変質層除去工程にて、オゾン水と過熱水蒸気を独立して供給する一組の供給ノズルにより前記残留有機物の直上でオゾン水と過熱水蒸気を混合し、前記残留有機物上に滴下する工程と、前記供給ノズルが前記基板の保持体との間で、前記基板の板面に沿って相対移動する工程とを備えることを特徴とする。   Further, the present invention provides the method for removing residual organic matter having the above-described configuration, wherein in the deteriorated layer removing step, a radical irradiation nozzle for irradiating the radicals is relatively moved along a plate surface of the substrate, and the unaltered layer In the removing step, ozone water and superheated steam are mixed just above the residual organic matter by a set of supply nozzles that independently supply ozone water and superheated steam, and dropped onto the residual organic matter, and the supply nozzle Comprises a step of moving relative to the substrate holder along the plate surface of the substrate.

また本発明は、上記構成の残留有機物除去方法において、前記変質層除去工程と前記未変質層除去工程を2回以上連続で繰り返すことを特徴とする。   Further, the present invention is characterized in that, in the method for removing residual organic matter having the above-described configuration, the deteriorated layer removal step and the unaltered layer removal step are continuously repeated twice or more.

また本発明は、上記構成の残留有機物除去方法において、2回目以降の前記変質層除去工程及び未変質層除去工程をそれぞれ前回用いた装置と異なる装置で行なうことを特徴とする。   Further, the present invention is characterized in that in the residual organic matter removing method configured as described above, the second and subsequent altered layer removing steps and the unaltered layer removing step are each carried out by an apparatus different from the apparatus used last time.

本発明の第1の構成によると、変質層除去工程により、従来用いられていたような加熱硫酸など、使用時や保存時に危険性があり環境負荷の大きい薬液や真空排気系を有する複雑で高価な装置を使用せずとも、そのような不利な点のない大気圧付近又は準常圧下でN2ガス、O2ガス、H2ガス、水蒸気、クリーンエアーのいずれか、あるいはこれらの混合ガスをプラズマ処理し生成したラジカルによりレジスト表面に形成された変質層を除去することができる。このとき、ラジカル照射によるレジスト表面に形成された変質層の除去のみを目的とすることで、ラジカル照射処理の時間を短縮し、プラズマやラジカルによる基板へのダメージを極力抑えることができる。 According to the first configuration of the present invention, the deteriorated layer removing step is complicated and expensive with a chemical solution or a vacuum exhaust system that is dangerous when used or stored and has a large environmental load, such as heated sulfuric acid as used conventionally. Without using such a device, N 2 gas, O 2 gas, H 2 gas, water vapor, clean air, or a mixture of these gases is used near atmospheric pressure or near normal pressure without such disadvantages. The altered layer formed on the resist surface can be removed by radicals generated by the plasma treatment. At this time, by aiming only at removal of the altered layer formed on the resist surface by radical irradiation, the time of radical irradiation treatment can be shortened and damage to the substrate by plasma and radicals can be suppressed as much as possible.

また、その後の未変質層除去工程において、変質層除去後の変質していないレジスト未変質層をオゾン水により分解処理することで、レジスト未変質層を効果的に除去することができる。   Further, in the subsequent unaltered layer removal step, the resist unaltered layer that has not been altered after removal of the altered layer is decomposed with ozone water, whereby the resist unaltered layer can be effectively removed.

以上、変質層除去工程及び未変質層除去工程を組み合わせることにより、変質層が形成されたレジストを効率よく短時間で除去することができる。   As described above, by combining the deteriorated layer removing step and the unaltered layer removing step, the resist on which the deteriorated layer is formed can be efficiently removed in a short time.

また、本発明の第2の構成によると、プラズマ及び励起したラジカルが、レジスト未変質層に直接照射されないため、基板へのダメージをより抑えることが可能となる。   In addition, according to the second configuration of the present invention, plasma and excited radicals are not directly irradiated onto the resist unmodified layer, so that damage to the substrate can be further suppressed.

また、本発明の第3の構成によると、変質層除去工程において、変質層にラジカルによる除去が可能な活性化エネルギーを供与できる温度以上に基板を過熱してラジカルを接触させることにより、たとえ、加熱によりレジストが更に変質した場合でも、変質層の除去作用がこれを上回り効率よく変質層を除去することができる。   Further, according to the third configuration of the present invention, in the deteriorated layer removing step, the substrate is heated to a temperature higher than a temperature at which activation energy that can be removed by radicals is provided to the deteriorated layer to bring the radicals into contact, Even when the resist is further deteriorated by heating, the removal effect of the deteriorated layer exceeds this and the deteriorated layer can be efficiently removed.

また、本発明の第4の構成によると、変質層除去工程と未変質層除去工程において、基板を載置する保持体とラジカル照射ノズル及びオゾン水と加熱水蒸気を独立して混合滴下する供給ノズルを相対移動させ、基板上の残留有機物にラジカル照射及びオゾン溶液又はオゾン水を滴下することで、残留有機物を基板全面で除去することが可能となる。   Further, according to the fourth configuration of the present invention, in the deteriorated layer removing step and the unaltered layer removing step, the holder for placing the substrate, the radical irradiation nozzle, and the supply nozzle for independently mixing and dropping ozone water and heated steam. Are moved relative to each other, and radical irradiation and ozone solution or ozone water are dropped onto the residual organic matter on the substrate, whereby the residual organic matter can be removed on the entire surface of the substrate.

また、本発明の第5の構成によると、変質層除去工程において、ポッピングが発生し局所的に厚いレジスト層が形成された場合等、一度の変質層除去工程及び未変質層除去工程だけでは完全にレジストを除去できない場合がある。このとき、変質層除去工程及び未変質層除去工程をもう一度繰り返すことにより、除去できなかったレジストを完全に除去することが可能となる。   Further, according to the fifth configuration of the present invention, in the case where the popping occurs and the thick resist layer is locally formed in the deteriorated layer removal process, the deteriorated layer removal process and the unaltered layer removal process are completely completed. In some cases, the resist cannot be removed. At this time, the resist that could not be removed can be completely removed by repeating the deteriorated layer removal step and the unaltered layer removal step once more.

また、本発明の第6の構成によると前回の変質層除去工程及び未変質層除去工程と異なる装置で変質層除去工程又は未変質層除去工程を繰り返すことで、前回行なったレジスト除去工程で発生したガスやレジストのかすの再付着を防ぐことができる。   In addition, according to the sixth configuration of the present invention, the deteriorated layer removal process or the unaltered layer removal process is repeated with the apparatus different from the previous deteriorated layer removal process and the unaltered layer removal process. It is possible to prevent redeposition of the generated gas and resist residue.

以下、本方法の実施の形態を図面を参照して説明する。図1はレジスト除去において用いるレジスト除去装置の模式的な略断面図であり、図2は、本発明の実施形態にかかるレジスト除去方法を適用した工程別素子断面図である。ここで、図2(a)は変質層除去工程を経る前の基板1、(b)はその後、変質層除去工程を経た場合の基板1、(c)はその後、未変質層除去工程を経た場合の基板1、(d)はその後、残渣除去工程を経た場合の基板1が示され、(e)は、変質層除去工程でポッピング現象が発生した場合の基板1、(f)はその後、未変質層除去工程を経た場合の基板1、(g)はその後、残渣処理工程を経た場合の基板1表面が示されている。   Hereinafter, an embodiment of the method will be described with reference to the drawings. FIG. 1 is a schematic schematic cross-sectional view of a resist removing apparatus used in resist removal, and FIG. 2 is a cross-sectional view of elements by process to which a resist removing method according to an embodiment of the present invention is applied. Here, FIG. 2A shows the substrate 1 before undergoing the deteriorated layer removal step, FIG. 2B shows the substrate 1 after undergoing the deteriorated layer removal step, and FIG. 2C shows the unaltered layer removal step thereafter. Substrate 1 in the case, (d) shows the substrate 1 after the residue removal step, (e) shows the substrate 1 when the popping phenomenon occurs in the altered layer removal step, (f) Substrate 1 and (g) after undergoing the undegraded layer removing step show the surface of the substrate 1 when undergoing a residue treatment step.

本発明に係る具体的実施例としては、基板を加熱しつつ大気圧付近の圧力下のN2ガス、O2ガス、H2ガス、水蒸気、クリーンエアーのいずれか、あるいはこれらの混合ガスをプラズマ励起し、生成したラジカルをレジスト表面の変質層に照射し変質層除去を行う変質層除去工程(図1(a)参照)、オゾン水と過熱水蒸気の供給ノズルから供給される過熱水蒸気とオゾン水とを変質層除去後の前記残留有機物の直上で混合し、滴下することで変質層除去後のレジスト未変質層の除去を行う未変質層除去工程(図1(b)参照)、前記変質層除去工程と同様の構成により、前記未変質層除去工程後のレジスト残渣除去を行う残渣除去工程(図1(c)参照)、前記未変質層除去工程と同様の構成により、最終洗浄を行う仕上げ洗浄工程(図1(d)参照)を組み合わせたものが考えられる。 As a specific embodiment according to the present invention, N 2 gas, O 2 gas, H 2 gas, water vapor, clean air or a mixed gas thereof under a pressure near atmospheric pressure is heated while the substrate is heated. Exposed and irradiated radicals generated on the resist surface are irradiated to the altered layer to remove the altered layer (see FIG. 1A), superheated steam and ozone water supplied from a supply nozzle for ozone water and superheated steam Are removed immediately after the altered layer is removed, and the unmodified layer removal step (see FIG. 1B) is performed to remove the resist unaltered layer after the altered layer is removed by dropping. A residue removal step (see FIG. 1C) that removes the resist residue after the unaltered layer removal step with the same configuration as the removal step, and a final cleaning that performs the final cleaning with the same configuration as the unaltered layer removal step Cleaning process (Fig. 1 A combination of d)) can be considered.

変質層除去工程は、チャンバ内上部に設けられたガス供給ユニット、該ガス供給ユニットから供給されたN2ガス、O2ガス、H2ガス、水蒸気をラジカル化させるプラズマ発生部4、及びチャンバ内下部に設けられた基板保持体2、基板保持体2上の基板1の温度を調整する基板温度制御ユニット3、反応後の処理ガスをチャンバ外に排出する排気口7を備えた変質層除去装置10により行なわれる。このとき、チャンバ内は大気圧付近又は準常圧の内圧で変質層除去が行なわれるため、装置の簡易化が図られている。 The deteriorated layer removing step includes a gas supply unit provided in the upper part of the chamber, a plasma generation unit 4 that radicalizes N 2 gas, O 2 gas, H 2 gas, and water vapor supplied from the gas supply unit, and the chamber Substrate holder 2 provided at the bottom, substrate temperature control unit 3 for adjusting the temperature of substrate 1 on substrate holder 2, and altered layer removal apparatus provided with exhaust port 7 for discharging the reaction gas after the reaction to the outside of the chamber 10 is performed. At this time, the inside of the chamber is subjected to removal of the deteriorated layer at an atmospheric pressure or near-atmospheric pressure, so that the apparatus is simplified.

ここで、プラズマ発生部4は、例えば高周波プラズマ又は、マイクロ波プラズマを高密度で発生するプラズマ発生装置により構成されている。なお、高周波プラズマ又は、マイクロ波プラズマ以外にもECR(Electron Cyclotron Resonance)プラズマ、ICP(Inductively Coupled Plasma)プラズマ、ヘリコン波プラズマを発生するプラズマ発生装置で構成することも可能である。   Here, the plasma generation part 4 is comprised by the plasma generator which generate | occur | produces high frequency plasma or microwave plasma at high density, for example. In addition to high-frequency plasma or microwave plasma, it is also possible to use a plasma generator that generates ECR (Electron Cyclotron Resonance) plasma, ICP (Inductively Coupled Plasma) plasma, and helicon wave plasma.

具体的な変質層除去方法は、まず基板保持体2上に基板1を載置し、原料ガスとしてのN2ガス、O2ガス、H2ガス、水蒸気の混合ガスをガス供給ユニットからプラズマ発生部4に供給し、該プラズマ発生部4でこれらのガスをプラズマ励起させNラジカル、Oラジカル、Hラジカル、OHラジカル等の活性種を多量に生成する。次に、これら活性種を基板表面に接触させ、図2(b)に示すように基板表面の変質層を除去する。なお、この変質層除去後の処理ガスは排気口7からチャンバ外に排出される。 A specific altered layer removal method is as follows. First, the substrate 1 is placed on the substrate holder 2, and a mixed gas of N 2 gas, O 2 gas, H 2 gas, and water vapor as a source gas is generated from the gas supply unit. The gas is supplied to the unit 4, and these gases are plasma-excited by the plasma generating unit 4 to generate a large amount of active species such as N radicals, O radicals, H radicals, and OH radicals. Next, these active species are brought into contact with the substrate surface, and the altered layer on the substrate surface is removed as shown in FIG. Note that the processing gas after removal of the deteriorated layer is discharged from the exhaust port 7 to the outside of the chamber.

また、基板温度制御ユニット3により基板保持体2を加熱し、その伝導熱で基板の温度を変質層除去に必要な活性化エネルギーが得られる程度の温度に調節することができる。具体的には本実験に用いたレジストとイオン注入条件では200℃前後が望ましく、これにより、変質層の除去時間を安定的に短縮することが可能となる。なお、この基板の加熱により、レジストが新たに変質することがあるが、それ以上に変質層の除去効率が高まるため、問題にならない。   Further, the substrate holder 2 is heated by the substrate temperature control unit 3, and the temperature of the substrate can be adjusted to a temperature at which activation energy necessary for removing the deteriorated layer can be obtained by the conduction heat. Specifically, the resist and ion implantation conditions used in this experiment are preferably around 200 ° C., which makes it possible to stably reduce the removal time of the deteriorated layer. Although the resist may be newly denatured by heating the substrate, there is no problem because the removal efficiency of the denatured layer is further increased.

ここで、上記変質層とはイオン注入処理によってレジストの表面が硬化した層をいい、未変質層とは変質層下でイオン注入処理前と実質的に変わらない状態のレジスト層のことをいう。また、本変質層除去工程においては、レジスト表面の変質層のみ除去することを目的としているため、プラズマ及びラジカルが未変質層に直接照射せず、ラジカルの照射時間を短縮することができる。これにより、未変質層下部と基板表面にラジカルが接触することを避け、基板へのダメージを極力抑えることができる。また、変質層以外の部分は未変質層除去工程により除去する。   Here, the altered layer refers to a layer whose resist surface is hardened by ion implantation, and the unaltered layer refers to a resist layer that is substantially unchanged from that before the ion implantation under the altered layer. Moreover, since the purpose of this altered layer removal step is to remove only the altered layer on the resist surface, plasma and radicals are not directly irradiated onto the unaltered layer, and the irradiation time of radicals can be shortened. Thereby, it can avoid that a radical contacts a lower surface of an unaltered layer and a substrate surface, and can suppress damage to a substrate as much as possible. Further, portions other than the deteriorated layer are removed by the unaltered layer removing step.

未変質層除去工程は、チャンバ内の上部に設けられたオゾン水を供給するオゾン水供給ノズル5、及び過熱水蒸気を供給する水蒸気供給ノズル6、チャンバ下部に設けられた基板保持体2、反応後の処理ガス、処理液をチャンバ外に排出する排気口7及び排水口8からなる未変質層除去装置20により行なわれる。ここで、オゾン水供給ノズル5と加熱水蒸気供給ノズル6は開口部から放出されるオゾン水及び水蒸気が基板直上で混合され基板上のレジストに滴下するよう配設されている。   The unaltered layer removal step includes an ozone water supply nozzle 5 for supplying ozone water provided in the upper part of the chamber, a water vapor supply nozzle 6 for supplying superheated steam, a substrate holder 2 provided in the lower part of the chamber, and after the reaction. This is performed by an unaltered layer removing device 20 comprising an exhaust port 7 and a drain port 8 for discharging the processing gas and processing liquid to the outside of the chamber. Here, the ozone water supply nozzle 5 and the heated water vapor supply nozzle 6 are arranged so that ozone water and water vapor discharged from the opening are mixed immediately above the substrate and dropped onto the resist on the substrate.

ここで、基板保持体2として、回転テーブル、XYテーブル等の移動機構を用いて基板1を移動させ、残留有機物の付着している領域全てに対しオゾン溶液の滴下を行い基板1の全面にて残留レジスト除去処理を施すことが可能である。また、オゾン水供給ノズル5と水蒸気供給ノズル6に可動機構を設け、残留有機物に対して局所的にオゾン溶液を滴下し除去することも可能である。   Here, as the substrate holder 2, the substrate 1 is moved using a moving mechanism such as a rotary table, an XY table, etc., and the ozone solution is dropped over the entire area where the residual organic matter is adhered to the entire surface of the substrate 1. Residual resist removal treatment can be performed. It is also possible to provide a movable mechanism in the ozone water supply nozzle 5 and the water vapor supply nozzle 6 to locally remove and remove the ozone solution from the residual organic matter.

また、オゾン溶液は硫酸などの酸性溶液や有機溶剤に比べてクリーンな洗浄が可能であり、環境及び人体に悪影響を与えることがない。   The ozone solution can be cleaned more cleanly than an acidic solution such as sulfuric acid or an organic solvent, and does not adversely affect the environment and the human body.

具体的な未変質層除去方法としては、オゾン水供給ノズル5及び過熱水蒸気供給ノズル6からオゾン水及び加熱水蒸気を独立して供給し、レジスト領域の直上でオゾン水及び過熱水蒸気を混合させ該レジスト形成領域に滴下する。このとき、滴下したオゾン溶液により変質層下のレジスト未変質層が分解除去される(図2(c)参照)。なお、オゾン水を加熱水蒸気と混合させることなくオゾン水のみをレジスト領域に滴下しレジストを除去することも可能だが、分解作用は低下する。   As a specific unmodified layer removal method, ozone water and heated steam are independently supplied from the ozone water supply nozzle 5 and superheated steam supply nozzle 6, and the ozone water and superheated steam are mixed immediately above the resist region. Drip onto the formation area. At this time, the resist unaltered layer under the altered layer is decomposed and removed by the dropped ozone solution (see FIG. 2C). Although it is possible to remove only the ozone water by dropping the ozone water into the resist region without mixing the ozone water with the heated steam, the decomposition action is lowered.

また、通常、オゾン水と加熱水蒸気を混合したオゾン溶液でもレジストの分解作用は低く、レジストが硬化した変質層を分解除去することは困難であるが、上記変質層除去工程において変質層が除去されているため、オゾン溶液で変質層以外の残留有機物を分解除去することが可能となっている。これにより、上記変質層除去工程とオゾン水による未変質層除去工程を組み合わせることで、変質層を含むレジストの除去を従来の方法より基板へのダメージを低減しながら短時間で行なうことができる。   In addition, even in an ozone solution in which ozone water and heated steam are mixed, the decomposition effect of the resist is low, and it is difficult to decompose and remove the deteriorated layer after the resist is hardened. However, the deteriorated layer is removed in the deteriorated layer removing step. Therefore, it is possible to decompose and remove residual organic substances other than the altered layer with an ozone solution. Thereby, by combining the above-mentioned deteriorated layer removal step and the unaltered layer removal step with ozone water, the resist including the deteriorated layer can be removed in a short time while reducing damage to the substrate as compared with the conventional method.

また、変質層除去工程において、レジスト層の温度が上昇し、未変質層から発生したガスにより、変質層が破壊され未変質層が外部に吹き出し基板上に付着するポッピング現象が発生した場合、変質層上にレジストポッピング層が付着し(図2(e)参照)、その後の未変質層除去工程だけでは、残渣した変質層を完全に分解除去することができないことがある(図2(f)参照)。そこで、残渣除去工程によりもう一度、該変質層を取り除きレジストの除去性能をより高めることができる。   In the altered layer removal step, if the temperature of the resist layer rises, and the gas generated from the unaltered layer destroys the altered layer and the unmodified layer adheres to the outside of the blown substrate, A resist popping layer adheres on the layer (see FIG. 2E), and the remaining deteriorated layer may not be completely decomposed and removed only by the subsequent unmodified layer removal step (FIG. 2F). reference). Therefore, the altered layer can be removed once again by the residue removing step to further improve the resist removal performance.

ここで、残渣除去工程は、上記変質層除去工程で用いた変質層除去装置10と同じ構成の装置を用い、ラジカルを照射し残渣したレジストを除去する。また仕上げ洗浄工程では、上記未変質層除去工程で用いた未変質層除去装置20と同じ構成の装置を用いオゾン溶液を滴下し基板の仕上げ洗浄を行なう。   Here, in the residue removal step, the residue resist is removed by irradiation with radicals using an apparatus having the same configuration as the deteriorated layer removal apparatus 10 used in the deteriorated layer removal step. In the final cleaning step, the substrate is subjected to final cleaning by dropping an ozone solution using an apparatus having the same configuration as the unaltered layer removing apparatus 20 used in the unaltered layer removing step.

また、残渣除去工程は変質層除去工程と同構造であるが、変質層除去工程は処理中に発生するガスの再付着物やレジストかすなどの異物が多い。このため変質層除去工程と残渣除去工程は別装置を用いることが望ましい。また、残渣除去工程での処理後、最終洗浄として仕上げ洗浄工程でのWet洗浄を行なうことがさらに望ましい。   The residue removal step has the same structure as the deteriorated layer removal step, but the deteriorated layer removal step has a large amount of foreign matter such as gas re-adhered matter and resist debris generated during processing. For this reason, it is desirable to use separate devices for the deteriorated layer removing step and the residue removing step. Further, it is more desirable to perform wet cleaning in the final cleaning step as the final cleaning after the processing in the residue removing step.

以上各工程を経て、レジスト除去を行うことにより、レジスト残渣の発生を、高い再現性の下に安定的に無くすことができる。なお、本発明は上述した各実施形態に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。以下、実施例において、本発明のレジスト除去方法の有効性について具体的に説明する。   By removing the resist through the above steps, the generation of resist residues can be stably eliminated with high reproducibility. The present invention is not limited to the above-described embodiments, and various modifications are possible. Embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the present invention. Included in the technical scope. In the following, the effectiveness of the resist removal method of the present invention will be specifically described in Examples.

[実施例]
まず、変質層除去装置内のステージ上に、ドーズ量5.0×1015ions/cm2、加速エネルギー50keVで31+イオン注入し、レジスト表面に変質層が形成されたシリコン基板を載置し、基板温度制御ユニットを用いて基板の温度が200℃になるよう設定した。次いで、ガス供給ユニットよりN2ガス、O2ガス、H2ガス、水蒸気、の混合ガスを100L/分の流量でプラズマ発生部に導入し、このチャンバ内を大気圧近傍の圧力に保持した状態で、プラズマ発生部により20〜40kHzの高周波を導入し、プラズマを発生させ、励起したラジカルによりレジストの変質層の除去を行った。
[Example]
First, on a stage in the deteriorated layer removing apparatus, a silicon substrate having a deteriorated layer formed on the resist surface by implanting 31 P + ions at a dose of 5.0 × 10 15 ions / cm 2 and an acceleration energy of 50 keV is placed. The substrate temperature was set to 200 ° C. using the substrate temperature control unit. Next, a mixed gas of N 2 gas, O 2 gas, H 2 gas, and water vapor is introduced from the gas supply unit into the plasma generator at a flow rate of 100 L / min, and the inside of the chamber is maintained at a pressure near atmospheric pressure. Then, a high frequency of 20 to 40 kHz was introduced by the plasma generator, plasma was generated, and the altered layer of the resist was removed by the excited radicals.

このとき、プラズマを発生させた時間を処理時間とし、上記条件において、処理時間30分でレジスト除去処理を行なったシリコン基板をサンプル1〜3とした。また、上記条件と同様の条件で、処理時間60分でレジスト除去処理を行なった基板をサンプル4、基板温度を150℃に設定し、処理時間30分でレジスト除去処理を行なった基板をサンプル5、基板を加熱せず、室温(25℃)、処理時間30分でレジスト除去処理を行なった基板をサンプル6とし、変質層除去工程でレジスト除去処理を行なわなかった基板をサンプル7とした。   At this time, the time during which the plasma was generated was taken as the processing time, and the silicon substrates subjected to the resist removal treatment under the above conditions with a processing time of 30 minutes were designated as Samples 1 to 3. In addition, the substrate subjected to the resist removal treatment with the processing time of 60 minutes under the same conditions as the above sample is Sample 4, and the substrate subjected to the resist removal processing with the treatment time of 30 minutes set to Sample 5 Sample 6 was a substrate that was subjected to resist removal treatment at room temperature (25 ° C.) and treatment time 30 minutes without heating the substrate, and sample 7 was a substrate that was not subjected to resist removal treatment in the deteriorated layer removal step.

次に、未変質層除去装置内のステージに上記変質層除去工程を経たシリコン基板を載置し、温度50℃、オゾン濃度130ppmのオゾン水を基板表面に滴下した。このとき、オゾン溶液を滴下した後、オゾン溶液を洗浄除去するまでの時間をオゾン処理時間とし、上記未変質層除去工程を経たサンプル1、2、5、6にオゾン処理時間10分で未変質層除去処理をおこない、サンプル7についてオゾン処理時間60分の未変質層除去処理をおこなった。また、サンプル3、4については未変質除去処理を行なわなかった。   Next, the silicon substrate that had undergone the above-mentioned deteriorated layer removal step was placed on a stage in the unaltered layer removal apparatus, and ozone water having a temperature of 50 ° C. and an ozone concentration of 130 ppm was dropped onto the substrate surface. At this time, the time until the ozone solution was washed and removed after dropping the ozone solution was defined as the ozone treatment time, and the samples 1, 2, 5, and 6 that had undergone the above-mentioned unaltered layer removal step were not altered in the ozone treatment time of 10 minutes. The layer removal process was performed, and the unmodified layer removal process for the sample 7 with an ozone treatment time of 60 minutes was performed. Samples 3 and 4 were not subjected to the unaltered removal treatment.

次に上記変質層除去工程で用いた装置と同等の構成からなる変質層除去装置を用いて、基板を200℃に加熱し、処理時間10分で上記サンプル1に係る基板の残渣除去処理を行なった。また、上記サンプル5に係る基板は150℃に加熱し、処理時間10分の残渣除去処理を行い、上記サンプル6に係る基板においては、基板を加熱せず、室温(25℃)で、処理時間10分で残渣除去処理を行なった。   Next, the substrate is heated to 200 ° C. using a deteriorated layer removing apparatus having the same configuration as that used in the deteriorated layer removing step, and the substrate residue removal process according to Sample 1 is performed in a processing time of 10 minutes. It was. In addition, the substrate according to the sample 5 is heated to 150 ° C., and a residue removal process is performed for 10 minutes. In the substrate according to the sample 6, the substrate is not heated, and the processing time is at room temperature (25 ° C.). Residue removal treatment was performed in 10 minutes.

以上、サンプル1〜7に係る基板の変質層除去工程、未変質層除去工程、残渣除去工程における基板温度、処理時間及びオゾン処理時間を図3の表にまとめた。   As described above, the substrate temperature, the treatment time, and the ozone treatment time in the deteriorated layer removal process, the unmodified layer removal process, and the residue removal process of the substrates according to Samples 1 to 7 are summarized in the table of FIG.

次にレジスト除去を行ったサンプルについて電子顕微鏡を用いてレジストの残渣を観察した。このとき、サンプル1の表面拡大写真は図4(a)であり、サンプル2の表面拡大写真は図4(b)、サンプル4の表面拡大写真は図4(c)、サンプル5の表面拡大写真は図4(d)、サンプル7の表面拡大写真は図4(e)である。   Next, the resist residue of the sample from which the resist was removed was observed using an electron microscope. At this time, the surface enlarged photograph of sample 1 is FIG. 4 (a), the surface enlarged photograph of sample 2 is FIG. 4 (b), the surface enlarged photograph of sample 4 is FIG. 4 (c), and the surface enlarged photograph of sample 5. Fig. 4 (d), and Fig. 4 (e) is an enlarged photograph of the surface of the sample 7.

以上、サンプル1〜7のレジスト除去後の拡大写真のうちサンプル1におけるレジスト除去工程を経た基板のみレジストの残渣が確認されなかった。また、サンプル2に係る基板ではポッピングによりはみだしたレジストの残渣が確認された(図4(b)、実線で囲まれた領域参照)。このことから、レジストを完全に除去するためには本発明に係る残渣除去工程を経ることがより効果的であることがわかった。なお、本実施例に使用したプラズマ発生部及びオゾン水噴射部の改善により更に処理時間の短縮は可能と考えられる。   As mentioned above, the residue of a resist was not confirmed only the board | substrate which passed the resist removal process in the sample 1 among the enlarged photographs after the resist removal of the samples 1-7. Moreover, the resist residue which protruded by popping was confirmed in the board | substrate which concerns on the sample 2 (refer FIG.4 (b), the area | region enclosed with the continuous line). From this, it was found that it is more effective to go through the residue removing step according to the present invention in order to completely remove the resist. In addition, it is thought that processing time can be further shortened by improvement of the plasma generation part and ozone water injection part which were used for the present Example.

また、図4(c)のサンプル4に係る基板表面にレジストの大半が除去されず残っていることが確認された。このことから、基板温度を200℃に設定してラジカル照射を行なっても未変質層の除去には時間がかかり、処理時間を60分に設定しても変質層除去工程のみではレジスト除去の実効性に乏しいことがわかった。   Moreover, it was confirmed that most of the resist remains on the substrate surface related to the sample 4 in FIG. Therefore, even if radical irradiation is performed with the substrate temperature set at 200 ° C., it takes time to remove the unaltered layer, and even if the processing time is set to 60 minutes, the resist removal is effective only with the deteriorated layer removing step. I found that it was scarce.

また、図4(d)のサンプル5に係る基板表面よりサンプル6に係る基板表面(不図示)に多くのレジスト残渣が確認された。このことから、プラズマにより励起されたラジカルにより行なうレジスト除去においては、基板温度を少なくとも150℃以上に確保することで、除去効率がある程度確保されることがわかった。また、図4(a)でレジストが完全に除去されていたことから、基板温度は200℃前後が好適であることもわかった。   Further, a larger amount of resist residue was confirmed on the substrate surface (not shown) related to the sample 6 than the substrate surface related to the sample 5 in FIG. From this, it has been found that, in resist removal performed by radicals excited by plasma, removal efficiency is secured to some extent by ensuring the substrate temperature at least 150 ° C. or higher. In addition, since the resist was completely removed in FIG. 4A, it was found that the substrate temperature is preferably around 200 ° C.

また、図4(e)よりサンプル7の基板表面には変質層のレジストが確認された。このことから、未変質層除去工程のみで基板を処理した場合、未変質層の除去は可能であるが、変質層に対しては、十分な分解効果がないことがわかった。   Further, from FIG. 4 (e), the resist of the altered layer was confirmed on the substrate surface of Sample 7. From this, it was found that when the substrate was processed only in the unaltered layer removal step, the unaltered layer could be removed, but the degraded layer did not have a sufficient decomposition effect.

以上より、レジスト除去を実用的な時間で行うためには、変質層除去工程にて150℃より高温で基板加熱しつつ大気圧付近の圧力下のN2ガス、O2ガス、H2ガス、水蒸気、クリーンエアーのいずれか、あるいはこれらの混合ガスのラジカル照射を行いレジスト表面の変質層除去を行った後、未変質層除去工程でオゾン水により未変質層の除去を行うことで変質層を形成したレジストにおいても効果的にレジストの除去を行なうことができることがわかった。 From the above, in order to perform the resist removal in a practical time, N 2 gas, O 2 gas, H 2 gas under pressure near atmospheric pressure while heating the substrate at a temperature higher than 150 ° C. in the deteriorated layer removal step, Irradiate radicals of either water vapor, clean air, or a mixed gas of these to remove the altered layer on the resist surface, and then remove the altered layer with ozone water in the unaltered layer removal step. It was found that the resist can be effectively removed even in the formed resist.

また、変質層除去工程でポッピング現象が発生した場合、飛散した未変質層のレジストが局部的に変質層上に付着し、レジスト厚が厚くなった部分にレジストの残渣が発生し易いため、残渣除去工程にて再度プラズマ処理を行うことでレジストの完全除去が可能となることがわかった。   In addition, when a popping phenomenon occurs in the deteriorated layer removal step, the scattered unmodified layer resist is locally deposited on the deteriorated layer, and a resist residue is likely to be generated in a portion where the resist thickness is increased. It was found that the resist can be completely removed by performing plasma treatment again in the removing step.

この発明は、例えば、半導体ウエハ、液晶パネルの基板、あるいは電子回路基板などの製造工程において、それら基板の表面に付着したレジストなどの残留有機物を除去する方法に関する。   The present invention relates to a method for removing residual organic substances such as a resist adhering to the surface of a substrate in a manufacturing process of a semiconductor wafer, a liquid crystal panel substrate, or an electronic circuit substrate, for example.

レジスト除去装置の模式的な略断面図Schematic schematic cross-sectional view of resist removal equipment 本発明に係るレジスト除去方法を適用した工程別素子断面図Cross-sectional view of elements by process to which the resist removing method according to the present invention is applied 本実施例における処理工程を示す表Table showing processing steps in this example (a)本実施例におけるサンプル1のレジスト除去後の表面画像、(b)本実施例におけるサンプル2のレジスト除去後の表面画像、(c)本実施例におけるサンプル4のレジスト除去後の表面画像、(d)本実施例におけるサンプル5のレジスト除去後の表面画像、(e)本実施例におけるサンプル7のレジスト除去後の表面画像(A) Surface image after removal of resist of sample 1 in this example, (b) Surface image after removal of resist of sample 2 in this example, (c) Surface image after removal of resist of sample 4 in this example (D) Surface image after removal of resist of sample 5 in this example, (e) Surface image after removal of resist of sample 7 in this example

符号の説明Explanation of symbols

1 基板
2 基板保持体
3 基板温度制御ユニット
4 プラズマ発生部
5 オゾン水供給ノズル
6 過熱水蒸気供給ノズル
7 排気口
8 排水口
10 変質層除去装置
20 未変質層除去装置
R レジスト未変質層
E レジスト変質層
P レジストポッピング層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Substrate holder 3 Substrate temperature control unit 4 Plasma generation part 5 Ozone water supply nozzle 6 Superheated steam supply nozzle 7 Exhaust port 8 Drain port 10 Altered layer removal device 20 Unaltered layer removal device R Resist unaltered layer E Resist alteration Layer P Resist popping layer

Claims (6)

レジスト表面に形成された変質層と該変質層下で変質していないレジスト未変質層などの有機物が表面に残留している基板の残留有機物除去方法において、
大気圧付近の圧力下又は準常圧下で、少なくともN2ガス、O2ガス、H2ガス、水蒸気、クリーンエアーのいずれか一種により構成される単体ガス又は混合ガスをプラズマ処理し、該プラズマ処理で生成したNラジカル、Oラジカル、Hラジカル、OHラジカルのいずれかを加熱した基板表面に接触させ前記変質層を除去する変質層除去工程と、
オゾン水と過熱水蒸気とを混合してなるオゾン溶液又はオゾン水のみを前記レジスト未変質層に滴下し該レジスト未変質層を除去する未変質層除去工程とを備えることを特徴とする残留有機物除去方法。
In a method for removing residual organic matter from a substrate in which organic matter such as an altered layer formed on the resist surface and an unaltered resist layer not altered under the altered layer remains on the surface,
Plasma treatment is performed on a single gas or a mixed gas composed of at least one of N 2 gas, O 2 gas, H 2 gas, water vapor, and clean air under a pressure near atmospheric pressure or a sub-normal pressure. An altered layer removing step of contacting any of the N radical, O radical, H radical, and OH radical generated in step 1 with the heated substrate surface to remove the altered layer;
Residual organic matter removal comprising: an ozone solution formed by mixing ozone water and superheated steam or only ozone water is dropped on the resist unaltered layer to remove the resist unaltered layer. Method.
前記変質層除去工程において、
前記プラズマ及び前記ラジカルが、前記レジスト未変質層に直接照射又は接触しないことを特徴とする請求項1に記載の残留有機物除去方法。
In the altered layer removal step,
2. The residual organic matter removing method according to claim 1, wherein the plasma and the radical do not directly irradiate or contact the resist unmodified layer.
前記変質層除去工程において、
前記基板の加熱温度を、前記変質層に前記ラジカルによる除去が可能な活性化エネルギーを供与できる温度以上に設定したことを特徴とする請求項1又は請求項2に記載の残留有機物除去方法。
In the altered layer removal step,
The method for removing a residual organic substance according to claim 1 or 2, wherein the heating temperature of the substrate is set to be equal to or higher than a temperature at which activation energy that can be removed by the radicals is provided to the altered layer.
前記変質層除去工程にて、
前記ラジカルを照射するラジカル照射ノズルが前記基板の板面に沿って相対移動する工程を備え、
前記未変質層除去工程にて、
オゾン水と過熱水蒸気を独立して供給する一組の供給ノズルにより前記残留有機物の直上でオゾン水と過熱水蒸気を混合し、前記残留有機物上に滴下する工程と、
前記供給ノズルが前記基板の保持体との間で、前記基板の板面に沿って相対移動する工程とを備えることを特徴とする請求項1及至請求項3のいずれか1に記載の残留有機物除去方法。
In the altered layer removal step,
The radical irradiation nozzle for irradiating the radical comprises a step of relatively moving along the plate surface of the substrate;
In the unaltered layer removal step,
Mixing ozone water and superheated steam immediately above the residual organic matter with a set of supply nozzles that independently supply ozone water and superheated steam, and dropping the mixture onto the residual organic matter;
The residual organic matter according to any one of claims 1 to 3, further comprising a step of moving the supply nozzle relative to the substrate holder along the plate surface of the substrate. Removal method.
前記変質層除去工程と前記未変質層除去工程をこの順で少なくとも2回以上繰り返すことを特徴とする請求項1及至請求項4のいずれか1に記載の残留有機物除去方法。   The residual organic matter removal method according to any one of claims 1 to 4, wherein the deteriorated layer removal step and the unmodified layer removal step are repeated at least twice in this order. 2回目以降の前記変質層除去工程及び未変質層除去工程をそれぞれ前回用いた装置と異なる装置で行なうことを特徴とする請求項5に記載の残留有機物除去方法。   6. The residual organic matter removing method according to claim 5, wherein the second and subsequent alteration layer removal steps and the unaffected layer removal step are each performed by an apparatus different from the apparatus used last time.
JP2006265986A 2006-09-28 2006-09-28 Method of removing residual organic matter on substrate Pending JP2008085231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265986A JP2008085231A (en) 2006-09-28 2006-09-28 Method of removing residual organic matter on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265986A JP2008085231A (en) 2006-09-28 2006-09-28 Method of removing residual organic matter on substrate

Publications (1)

Publication Number Publication Date
JP2008085231A true JP2008085231A (en) 2008-04-10

Family

ID=39355729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265986A Pending JP2008085231A (en) 2006-09-28 2006-09-28 Method of removing residual organic matter on substrate

Country Status (1)

Country Link
JP (1) JP2008085231A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146834A1 (en) * 2007-06-01 2008-12-04 Sharp Kabushiki Kaisha Resist removing method, semiconductor manufacturing method, and resist removing apparatus
WO2010021020A1 (en) * 2008-08-18 2010-02-25 アクアサイエンス株式会社 Resist removing method and resist removing apparatus
JP2010165825A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Substrate treating device and substrate treating method
JP2010528459A (en) * 2007-05-18 2010-08-19 エフエスアイ インターナショナル インコーポレーテッド Substrate processing method using water vapor or steam
JP2011205015A (en) * 2010-03-26 2011-10-13 Kurita Water Ind Ltd Cleaning method for electronic material
US8507854B2 (en) 2009-07-15 2013-08-13 Carl Zeiss Microscopy Gmbh Particle beam microscopy system and method for operating the same
CN111095486A (en) * 2017-09-15 2020-05-01 株式会社斯库林集团 Resist removing method and resist removing apparatus
EP4141141A1 (en) 2021-08-30 2023-03-01 Creative Coatings Co., Ltd. Film forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286317A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Method and device for ashing semiconductor device
JPH05217957A (en) * 1991-12-11 1993-08-27 Toshiba Corp Removal of organic compound film
JPH0637063A (en) * 1992-07-15 1994-02-10 Yamaha Corp Manufacture of semiconductor device
JP2001044178A (en) * 1999-07-30 2001-02-16 Matsushita Electronics Industry Corp Board processing method and board processor
JP2002151480A (en) * 2000-07-10 2002-05-24 Sekisui Chem Co Ltd Processing method for semiconductor element and device therefor
JP2004006788A (en) * 2002-04-04 2004-01-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device and development apparatus
JP2004356598A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Substrate processing method and manufacturing method of electro-optical device
JP2006049713A (en) * 2004-08-06 2006-02-16 Sekisui Chem Co Ltd Method and apparatus for removing resist
JP2006049712A (en) * 2004-08-06 2006-02-16 Sekisui Chem Co Ltd Method and apparatus for removing resist

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286317A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Method and device for ashing semiconductor device
JPH05217957A (en) * 1991-12-11 1993-08-27 Toshiba Corp Removal of organic compound film
JPH0637063A (en) * 1992-07-15 1994-02-10 Yamaha Corp Manufacture of semiconductor device
JP2001044178A (en) * 1999-07-30 2001-02-16 Matsushita Electronics Industry Corp Board processing method and board processor
JP2002151480A (en) * 2000-07-10 2002-05-24 Sekisui Chem Co Ltd Processing method for semiconductor element and device therefor
JP2004006788A (en) * 2002-04-04 2004-01-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device and development apparatus
JP2004356598A (en) * 2003-05-30 2004-12-16 Seiko Epson Corp Substrate processing method and manufacturing method of electro-optical device
JP2006049713A (en) * 2004-08-06 2006-02-16 Sekisui Chem Co Ltd Method and apparatus for removing resist
JP2006049712A (en) * 2004-08-06 2006-02-16 Sekisui Chem Co Ltd Method and apparatus for removing resist

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528459A (en) * 2007-05-18 2010-08-19 エフエスアイ インターナショナル インコーポレーテッド Substrate processing method using water vapor or steam
JP2013058790A (en) * 2007-05-18 2013-03-28 Tel Fsi Inc Method for treatment of substrates with water vapor or steam
WO2008146834A1 (en) * 2007-06-01 2008-12-04 Sharp Kabushiki Kaisha Resist removing method, semiconductor manufacturing method, and resist removing apparatus
JP2008300704A (en) * 2007-06-01 2008-12-11 Sharp Corp Resist removing method, semiconductor manufacturing method, and resist removing device
WO2010021020A1 (en) * 2008-08-18 2010-02-25 アクアサイエンス株式会社 Resist removing method and resist removing apparatus
JP2010165825A (en) * 2009-01-15 2010-07-29 Shibaura Mechatronics Corp Substrate treating device and substrate treating method
US8507854B2 (en) 2009-07-15 2013-08-13 Carl Zeiss Microscopy Gmbh Particle beam microscopy system and method for operating the same
JP2011205015A (en) * 2010-03-26 2011-10-13 Kurita Water Ind Ltd Cleaning method for electronic material
CN111095486A (en) * 2017-09-15 2020-05-01 株式会社斯库林集团 Resist removing method and resist removing apparatus
EP4141141A1 (en) 2021-08-30 2023-03-01 Creative Coatings Co., Ltd. Film forming apparatus
KR20230032937A (en) 2021-08-30 2023-03-07 가부시키가이샤 크리에이티브 코팅즈 Film deposition apparatus

Similar Documents

Publication Publication Date Title
JP5332052B2 (en) Resist removing method, semiconductor manufacturing method, and resist removing apparatus
JP2008085231A (en) Method of removing residual organic matter on substrate
TWI686866B (en) Peroxide-vapor treatment for enhancing photoresist-strip performance and modifying organic films
JPH0786146A (en) Method for removing resist mask
JPH05121386A (en) Plasma washing method of substrate surface, photo-resist-plasma washing method of wafer and washing device for substrate surface
US20090258159A1 (en) Novel treatment for mask surface chemical reduction
JP4077241B2 (en) Manufacturing method of semiconductor device
JPH06177088A (en) Method and apparatu for ashing
JP3535820B2 (en) Substrate processing method and substrate processing apparatus
JPH08186099A (en) Ashing of resist
JPH10189550A (en) Manufacture of semiconductor device
JP2009218548A (en) Resist removing method and resist removing device of high dose implantation process
JP4320982B2 (en) Substrate processing equipment
JP2006229002A (en) Manufacturing method of semiconductor device, and semiconductor manufacturing device
JPH08139004A (en) Plasma treatment apparatus and plasma treatment method
JP3278935B2 (en) Resist removal method
KR100780290B1 (en) Photoresist Strip Process Facilities
JPH1187313A (en) Plasma-processing method
JP2010056263A (en) Method of removing resist on which carbon layer is formed by ion implantation
JP2005259743A (en) Resist peeling device, resist peeling method using the same, and manufacturing method of semiconductor device
JP2009117597A (en) Substrate processing device and substrate processing method
JP2004157424A (en) Method for stripping resist and method for manufacturing semiconductor device
JP2004134627A (en) Process for removing organic layer
JP3437557B2 (en) Plasma ashing method
KR100241531B1 (en) How to remove photoresist

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080516

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

A621 Written request for application examination

Effective date: 20090911

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108