JPH02102404A - Inspecting method for periodic pattern - Google Patents

Inspecting method for periodic pattern

Info

Publication number
JPH02102404A
JPH02102404A JP25545788A JP25545788A JPH02102404A JP H02102404 A JPH02102404 A JP H02102404A JP 25545788 A JP25545788 A JP 25545788A JP 25545788 A JP25545788 A JP 25545788A JP H02102404 A JPH02102404 A JP H02102404A
Authority
JP
Japan
Prior art keywords
pattern
light
periodic pattern
defect
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25545788A
Other languages
Japanese (ja)
Other versions
JP2653853B2 (en
Inventor
Kazuo Watanabe
一生 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP63255457A priority Critical patent/JP2653853B2/en
Publication of JPH02102404A publication Critical patent/JPH02102404A/en
Application granted granted Critical
Publication of JP2653853B2 publication Critical patent/JP2653853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect a defect of an optional periodic pattern without emphasizing the outer peripheral part of the periodic pattern by using an optical system wherein the shear quantity of a common optical path type dual light beam interferometer is equalized to the array pitch of unit patterns. CONSTITUTION:The common optical path type dual light beam interferometer consists of a polarizer 1, Wollaston prisms 2 and 5, lenses 3, 4, and an analyzer 6. Then linear polarized light passed through the polarizer 1 becomes two light beams which shift by SP at right angles to the optical axis through the prism 2 and lens 3 and the intensity distribution is varied by a sample 7 which has periodic openings. Then only the SP is returned by the lens 4 and prism 5 to cause interference on the analyzer 6. Then if the sample 7 has no defect, the light beam of interference 2 becomes equal in pitch with the shear quantity SP, so the phase and intensity are equal and the polarizer 1 and analyzer 6 are in orthogonal relation, so that the light beams cancel each other and become dark. If the sample has a defect 8 or it there is a transparent material 9 at an opening part, the light beams do not cancel each other completely and a bright point is observed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーテレビ用ブラウン管に用いられるシャ
ドウマスク、カラー爆像装置用色分解フィルタ、液晶表
示パネル用カラーフィルタ、電子管に用いられるメツシ
ュ状電掻、■DTフィルタ、濾過装置用メツシュ用フィ
ルタ、ロータリーエンコーダ、リニアエンコーダ、IC
用フォトマスクなど一定の光学的性質、形状をもつ単位
(以下単位パターン)が1次元方向、或いは2次元方向
に規則的に繰り返し配列されている工業製品、或いは単
位パターンがその光学的性質、形状及び1次元方向、2
次元方向の配1列ピッチが徐々に変化しながら繰り返し
配列されている工業製品のキズ、ピンホール、黒点、ゴ
ミなどの欠陥やムラ、透過率、またパターンを有しない
ガラス、着色したフィルムなどを自動的に検査する周期
性パターンの検査方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to shadow masks used in cathode ray tubes for color televisions, color separation filters for color explosion devices, color filters for liquid crystal display panels, and mesh-like filters used in electron tubes. Electric scraper, ■DT filter, mesh filter for filtration equipment, rotary encoder, linear encoder, IC
Industrial products in which units (hereinafter referred to as unit patterns) with certain optical properties and shapes are regularly and repeatedly arranged in one-dimensional or two-dimensional directions, such as photomasks, or unit patterns have certain optical properties and shapes. and one-dimensional direction, 2
It can be used to detect defects such as scratches, pinholes, sunspots, dust, and uneven transmittance of industrial products, which are repeatedly arranged with a gradually changing pitch in the dimensional direction, as well as unpatterned glass, colored films, etc. The present invention relates to a method for automatically inspecting periodic patterns.

〔従来の技、術〕[Traditional techniques, techniques]

従来、単位パターンが周期的に繰り返し配列されている
工業製品の欠陥検査は、目視または顕微鏡観察により行
われているのが通例であるが、このような方法では多数
の製品を検査するためには多大の人手を必要とし、また
官能検査であるために検査精度及び信顛性に欠けること
から、さまざまな検査方法が提案されている。
Conventionally, defect inspections of industrial products in which unit patterns are periodically and repeatedly arranged are usually carried out by visual or microscopic observation, but such methods require a large amount of time to inspect a large number of products. Various testing methods have been proposed because it requires a lot of manpower and lacks test accuracy and reliability since it is a sensory test.

例えば、等ピッチ配列の周期性パターンをもつ工業製品
に関しては、配列単位及び欠陥の形状を十分に解像する
ような顕微鏡撮影装置によって得られたビデオ信号を調
べてパターン認識を行うか、或いは欠陥のないパターン
を同様に撮影して得られた信号と比較する等の手段によ
り欠陥を検出している。
For example, for industrial products with periodic patterns arranged at equal pitches, pattern recognition may be performed by examining a video signal obtained by a microscope imaging device that sufficiently resolves the arrangement unit and the shape of the defect. Defects are detected by means such as comparing with signals obtained by similarly photographing patterns without defects.

次に、第4図〜第6図により周期性パターンを能率良く
、高精度に検査するために従来提案されている方法につ
いて説明する。
Next, conventionally proposed methods for inspecting periodic patterns efficiently and with high accuracy will be explained with reference to FIGS. 4 to 6.

第5図に示すような周期的な開口を単位パターン51と
しζ持つパターンの開口面積の異常を検知するため、直
情型111r49で点灯される白熱ランプ48と拡散板
47で構成される透過照明部により被検査パターン46
を照明し、TVカメラ41で検査領域を撮影する。画像
処理装置42はT”Vカメラの出力信号をA/D変換し
てデジタル画像データとし、フレームメモリ、及び演算
器により画面の加算、減算を含む各種の画像処理を高速
で行う。制御装置43は画像処理装置42、及びXYス
テージ50と駆動機構45で構成されるパターン移動機
構を制御してパターンの移動を行う。
In order to detect an abnormality in the aperture area of a pattern with periodic apertures as a unit pattern 51 as shown in FIG. The pattern to be inspected 46 is
is illuminated, and the inspection area is photographed with a TV camera 41. The image processing device 42 A/D converts the output signal of the T''V camera into digital image data, and performs various image processing including addition and subtraction on the screen at high speed using a frame memory and an arithmetic unit.Control device 43 moves the pattern by controlling the image processing device 42 and a pattern moving mechanism composed of an XY stage 50 and a drive mechanism 45.

なお、第5図において52.53は欠陥をもった単位パ
ターンである。
In addition, in FIG. 5, 52 and 53 are unit patterns with defects.

第4図においてTVカメラ41によるビデオ(8号の単
位開口による変化が無視できる撮影条件、例えば1画素
に対応するパターン面積に学位開口11が1041!A
程度入るようにし、パターンを移動変位°させる方向が
TVカメラ41の走査線方向で、パターンの変位距離が
画素ピンチの整数倍となっている場合について第6図に
より説明する。
In FIG. 4, a video taken by the TV camera 41 (shooting conditions where changes due to the unit aperture of No. 8 can be ignored, for example, the pattern area corresponding to one pixel has a degree aperture 11 of 1041!A)
A case will be described with reference to FIG. 6 in which the direction in which the pattern is moved and displaced is the scanning line direction of the TV camera 41, and the pattern displacement distance is an integral multiple of the pixel pinch.

パターンの欠陥がある所を通る直線上の光透過重分布は
、例えば第6図(a)に示すようになり、第5図の53
で示す5ような開口面積が正常なパターン51よりも大
きい欠陥、即ち白欠陥による光透過率の変化54や、第
5図の52で示すように開口面積が正常なパターン51
よりも小さい欠陥、即ら黒欠陥による光透過率の変化5
5が検出される。また、第6図(a)の場合と同じ線上
を走査したビデオ信号を示すと第6図(b)のようにな
り、パターンの照明ムラ、撮像面の感度ムラ等による緩
やかな信号変化(シェーディング)とビデオ信号処理装
置で発生するランダムノイズ、及び光学系に付着したゴ
ミなどによる信号の局部的な変化56が現れる。
The light transmission weight distribution on a straight line passing through a defective part of the pattern is as shown in FIG. 6(a), for example, and 53 in FIG.
A change in light transmittance 54 due to a defect such as 5 in which the opening area is larger than the normal pattern 51, that is, a white defect, or a pattern 51 in which the opening area is normal as shown in 52 in FIG.
Change in light transmittance due to defects smaller than 5, that is, black defects
5 is detected. In addition, when the video signal is scanned on the same line as in the case of Fig. 6 (a), it becomes as shown in Fig. 6 (b), and the gradual signal change (shading) due to uneven illumination of the pattern, uneven sensitivity of the imaging surface, etc. ), random noise generated in the video signal processing device, and local changes 56 in the signal due to dust adhering to the optical system.

このようなビデオ信号の複数フレームを加算することに
より、加算回数をNとしたときランダムノイズ成分の比
率を115にまで減少することができる(第6図(C)
)、次に、パターンを変位させて同様の画面加算処理を
した場合、第6図(d)に示すように、パターンの移動
と共にパターン上の欠陥による信号も移動しているが、
撮像系のシェーディングや光学系のゴミ等による信号5
6の位置は変化していない、そこで、第6図(c)で示
すデータから第6図(d)に示すデータを減算すると、
両データに含まれるシェーディングやゴミなどによる信
号56は消去され、パターンの光透過率変化による信号
と低減されたランダムノイズ成分だけが残り、この結果
、欠陥による信号はパターンの移動量に応じた画素数離
れた位置でその近傍の平均値に対する値の差がほぼ同じ
で、符号が反転して現れ、反転する順序は欠陥の種類(
白欠陥、黒欠陥)によって逆転する。
By adding multiple frames of such video signals, the ratio of random noise components can be reduced to 115, where the number of additions is N (Figure 6 (C)).
), then when the pattern is displaced and similar screen addition processing is performed, as shown in FIG. 6(d), the signal due to the defect on the pattern also moves as the pattern moves.
Signal 5 due to shading in the imaging system, dust in the optical system, etc.
The position of 6 has not changed, so if we subtract the data shown in Figure 6(d) from the data shown in Figure 6(c), we get
Signals 56 due to shading, dust, etc. included in both data are erased, and only signals due to changes in light transmittance of the pattern and reduced random noise components remain. As a result, signals due to defects are transmitted to pixels according to the amount of movement of the pattern. At several positions apart, the difference in value from the average value in the vicinity is almost the same, and the sign appears reversed, and the order of reversal depends on the type of defect (
(white defects, black defects).

以上のような処理をした画像データは欠陥部のみ明るさ
が局部的に変化しているため、モニタで1i31察すれ
ば容易に欠陥として認識することができ、また欠陥部で
の周囲に対する明暗の反転の順序で欠陥の種類を識別す
ることもできる。
In the image data processed as above, the brightness changes locally only in the defective area, so it can be easily recognized as a defect by observing it on a monitor, and the brightness of the defective area relative to its surroundings can be easily recognized as a defect. The type of defect can also be identified by the order of inversion.

次に色分解フィルタの周期性パターンについての従来の
検査方法について説明する。
Next, a conventional method for inspecting periodic patterns of color separation filters will be described.

第7図は色分解フィルタの例を示す図、第8図は従来の
色分解フィルタの周期性パターンを検査する方法を説明
するための図である。
FIG. 7 is a diagram showing an example of a color separation filter, and FIG. 8 is a diagram for explaining a method of inspecting a periodic pattern of a conventional color separation filter.

色分解フィルタとしては、例えば第7図に示すようにガ
ラス等の透明基板上にR,GXB、又はY、M、C等の
色調をもつストライプ状(第7図(a))、又はドツト
状(第7図(b)、  (C))の微小要素を単位パタ
ーンとして1次元、または2次元的に周期的に配列した
パターンをもつフィルタである。
As a color separation filter, for example, as shown in FIG. 7, a stripe-like (FIG. 7(a)) or dot-like filter having color tones of R, GXB, Y, M, C, etc. is formed on a transparent substrate such as glass. This is a filter having a pattern in which minute elements shown in FIGS. 7(b) and 7(c) are periodically arranged one-dimensionally or two-dimensionally as a unit pattern.

第8回において、ランプ61からの放射光はレンズ62
でピンホール板63上に集光され、ピンホールを通過し
た光がレンズ64により平行光となり、色分解フィルタ
65を照明する。この色分解フィルタ65を透過した平
行光は、色分解フィルタの周期性パターンによって回折
し、対物レンズ66の後焦点面上に回折パターンを形成
する。
In the eighth time, the emitted light from the lamp 61 is transmitted to the lens 62.
The light that is focused on the pinhole plate 63 and passed through the pinhole is turned into parallel light by the lens 64, and illuminates the color separation filter 65. The parallel light transmitted through the color separation filter 65 is diffracted by the periodic pattern of the color separation filter, forming a diffraction pattern on the back focal plane of the objective lens 66.

この回折パターンに対応した遮光部を有する空間フィル
タ67によって正常パターン部を透過した平行光は阻止
され、これに対して欠陥部はパターンの周期性に反する
ため、光を散乱する効果を有し、そのため空間フィルタ
67を通過して結像する。従って、接眼レンズ68から
観察すると、暗視野中に欠陥部のみが輝点として観察さ
れ、欠陥を検出することができる。
The parallel light transmitted through the normal pattern part is blocked by the spatial filter 67 having a light blocking part corresponding to this diffraction pattern, whereas the defective part goes against the periodicity of the pattern and has the effect of scattering light. Therefore, it passes through the spatial filter 67 and is imaged. Therefore, when observed through the eyepiece lens 68, only the defective portion is observed as a bright spot in the dark field, and the defect can be detected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第4図〜第6図に示す従来の欠陥検出方
法は、高精度の撮像装置や検出回路が必要となり、その
ため装置が高価となってしまうという問題があり、また
第8図に示す方法では、周期性パターン部の外周部が強
調されてしまうため、外周近傍の欠陥検出が困難となり
、またフィルタのパターン毎に空間フィルタバクーンを
用意する必要がある等の欠点があった。
However, the conventional defect detection methods shown in FIGS. 4 to 6 require high-precision imaging devices and detection circuits, which makes the devices expensive, and the method shown in FIG. However, since the outer periphery of the periodic pattern portion is emphasized, it becomes difficult to detect defects near the outer periphery, and there are also drawbacks such as the need to prepare a spatial filter vacuum for each filter pattern.

本発明は上記問題点を解決するためのもので、筒車な構
成であると共に、周期性パターン部の外周部が強調され
ることがなく、かつ任意の周期性パターンの欠陥を検出
できる周期性パターンの検査方法を提供することを目的
とする。
The present invention is intended to solve the above-mentioned problems, and has an hour wheel configuration, does not emphasize the outer periphery of the periodic pattern part, and has periodicity that allows detection of defects in any periodic pattern. The purpose is to provide a pattern inspection method.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、単位パターンが周期的に繰り返し
配列された周期性パターンの欠陥を検査する方法におい
て、共通光路型二光線干渉計のシェア■を学位パターン
の配列ピンチまたはその整数倍に一致させた光学系によ
って得られる像に括゛づいて検査すること、干渉部が偏
光型共通光路光線干渉計であること、シェア量が変更可
能な干渉計を用いることを特徴とする。
To this end, the present invention provides a method for inspecting defects in a periodic pattern in which unit patterns are periodically and repeatedly arranged, in which the share of the common optical path type two-beam interferometer is made to match the arrangement pinch of the degree pattern or an integral multiple thereof. The present invention is characterized in that the inspection is carried out based on images obtained by an optical system, that the interference section is a polarization type common optical path beam interferometer, and that an interferometer whose shear amount can be changed is used.

〔作用〕[Effect]

本発明は、共通光路型二光線干渉計のシェア量を試料の
単位パターンの配列ピッチまたはその整数倍に一致させ
、試料の透過光または反射光を干渉させ、試料上の対応
する2点で光の強度、位相の相違が生じたときに得られ
る輝点を検出することにより欠陥検出を行うものであり
、試料或いは装置は静止状態のまま検出することができ
、また欠陥部以外は干渉する2光線が互いにキャンセル
されてしまうので、パターンの周辺部が強調されるよう
なことがなく、さらにシェア量を可変とすることにより
任意の周期性パターンの検査を行うことが可能となる。
The present invention makes the shear amount of the common optical path type two-beam interferometer match the arrangement pitch of the unit pattern of the sample or an integral multiple thereof, and makes the transmitted light or reflected light of the sample interfere, and the light beam is emitted at two corresponding points on the sample. Defects are detected by detecting bright spots obtained when there is a difference in intensity or phase between the defects, and the sample or device can be detected while in a stationary state. Since the light rays cancel each other out, the periphery of the pattern is not emphasized, and by making the shear amount variable, it is possible to inspect any periodic pattern.

〔実施例] 以下、実施例を図面に基づき説明する。〔Example] Examples will be described below based on the drawings.

第1図は本発明の周期性パターンの検査方法の一実施例
を示す図で、図中、1はポラライザ、2.5はウォラス
トンプリズム、3.4はレンズ、6はアナライザ、7は
被検査パターン、8は欠陥、9は位相物質である。
FIG. 1 is a diagram showing an embodiment of the periodic pattern inspection method of the present invention, in which 1 is a polarizer, 2.5 is a Wollaston prism, 3.4 is a lens, 6 is an analyzer, and 7 is a subject. An inspection pattern, 8 is a defect, and 9 is a phase material.

第1図(a)において、ポラライザl、ウォラストンプ
リズム2、レンズ3.4、ウォラストンプリズム5、ア
ナライザ6で偏光型共通光路二光線干渉計を構成してい
る。なお、説明の便宜上光源は単色光源とする。
In FIG. 1(a), a polarizer 1, a Wollaston prism 2, a lens 3.4, a Wollaston prism 5, and an analyzer 6 constitute a polarization type common optical path two-beam interferometer. Note that for convenience of explanation, the light source is assumed to be a monochromatic light source.

図示しない光源からの平行光を照射し、ポラライザ1を
通し°ζ得られた直線偏光光8をウォラストンプリズム
2に照射する。ウォラストンプリズム2は入射面に平行
な光学軸を有する2つの模型複屈折結晶板2a、2bを
貼り合わせたものであり、結晶板2bへの入射光は、結
晶板2bの光学軸に対して例えば45°の角度で入射す
る。その結果、主断面に平行な偏光面を有する異常光線
と、主断面に垂直な偏光面を有する常光線とに分かれ、
進行方向がθの角度をもって出射する。この2光線の交
点を前側焦点位置とするレンズ3により、2光線は互い
に平行でシェア(横ずれ)MtSpの光線となって被検
金繰り返しパターン7を通過する。この場合、シェア量
SPは、パターンの繰り返しピッチと同一かその整数倍
になるようにしておく。そして、パターン7によって強
度、位相分布が変化した2光線はレンズ4によって集光
する。
Parallel light from a light source (not shown) is irradiated, and linearly polarized light 8 obtained through the polarizer 1 is irradiated onto the Wollaston prism 2. The Wollaston prism 2 is made by laminating two model birefringent crystal plates 2a and 2b with optical axes parallel to the plane of incidence, and the incident light on the crystal plate 2b is oriented with respect to the optical axis of the crystal plate 2b. For example, the light is incident at an angle of 45°. As a result, it is divided into extraordinary rays with a plane of polarization parallel to the main cross section and ordinary rays with a plane of polarization perpendicular to the main cross section.
The beam is emitted at an angle of θ in the direction of travel. The two light beams are parallel to each other and pass through the test gold repeating pattern 7 with a shear (lateral shift) of MtSp by the lens 3 whose front focal point is the intersection point of the two light beams. In this case, the share amount SP is set to be the same as the repeating pitch of the pattern or an integral multiple thereof. Then, the two light beams whose intensity and phase distribution have been changed by the pattern 7 are focused by the lens 4.

このままでは2光線の進行方向は異なるので、レンズ4
の後側焦点位置に配置されたウォラストンプリズム2と
同様のウォラストンプリズム5によって進行方向を合致
させ、さらに偏光面がポラライザlと直交するアナライ
ザ6によって同一平面内で偏光する2光線の成分を取り
出して両者を干渉させる。
As it is, the traveling directions of the two rays are different, so the lens 4
A Wollaston prism 5 similar to the Wollaston prism 2 placed at the rear focal position matches the traveling direction, and an analyzer 6 whose plane of polarization is orthogonal to the polarizer l separates the components of the two light beams polarized in the same plane. Take it out and let the two interfere.

次に、2光線の各部での状態を第1図(b)により説明
すると、ポラライザ1を通過した直線偏光Sは、ウォラ
ストンプリズム2とレンズ3により光軸と直交する方向
にSpだけずれた2つの光線となり、周期開口をもつ試
料7により強度分布が変化し、レンズ4とウォラストン
プリズム5によってSPだけ元に戻されてアナライザ6
によって干渉することになる。この場合、試料に欠陥が
なければ、シェアff1spと繰り返しピッチが一致し
ているので干渉する2光線は位相、強度ともに同一であ
り、アナライザがポラライザと直交関係に配置されてい
るので、両者は打ち消し合って暗くなる。一方、遮光性
の欠陥8または遮光部のピンホールなどがあると、位相
は一致していても光の振幅が異なるために完全には消去
されず、また開口部に透明物質9がある場合には、振幅
は一致していても位相が変化するため同様に消去されず
、輝点として観測されることになる。
Next, to explain the state of each part of the two light beams with reference to FIG. They become two light beams, the intensity distribution of which is changed by the sample 7 with a periodic aperture, and only SP is returned to its original state by the lens 4 and the Wollaston prism 5, and then the analyzer 6
This will cause interference. In this case, if there is no defect in the sample, the two interfering beams will have the same phase and intensity because the shear ff1sp and the repetition pitch are the same, and since the analyzer and the polarizer are arranged orthogonally, the two will cancel out. It becomes dark. On the other hand, if there is a light-shielding defect 8 or a pinhole in the light-shielding part, even if the phases match, the amplitude of the light will be different, so it will not be completely erased, and if there is a transparent substance 9 in the opening, Even if the amplitudes match, the phases change, so they are not erased in the same way and are observed as bright spots.

シェア量は、ウォラストンプリズム2による分離角θと
レンズ3の焦点距離によって決定されるので、レンズ3
にズームレンズを用いればシェア量をレンズの焦点距離
変化によって調整することができ、種々の配列ピッチの
試料に対応することが可能である。
The amount of shear is determined by the separation angle θ of the Wollaston prism 2 and the focal length of the lens 3.
If a zoom lens is used, the shear amount can be adjusted by changing the focal length of the lens, and it is possible to accommodate samples with various array pitches.

また上記実施例では試料が透明である透過型について説
明したが、試料が不透明なものでもよく、その場合は第
2図に示すように反射型微分干渉計を使用する。
Further, in the above embodiment, a transmission type in which the sample is transparent has been described, but the sample may be opaque, and in that case, a reflection type differential interferometer is used as shown in FIG.

第2図は反射型微分干渉計を用いた本発明の他の実施例
を示す図で、図中、21は集光レンズ、22はポラライ
ザ、23はハーフミラ−124はノマルスキープリズム
、25は対物レンズ、26は試料、27はアナライザ、
2日は常光線、29は異常光線である。
FIG. 2 is a diagram showing another embodiment of the present invention using a reflective differential interferometer, in which 21 is a condenser lens, 22 is a polarizer, 23 is a half mirror, 124 is a Nomarski prism, and 25 is an objective lens. , 26 is a sample, 27 is an analyzer,
The 2nd is an ordinary ray, and the 29th is an extraordinary ray.

本実施例では、図示しない単色光源からの光を集光レン
ズ21、ポラライザ22を通して直線偏光とし、ハーフ
ミラ−23で反射させ、ノマルスキープリズムに入射さ
せると、常光線2日と異常光線29との2つの直線偏光
が得られる。そして、2つの直線偏光が交わる点に対物
レンズ25の後側焦点を一致させると、試料表面に互い
にコヒーレントで偏光面が直交する2光束を落射させた
ことになる。これらが試料面で反射された後、再びノマ
ルスキープリズムに入射し、一般に楕円偏光となってプ
リズムを出る。これをハーフミラ−23を通してポララ
イザ22と直交関係にあるアナライザ27で同一偏光成
分を取り出して干渉させると、試料表面の凹凸による光
路差があれば、第1図の場合と同様に輝点として・検出
することができる。なお、偏光プリズムとしてはノマル
スキープリズムでなくウォラストンプリズムを用いても
よいことは言うまでもない。
In this embodiment, when light from a monochromatic light source (not shown) is linearly polarized through a condenser lens 21 and a polarizer 22, reflected by a half mirror 23, and incident on a Nomarski prism, two ordinary rays 2 and an extraordinary ray 29 are generated. Two linearly polarized lights are obtained. When the rear focus of the objective lens 25 is made to coincide with the point where the two linearly polarized lights intersect, two beams of light that are coherent and whose polarization planes are perpendicular to each other are incident on the sample surface. After being reflected by the sample surface, the light enters the Nomarski prism again and generally exits the prism as elliptically polarized light. When this is passed through a half mirror 23 to an analyzer 27 which is perpendicular to the polarizer 22, the same polarized light components are taken out and interfered with. If there is an optical path difference due to unevenness on the sample surface, it is detected as a bright spot as in the case of Fig. 1. can do. It goes without saying that the polarizing prism may be a Wollaston prism instead of the Nomarski prism.

なお、上記各実施例において、便宜上使用する光は単色
光として説明したが、本発明は白色光によっても可能で
あり、その場合、波長の整数倍の光路差に相当する2光
線はアナライザを通過する時に互いに干渉で打ち消しあ
い、残りの波長を加え合わせた干渉色が得られる。その
ため分光強度の変化も検出することができることになり
、着色した周期パターンの欠陥も検査することができる
In each of the above embodiments, the light used was explained as monochromatic light for convenience, but the present invention is also possible with white light. In that case, two light beams corresponding to an optical path difference of an integral multiple of the wavelength pass through the analyzer. When these wavelengths cancel each other out, an interference color is obtained by adding the remaining wavelengths. Therefore, changes in spectral intensity can also be detected, and defects in colored periodic patterns can also be inspected.

また2つの光線のシェア量を得る方法として、第3図に
示すような光学軸を直交させた2つの複屈折体を貼り合
わせたサバール板を使用することも可能である。図中、
31はサバール板、31aは第1の複屈折体、31bは
第2の複屈折体である。
Furthermore, as a method of obtaining the shear amount of the two light rays, it is also possible to use a Savart plate in which two birefringent materials whose optical axes are orthogonal are bonded together as shown in FIG. In the figure,
31 is a Savard plate, 31a is a first birefringent body, and 31b is a second birefringent body.

第3図(a)において、第1の複屈折体31aの表面に
垂直に、かつ光学軸に斜めに入射した光は互いに直交す
る2つの偏光、即ち常光線32、異常光線33となる。
In FIG. 3(a), light incident perpendicularly to the surface of the first birefringent body 31a and obliquely to the optical axis becomes two polarized lights perpendicular to each other, that is, an ordinary ray 32 and an extraordinary ray 33.

常光線32は真っ直ぐ進み、異常光線33はスネルの法
則に逆らって斜めに進行する。第1の複屈折体31aを
通過した光は第2の複屈折体32bに入射するが、その
光学軸は第1の複屈折体に対して90°異なっているの
で、常光線32は異常光線35となって斜めに進行し、
異常光線33は常光線34となって真っ直ぐに進行する
。結果として図示するように全く平行な2つの光線とな
り、しかも2つの光線に対して光路差を無くすことも可
能である。こうして、所定のシェア量の2光線を得るこ
とができる。
The ordinary ray 32 travels straight, and the extraordinary ray 33 travels obliquely, contrary to Snell's law. The light that has passed through the first birefringent body 31a enters the second birefringent body 32b, but its optical axis is different from the first birefringent body by 90 degrees, so the ordinary ray 32 is different from the extraordinary ray. 35 and progress diagonally,
The extraordinary ray 33 becomes an ordinary ray 34 and travels straight. As a result, as shown in the figure, there are two completely parallel light rays, and it is also possible to eliminate the optical path difference between the two light rays. In this way, two light beams with a predetermined share amount can be obtained.

また、第3図(b)に示すように2つのサバール板36
.37を模型に形成し、光軸に対して垂直方向に両者を
相対的に移動可能とすることによりシェア最を可変とす
ることもできる。
In addition, as shown in FIG. 3(b), two Savard plates 36
.. It is also possible to make the shear maximum variable by forming 37 into a model and making both relatively movable in the direction perpendicular to the optical axis.

〔発明の効果] 以上のように本発明によれば、周期性パターンの単位パ
ターン配列ピッチ、またはその整数倍のシェア量で二光
線干渉を行うようにしたので、試料上の対応する2点で
光の強度、位相に相違が生ずれば干渉によって周囲と明
るさが異なり、明るさの変化だけに着目して欠陥検出を
行うことができるの、そのため、試料或いは装置は静止
状態のまま検出可能であり、また欠陥部以外は干渉する
2光線は互いにキャンセルされてしまうため、パターン
の周辺部が強調されるようなことがなく、さらにシェア
量を可変とすることにより任意のパターンの検査を行う
ことが可能となる。そして照明光が単色光でない場合は
、分光強度の変化も検出することができるので、着色し
た周期パターンの欠陥も検査することが可能である。
[Effects of the Invention] As described above, according to the present invention, two-beam interference is performed at the unit pattern arrangement pitch of the periodic pattern or at an integral multiple thereof, so that two-beam interference is performed at two corresponding points on the sample. If there is a difference in the intensity or phase of the light, the brightness will be different from the surroundings due to interference, and defects can be detected by focusing only on the change in brightness. Therefore, the sample or device can be detected while it is in a stationary state. In addition, since the two interfering beams cancel each other except for defective areas, the peripheral areas of the pattern are not emphasized, and by making the shear amount variable, any pattern can be inspected. becomes possible. If the illumination light is not monochromatic light, changes in spectral intensity can also be detected, making it possible to inspect defects in colored periodic patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の周期性パターンの検査方法の一実施例
を示す図、第2図は本発明の他の実施例を示す図、第3
図はサバール板の構成を示す図、第4図は従来の周期性
パターンの検査方法を説明するための図、第5図は周期
性パターンとその欠陥を説明するための図、第6図は従
来の欠陥検出方法を説明するための図、第7図は色分解
フィルタの例を示す図、第8図は従来の色分解フィルタ
の欠陥検出方法を説明するための図である。 1・・・ポラライザ、2.5・・・ウォラストンプリズ
ム、3.4・・・レンズ、6・・・アナライザ、7・・
・被検査パターン。 第4図 出 願   人
FIG. 1 is a diagram showing one embodiment of the periodic pattern inspection method of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG.
The figure shows the configuration of the Savard plate, Figure 4 is a diagram to explain the conventional periodic pattern inspection method, Figure 5 is a diagram to explain the periodic pattern and its defects, and Figure 6 is a diagram to explain the conventional periodic pattern inspection method. FIG. 7 is a diagram for explaining a conventional defect detection method, FIG. 7 is a diagram showing an example of a color separation filter, and FIG. 8 is a diagram for explaining a conventional defect detection method for a color separation filter. 1... Polarizer, 2.5... Wollaston prism, 3.4... Lens, 6... Analyzer, 7...
・Pattern to be inspected. Figure 4 Applicant

Claims (4)

【特許請求の範囲】[Claims] (1)単位パターンが周期的に繰り返し配列された周期
性パターンの欠陥を検査する方法において、共通光路型
二光線干渉計のシュア量を単位パターンの配列ピッチま
たはその整数倍に一致させた光学系によって得られる像
に基づいて検査することを特徴とする周期性パターンの
検査方法。
(1) In a method for inspecting defects in a periodic pattern in which unit patterns are periodically and repeatedly arranged, an optical system in which the shear amount of a common optical path type two-beam interferometer is made to match the arrangement pitch of the unit patterns or an integral multiple thereof A method for inspecting a periodic pattern, characterized in that inspection is performed based on an image obtained by.
(2)干渉部が偏光型共通光路二光線干渉計である請求
項1記載の周期性パターンの検査方法。
(2) The method for inspecting a periodic pattern according to claim 1, wherein the interference section is a polarization type common optical path two-beam interferometer.
(3)シェアー量が変更可能な干渉計を用いる請求項1
記載の周期性パターンの検査方法。
(3) Claim 1 using an interferometer whose shear amount can be changed
Method for inspecting the periodicity pattern described.
(4)光源として白色光源を用いた請求項1記載の周期
性パターンの検査方法。
(4) The periodic pattern inspection method according to claim 1, wherein a white light source is used as the light source.
JP63255457A 1988-10-11 1988-10-11 Inspection method of periodic pattern Expired - Fee Related JP2653853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63255457A JP2653853B2 (en) 1988-10-11 1988-10-11 Inspection method of periodic pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63255457A JP2653853B2 (en) 1988-10-11 1988-10-11 Inspection method of periodic pattern

Publications (2)

Publication Number Publication Date
JPH02102404A true JPH02102404A (en) 1990-04-16
JP2653853B2 JP2653853B2 (en) 1997-09-17

Family

ID=17279032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63255457A Expired - Fee Related JP2653853B2 (en) 1988-10-11 1988-10-11 Inspection method of periodic pattern

Country Status (1)

Country Link
JP (1) JP2653853B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057194A1 (en) * 2003-12-09 2005-06-23 Applied Materials, Inc. Differential evaluation of adjacent regions for change in reflectivity
US7136163B2 (en) 2003-12-09 2006-11-14 Applied Materials, Inc. Differential evaluation of adjacent regions for change in reflectivity
US7190458B2 (en) 2003-12-09 2007-03-13 Applied Materials, Inc. Use of scanning beam for differential evaluation of adjacent regions for change in reflectivity
US7330259B2 (en) 2004-05-27 2008-02-12 Nova Measuring Instruments Ltd. Optical measurements of patterned articles
JPWO2011004534A1 (en) * 2009-07-09 2012-12-13 株式会社日立ハイテクノロジーズ Semiconductor defect classification method, semiconductor defect classification apparatus, semiconductor defect classification program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224539A (en) * 1988-07-12 1990-01-26 Fujitsu Ltd Optical pattern checking method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224539A (en) * 1988-07-12 1990-01-26 Fujitsu Ltd Optical pattern checking method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057194A1 (en) * 2003-12-09 2005-06-23 Applied Materials, Inc. Differential evaluation of adjacent regions for change in reflectivity
US7136163B2 (en) 2003-12-09 2006-11-14 Applied Materials, Inc. Differential evaluation of adjacent regions for change in reflectivity
US7190458B2 (en) 2003-12-09 2007-03-13 Applied Materials, Inc. Use of scanning beam for differential evaluation of adjacent regions for change in reflectivity
US7330259B2 (en) 2004-05-27 2008-02-12 Nova Measuring Instruments Ltd. Optical measurements of patterned articles
JPWO2011004534A1 (en) * 2009-07-09 2012-12-13 株式会社日立ハイテクノロジーズ Semiconductor defect classification method, semiconductor defect classification apparatus, semiconductor defect classification program
US8595666B2 (en) 2009-07-09 2013-11-26 Hitachi High-Technologies Corporation Semiconductor defect classifying method, semiconductor defect classifying apparatus, and semiconductor defect classifying program

Also Published As

Publication number Publication date
JP2653853B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
JP3610837B2 (en) Sample surface observation method and apparatus, defect inspection method and apparatus
JP2910956B2 (en) Method and apparatus for inspecting surface for defects having repetitive patterns
US5805278A (en) Particle detection method and apparatus
US5659390A (en) Method and apparatus for detecting particles on a surface of a semiconductor wafer having repetitive patterns
WO2010095342A1 (en) Defect examining method and defect examining device
JP3483948B2 (en) Defect detection device
JP2004286741A (en) Method and apparatus for high-throughput inspection of large flat patterned media using dynamically programmable optical spatial filtering
JPH095252A (en) Inspecting equipment of foreign substance on mask
US7924517B2 (en) Spatial filter, a system and method for collecting light from an object
US6879391B1 (en) Particle detection method and apparatus
JP2008076962A (en) Optical inspection apparatus
JP5571969B2 (en) Defect inspection method and apparatus
JPS61256237A (en) Defect inspection for cyclic pattern
JP2653853B2 (en) Inspection method of periodic pattern
JPH08327557A (en) Device and method for inspecting defect
JP3519813B2 (en) Defect detection method and defect detection device
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JP3886619B2 (en) Object defect inspection method and inspection apparatus
JP3390931B2 (en) Inspection method for colored pattern defects
JPH0682381A (en) Foreign matter inspection device
JPH07151704A (en) Inspection device for color filter for viewfinder
JP2000180373A (en) Method and apparatus for inspection of defect
JPH0682373A (en) Inspection of defect
JPH11190698A (en) Defect inspection device
JPH09281401A (en) Object inspecting instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees