JP3390931B2 - Inspection method for colored pattern defects - Google Patents
Inspection method for colored pattern defectsInfo
- Publication number
- JP3390931B2 JP3390931B2 JP26312093A JP26312093A JP3390931B2 JP 3390931 B2 JP3390931 B2 JP 3390931B2 JP 26312093 A JP26312093 A JP 26312093A JP 26312093 A JP26312093 A JP 26312093A JP 3390931 B2 JP3390931 B2 JP 3390931B2
- Authority
- JP
- Japan
- Prior art keywords
- defect
- light
- signal
- colored pattern
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Filters (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は,液晶デイスプレイ等に
使用されるカラーフイルター等の外観検査方法に関し、
特に、微小白欠陥を検出する方法に関する。一定の光学
的性質、形状をもつ着色単位パターンが、一次元方向、
或いは二次元方向に規則正しく、繰り返し配列されてい
る試料(工業製品)、或いは単位パターンが、その光学
的性質、形状および一次元方向、二次元方向の配列ピッ
チを徐々に変化させながら繰り返し配列されている試料
(工業製品)に発生する欠陥を検査する方法に関するも
のである。以下、一定の光学的性質、形状をもつ着色単
位パターンが、一次元方向、或いは二次元方向に規則正
しく、繰り返し配列されている領域を周期性パターン領
域と言い、単位パターンの光学的性質、形状および一次
元方向、二次元方向の配列ピッチが徐々に変化しながら
繰り返し配列されている領域を略周期性パターン領域と
言う。
【0002】
【従来の技術】従来、周期性パターン領域ないし略周期
性パターン領域を有する試料(工業製品)の欠陥検査に
ついては、パターンの配列の単位、及び欠陥形状を解像
できる顕微鏡撮影装置によって、ビデオ信号を調べてパ
ターン認識を行う第一の方法、欠陥の無いパターンを被
検査パターンと同様に撮影して、両パターンから得られ
た信号を比較して欠陥を検出する第二の方法、或いは周
期的開口を持つ製品についてはコヒーレント光を照射し
た時の周期的開口による光の回折像を利用する光学的フ
ーリエ変換、空間フイルタリング法により欠陥を検出す
る第三の方法、等が提案されている。しかしながら、い
ずれの方法においても、微小白欠陥の検査については、
自動検出が難しく、撮像手段を検出倍率をあげる等によ
り高解像度化すると、検査タクトが増加してしまう問題
があり、検査タクトを短縮するためには、装置費用が増
加してしまう問題があった。特に、LCD用カラーフイ
ルター等の中間調の周期性着色パターン領域ないし略周
期性着色パターン領域を有する試料(工業製品)の場合
には、難しく、顕微鏡を用い、人間の目により、直接透
過光により欠陥を観察する方法が、一般に用いられてお
り、微小白欠陥の検査における高感度な自動欠陥検出が
望まれていた。
【0003】
【発明が解決しようとする課題】本発明の検査方法は、
このような状況のもと、LCD用カラーフイルター等の
周期性着色パターン領域ないし略周期性着色パターン領
域を有する試料(工業製品)の微小白欠陥を高感度に自
動検出する方法を提供しようとするものである。
【0004】
【課題を解決するための手段】本発明の着色パターン欠
陥検査方法は、周期性着色パターン領域もしくは略周期
性着色パターン領域を有する試料に対し、暗視野光と明
視野光を同時に透過照明し、撮像手段により試料の透過
光を検出し、画像信号を得て、得られた画像信号に強調
処理を施した信号を得て、この信号に対し、所定のスラ
イスレベルで2値化するスライス処理を施すことによ
り、欠陥部以外をマスキングし欠陥部のみを検出するも
のである。尚、ここでは、明視野光とは、照明光で光軸
が撮像手段の受光部の光軸と一致するもので、暗視野光
とは、照明光で光軸が撮像手段の受光部の光軸と一致し
ないものである。ここで強調処理として一例を挙げる。
先ず、試料の同一箇所において複数回、撮像手段によっ
て撮像し、画像信号を得て、得られた複数回分の画像信
号を積算、平均処理する。これは、欠陥部を含む箇所に
ついては、図4の(a)のような光透過率分布をえる
が、撮像装置からのビデオ信号は(b)のように、パタ
ーンの照明ムラ、撮像面の感度ムラ等によるゆるやかな
信号変化(シエーデイング)とビデオ信号回路で発生す
るランダムノイズ、および光学系に付着したゴミなどに
よる信号の局部的変化とが含まれた信号となってしまう
ことに対応するもので、同一箇所において、複数回、撮
像手段によって撮像し、画像信号を得て、得られた複数
回分の画像信号を積算、平均処理するもので、これによ
り(c)のように、加算回数をNとした場合には、ラン
ダムノイズの比率は1/N1/2 となる。ここで、A1、
B1、A2、B2は欠陥部を示すもので、Cは光学系に
付着したゴミ等による信号の局部的変化を示すものであ
る。次いで、撮像する位置をわずかにずらして、同様に
積算、平均処理することにより、信号(c)をわずかに
変位させた信号(d)を得ることができ、(c)と
(d)との差信号をえると(e)のようになり、ゆるや
かな信号変化(シエーデイング)や撮像する位置の移動
により変化しない信号分が除去される。ここでは、光の
透過率変化による信号分と低減されたランダムノイズ成
分だけが残るが、更に、この信号(e)について、近傍
平均値の減算あるいは微分処理を施すと、(f)のよう
な、ゆるやかな信号変化(シエーデイング)成分も除去
され、結果として、得られた信号(f)は、欠陥部に相
当のみが局部的に変化しており、強調されていることが
分かる。又、スライス処理による2値化については、信
号(f)を所定のスライスレベルSLで処理するもの
で、欠陥部のみを判定し2値化するものである。尚、図
4の(e)での欠陥部における信号の反転の順序によっ
て、欠陥の種類(白欠陥、黒欠陥)が識別できる。
【0005】このような、強調処理、スライス処理によ
り、白、黒欠陥の検出は可能であるが、撮像手段に得ら
れる信号自体の照明によるS/Nに限度があり、例え
ば、CCDカメラの解像度が30μmの場合5μmφ以
下のの微小の白欠陥、黒欠陥については、欠陥として検
出することは、従来、難しいとされていたが、本発明の
パターン欠陥検査方法は、透過光暗視野照明を用いるこ
とにより、撮像手段に得られる信号自体の照明によるS
/Nを向上させ、5μmφ以下の微小の白欠陥の検出を
可能にしている。尚、ここでは、白欠陥とは、着色パタ
ーン部のピンホールや絵柄欠けを言い、黒欠陥とは、着
色パターン部の所定の絵柄以外の余分な着色部または遮
光部を言っている。暗視野光は、光軸が撮像手段の受光
部の光軸と一致しない為、受光部への暗視野照明による
光は、周期性パターンまたは略周期性パターン部の開口
部透過光は受光部へ入射されない為、ほぼ、欠陥部の回
折光のみが、検出される為、明視野照明の場合に比べS
/Nが大きいのである。透過暗視野照明を併用すること
により、S/Nが向上するのは、撮像手段により、得ら
れる照明からの透過光からの信号のS/Nを透過暗視野
照明の場合、S1/N1 、透過明視野照明の場合、S2
/N2 とすると、S1 /N1 >S2 /N2であることよ
り、(S1 +S2 )/(N1 +N2 )>S2 /N2 とな
るためであるが、透過暗視野照明を単独使用する場合に
おいては、S1 /N1 >S2 /N2であり、言うまでも
ない。
【0006】
【作用】本発明の着色パターンの欠陥検査方法は、透過
照明手段に暗視野光を用いることにより、撮像手段によ
り、試料(工業製品)を撮像する際の、撮像手段へのS
/Nを向上させ、結果として、微小白欠陥の検出を可能
とするものであり、得られた信号に強調処理、スライス
処理等の信号処理を施すことにより、自動化による微小
白欠陥検出を可能としている。
【0007】
【実施例】本発明の実施例1を以下、図にそって説明す
る。図1は実施例1の検出方法を実施する構成図で、検
査試料としてLCDカラーフイルターを用いた場合で、
CCDラインセンサにより欠陥を自動検査する装置を示
している。1はCCDラインセンサを用いた撮像カメ
ラ、2はLCDカラーフイルター、3、3a、3bは光
源、4は画像処理装置である。検査試料のLCDカラー
フイルターは、赤、緑、青に着色された着色パターン部
が、周期的にストライプ状に配列されたもので、予め、
着色パターン部の所定の位置に、所定サイズの白欠陥
を,複数個作製されたテスト用の着色パターンをもった
ものである。試料と撮像カメラ1等の撮像するための装
置、全てを静止しておいた場合には、撮像カメラ1は1
個以上のCCDラインセンサを直線状に配置されてお
り、カラーフイルター2の像が、レンズによりCCDラ
インセンサの受光面に結像されるもので、カラーフイル
ターの一直線上の像のみが撮像されるが、本実施例1
は、撮像カメラ1を直線状のCCDラインセンサと直交
する方向に移動して試料の全面を撮像するようにしてい
る。光源3は撮像カメラ1の視野全体のカラーフイルタ
ーを透過明視野照明しており、光源3a、3bは撮像カ
メラ1の視野全体のカラーフイルターを透過暗視野照明
している。透過暗視野光が試料の着色部の微細なピンホ
ール部分に照明されると回折光がCCDラインセンサ上
に結像することにより、透過明視野光のみの照明の場合
に比較してS/Nが向上し、より微細な白欠陥を検出す
ることができた。比較、赤色着色パターンについての結
果を以下の表1にあげる。従来の透過明視野照明の場合
には、CCDカメラの解像度30μmにて、5μmφ未
満サイズ欠陥検出率0%、5μmφ〜8μmφサイズ欠
陥検出率0%、8μmφサイズ以上で欠陥検出率50%
に対し、実施例1の透過暗視野照明と透過明視野照明併
用した場合には、5μmφ未満サイズ欠陥検出率50
%、5μmφ〜8μmφサイズ欠陥検出率90%、8μ
mφサイズ以上で欠陥検出率100%となり白欠陥検出
率が格段と向上したことが分かる。
尚、1μmφ以下のサイズの黒欠陥に関しては、、
とも検出はできず、15μmφ以上サイズの欠陥に関し
ては、白欠陥、黒欠陥とも暗視野照明を用いた場合と、
用いない場合については、差が見られなかった。赤色以
外のパターン部についても、ほぼこれと同じような結果
を得ることができた。以下に、実施例1とは別の他の検
査方法を以下に挙げる。実施例2を図2を用いて説明す
る。LCD用カラーフイルター22をCCDエリアセン
サーを用いた撮像カメラ21により自動検査する場合
で、LCD用カラーフイルター22の全面または一部を
撮像カメラ21で一度に撮影する。23、23aは光
源、24は画像処理装置である。光源23は、撮像カメ
ラ21の視野全体のカラーフイルター部を透過明視野照
明しており、光源23aはリングフアイバー光源で、撮
像カメラ1の視野全体のカラーフイルター部を透過暗視
野照明する。
【0008】
【発明の効果】上記のような構成にすることにより、本
発明の欠陥検出方法は、着色周期性パターン領域もしく
は着色略周期性パターン領域を有する試料に対して、自
動化された、高感度の白欠陥検出方法を提供するもの
で、特に、微小な白欠陥の検出に効果的な欠陥検出方法
の提供を可能としている。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting the appearance of a color filter or the like used for a liquid crystal display or the like.
In particular, the present invention relates to a method for detecting a minute white defect. Colored unit patterns with certain optical properties and shapes
Alternatively, samples (industrial products) or unit patterns regularly and repeatedly arranged in two-dimensional directions are repeatedly arranged while gradually changing the optical properties, shapes, and arrangement pitches in one-dimensional and two-dimensional directions. The present invention relates to a method for inspecting a defect generated in a sample (industrial product). Hereinafter, a region in which a colored unit pattern having a certain optical property and shape is regularly and repeatedly arranged in a one-dimensional direction or a two-dimensional direction is referred to as a periodic pattern region, and the optical property, shape and A region that is repeatedly arranged while the arrangement pitch in the one-dimensional direction and the two-dimensional direction gradually changes is referred to as a substantially periodic pattern region. 2. Description of the Related Art Conventionally, a defect inspection of a sample (industrial product) having a periodic pattern area or a substantially periodic pattern area has been performed by a microscope photographing apparatus capable of resolving a pattern arrangement unit and a defect shape. A first method of examining a video signal and performing pattern recognition, capturing a pattern having no defect in the same manner as the pattern to be inspected, and comparing the signals obtained from both patterns to detect a defect, Alternatively, for products having a periodic aperture, an optical Fourier transform using a diffraction image of the light due to the periodic aperture when irradiating coherent light, a third method of detecting defects by a spatial filtering method, and the like have been proposed. ing. However, in any of the methods, the inspection for the minute white defect is as follows.
If automatic detection is difficult and the resolution of the imaging means is increased by increasing the detection magnification, etc., there is a problem that the inspection tact increases, and in order to shorten the inspection tact, there is a problem that the apparatus cost increases. . In particular, in the case of a sample (industrial product) having a halftone periodic colored pattern region or a substantially periodic colored pattern region such as an LCD color filter, it is difficult, and it is difficult for human eyes to directly transmit the light by using a microscope. A method of observing a defect is generally used, and high-sensitivity automatic defect detection in inspection of a minute white defect has been desired. [0003] The inspection method of the present invention comprises:
Under such circumstances, a method for automatically detecting, with high sensitivity, a minute white defect in a sample (industrial product) having a periodic colored pattern region or a substantially periodic colored pattern region, such as an LCD color filter, is to be provided. Things. A colored pattern defect inspection method according to the present invention transmits a dark field light and a bright field light simultaneously to a sample having a periodic colored pattern area or a substantially periodic colored pattern area. Illumination, the transmitted light of the sample is detected by the imaging means, an image signal is obtained, a signal obtained by performing an enhancement process on the obtained image signal is obtained, and this signal is binarized at a predetermined slice level. By performing a slicing process, masking is performed on portions other than the defective portion, and only the defective portion is detected. Here, the bright-field light is illumination light whose optical axis coincides with the optical axis of the light-receiving unit of the imaging means, and dark-field light is illumination light whose optical axis is the light of the light-receiving part of the imaging means. It does not match the axis. Here, an example will be given as the emphasis processing.
First, an image is picked up by the image pickup means a plurality of times at the same portion of the sample, an image signal is obtained, and the obtained image signals for the plurality of times are integrated and averaged. This is because the light transmittance distribution as shown in FIG. 4A is obtained for a portion including a defective portion, but the video signal from the image pickup device has the pattern illumination unevenness and the image pickup surface as shown in FIG. A signal that responds to a signal that includes a gradual signal change (shading) due to uneven sensitivity, random noise generated in a video signal circuit, and a local change in the signal due to dust or the like attached to an optical system. In the same place, an image signal is obtained a plurality of times by the imaging means, an image signal is obtained, and the obtained image signal is integrated and averaged for a plurality of times, whereby the number of additions is reduced as shown in (c). If N, the ratio of random noise is 1 / N1 / 2 . Here, A1,
B1, A2, and B2 indicate defective portions, and C indicates a local change of a signal due to dust or the like attached to the optical system. Next, by slightly shifting the position to be imaged and similarly integrating and averaging, a signal (d) obtained by slightly displacing the signal (c) can be obtained. When the difference signal is obtained, the signal becomes as shown in (e), and a signal component that does not change due to a gradual signal change (shading) or a movement of the imaging position is removed. Here, only the signal component due to the change in light transmittance and the reduced random noise component remain, and when this signal (e) is further subjected to a subtraction or differentiation process of the neighborhood average value, as shown in FIG. It can be seen that the gradual signal change (shading) component is also removed, and as a result, the obtained signal (f) is locally changed only in a portion corresponding to the defective portion, and is emphasized. In the binarization by the slice processing, the signal (f) is processed at a predetermined slice level SL, and only the defective portion is determined and binarized. It should be noted that the type of defect (white defect, black defect) can be identified by the order of signal inversion at the defective portion in FIG. [0005] White and black defects can be detected by such an emphasizing process and a slicing process, but the S / N by the illumination of the signal itself obtained by the imaging means is limited. Is 30 μm, it has conventionally been considered difficult to detect minute white defects and black defects of 5 μmφ or less as defects, but the pattern defect inspection method of the present invention uses transmitted light dark field illumination. Thereby, S by the illumination of the signal itself obtained by the imaging means
/ N is improved to enable detection of minute white defects of 5 μmφ or less. Here, a white defect refers to a pinhole or a missing pattern in a colored pattern portion, and a black defect refers to an extra colored portion or a light-shielding portion other than a predetermined pattern in the colored pattern portion. Since the optical axis of the dark-field light does not coincide with the optical axis of the light-receiving unit of the imaging means, light from the dark-field illumination of the light-receiving unit is transmitted to the light-receiving unit through the aperture of the periodic pattern or the substantially periodic pattern. Since it is not incident, almost only the diffracted light of the defect is detected, so that S
/ N is large. The S / N is improved by the combined use of the transmitted dark-field illumination because the S / N of the signal from the transmitted light from the illumination obtained by the imaging means is S 1 / N 1 in the case of the transmitted dark-field illumination. , in the case of a transmission bright field illumination, S 2
/ N 2 , S 1 / N 1 > S 2 / N 2 , and (S 1 + S 2 ) / (N 1 + N 2 )> S 2 / N 2. in the case of single use field illumination is S 1 / N 1> S 2 / N 2, of course. According to the method for inspecting a defect of a colored pattern according to the present invention, the dark field light is used for the transmitted illumination means, so that the imaging means can capture an image of the sample (industrial product) by the imaging means.
/ N is improved, and as a result, it is possible to detect a minute white defect. By performing signal processing such as enhancement processing and slicing processing on the obtained signal, it is possible to detect a minute white defect by automation. I have. A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram for implementing the detection method of Example 1, in which an LCD color filter is used as a test sample.
1 shows an apparatus for automatically inspecting for defects using a CCD line sensor. 1 is an imaging camera using a CCD line sensor, 2 is an LCD color filter, 3, 3a and 3b are light sources, and 4 is an image processing device. The LCD color filter of the test sample has a pattern in which red, green, and blue colored pattern portions are periodically arranged in a stripe shape.
At a predetermined position of the color pattern portion, a white defect of a predetermined size is provided with a plurality of test color patterns produced. When all of the sample and the imaging device such as the imaging camera 1 are kept stationary, the imaging camera 1
More than two CCD line sensors are arranged in a straight line, and the image of the color filter 2 is formed on the light receiving surface of the CCD line sensor by a lens, and only an image on a straight line of the color filter is taken. However, Example 1
Moves the imaging camera 1 in a direction orthogonal to the linear CCD line sensor to capture an image of the entire surface of the sample. The light source 3 illuminates the color filter of the entire field of view of the imaging camera 1 with transmitted bright-field illumination, and the light sources 3a and 3b illuminate the color filter of the entire field of view of the imaging camera 1 with transmitted dark-field illumination. When the transmitted dark-field light is illuminated on the fine pinhole portion of the colored portion of the sample, the diffracted light forms an image on the CCD line sensor. And finer white defects could be detected. Table 1 shows the results of the comparison and the red coloring pattern. In the case of conventional transmitted bright-field illumination, at a resolution of a CCD camera of 30 μm, a defect detection rate of a defect smaller than 5 μmφ is 0%, a defect detection rate of 5 μmφ to 8 μmφ is 0%, and a defect detection rate of 8 μmφ or more is 50%
On the other hand, when the transmission dark-field illumination and the transmission bright-field illumination of Example 1 were used together, the size defect detection rate of less than 5 μmφ 50
%, 5μmφ to 8μmφ size defect detection rate 90%, 8μ
It can be seen that the defect detection rate was 100% at mφ size or more, and the white defect detection rate was significantly improved. In addition, regarding the black defect having a size of 1 μmφ or less,
And the defect having a size of 15 μmφ or more can be detected using dark-field illumination for both white defect and black defect.
No difference was seen when not used. Almost the same results were obtained for the pattern portions other than red. Hereinafter, another inspection method different from the first embodiment will be described below. Embodiment 2 will be described with reference to FIG. In the case where the LCD color filter 22 is automatically inspected by the imaging camera 21 using the CCD area sensor, the whole or a part of the LCD color filter 22 is photographed by the imaging camera 21 at one time. 23 and 23a are light sources, and 24 is an image processing device. The light source 23 illuminates the color filter portion of the entire field of view of the imaging camera 21 with transmitted bright field illumination. The light source 23a is a ring fiber light source and illuminates the color filter portion of the entire field of view of the imaging camera 1 with transmitted dark field illumination. With the above-described configuration, the defect detection method of the present invention is an automated, highly efficient method for detecting a sample having a colored periodic pattern area or a colored substantially periodic pattern area. The present invention provides a method for detecting a white defect having high sensitivity, and in particular, it is possible to provide a method for detecting a defect which is effective for detecting a minute white defect.
【図面の簡単な説明】 【図1】本発明の実施例1の装置概略図 【図2】本発明の実施例2の装置概略図 【図3】本発明の強調処理を説明するための図 【符号の説明】 1 、21 撮像装置 2 、22 LCDカラーフイルター 3 、23 明視野光源 3a 、3b、23a 暗視野光源 4 、24 画像処理装置[Brief description of the drawings] FIG. 1 is a schematic view of an apparatus according to a first embodiment of the present invention. FIG. 2 is a schematic view of an apparatus according to a second embodiment of the present invention. FIG. 3 is a diagram for explaining an emphasis process according to the present invention; [Explanation of symbols] 1, 21 imaging device 2,22 LCD color filter 3, 23 bright field light source 3a, 3b, 23a Dark field light source 4, 24 image processing device
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−201335(JP,A) 特開 平6−208017(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/84 - 21/958 G01M 11/00 - 11/08 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-201335 (JP, A) JP-A-6-208017 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/84-21/958 G01M 11/00-11/08
Claims (1)
性着色パターン領域を有する試料に透過照明して観察さ
れる白欠陥を、撮像手段によって撮像し、得られた画像
信号に強調処理を施すことにより、前記白欠陥を検出す
る自動検査方法において、透過照明手段に明視野光と暗
視野光とを同時に用いることを特徴とする着色パターン
の欠陥検査方法。(57) [Claim 1] A white defect observed by transmitting illumination to a sample having a periodic colored pattern region or a substantially periodic colored pattern region is imaged by an imaging unit and obtained. In the automatic inspection method for detecting a white defect by applying an emphasis process to an image signal, a defect inspection method for a colored pattern is characterized in that bright-field light and dark-field light are simultaneously used for a transmitted illumination unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26312093A JP3390931B2 (en) | 1993-09-28 | 1993-09-28 | Inspection method for colored pattern defects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26312093A JP3390931B2 (en) | 1993-09-28 | 1993-09-28 | Inspection method for colored pattern defects |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0798282A JPH0798282A (en) | 1995-04-11 |
JP3390931B2 true JP3390931B2 (en) | 2003-03-31 |
Family
ID=17385107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26312093A Expired - Lifetime JP3390931B2 (en) | 1993-09-28 | 1993-09-28 | Inspection method for colored pattern defects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3390931B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19946520B4 (en) * | 1999-09-28 | 2010-09-16 | Parsytec Ag | Apparatus and method for surface inspection of a continuously tapered strip material |
JP4655644B2 (en) * | 2005-01-26 | 2011-03-23 | 凸版印刷株式会社 | Periodic pattern unevenness inspection system |
CN101611309B (en) * | 2007-02-16 | 2012-06-27 | 3M创新有限公司 | Method and apparatus for illuminating material for automated inspection |
JP5220392B2 (en) * | 2007-11-21 | 2013-06-26 | 川上産業株式会社 | Bubble sheet body forming information detection apparatus and bubble sheet body forming information detection method |
JP5521283B2 (en) * | 2008-05-14 | 2014-06-11 | パナソニック株式会社 | Board inspection equipment |
-
1993
- 1993-09-28 JP JP26312093A patent/JP3390931B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0798282A (en) | 1995-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08128959A (en) | Optical inspection method and optical inspection device | |
KR20100053687A (en) | Inspection method based on captured image and inspection device | |
JP2004037248A (en) | Inspection device and inspection method for through hole | |
JPS61256237A (en) | Defect inspection for cyclic pattern | |
JP2947513B1 (en) | Pattern inspection equipment | |
JP3390931B2 (en) | Inspection method for colored pattern defects | |
JP2002323454A (en) | Method and apparatus for inspecting defects in specimen | |
JPH0921628A (en) | Method for detecting projecting/recessed defect of surface of cylindrical object | |
JP3314253B2 (en) | Inspection device for color filters for viewfinder | |
JP3332096B2 (en) | Defect inspection method and apparatus | |
JP3357968B2 (en) | Lenticular lens sheet defect inspection method | |
JP3202089B2 (en) | Surface defect inspection method for periodic patterns | |
JP2653853B2 (en) | Inspection method of periodic pattern | |
JPH08226901A (en) | View finder color-filter inspection device | |
JP4518704B2 (en) | Phase shift mask inspection apparatus and phase shift mask inspection method | |
JP2790284B2 (en) | Inspection method of periodic pattern | |
JPH07113756A (en) | Defect inspection method of color filter for view finder | |
JP2000097867A (en) | Defect detecting device and method for translucent substrate | |
JP3243703B2 (en) | Defect detection method for color filter for viewfinder | |
JP2683248B2 (en) | Inspection method of colored periodic pattern | |
JPH09311108A (en) | Defect inspecting device and defect inspecting method | |
JPH07151703A (en) | Inspection device for color filter for viewfinder | |
JP2911619B2 (en) | Surface defect inspection method and apparatus for periodic pattern | |
JPH0921724A (en) | Inspection method for color filter for view finder | |
JP2801916B2 (en) | Defect inspection equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020416 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |