JPH0210233B2 - - Google Patents

Info

Publication number
JPH0210233B2
JPH0210233B2 JP10935883A JP10935883A JPH0210233B2 JP H0210233 B2 JPH0210233 B2 JP H0210233B2 JP 10935883 A JP10935883 A JP 10935883A JP 10935883 A JP10935883 A JP 10935883A JP H0210233 B2 JPH0210233 B2 JP H0210233B2
Authority
JP
Japan
Prior art keywords
acid
aqueous solution
deposits
present
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10935883A
Other languages
Japanese (ja)
Other versions
JPS602684A (en
Inventor
Hiromu Asano
Takayuki Shimamune
Tsutomu Suzuki
Masaru Kyomoto
Sadami Imai
Shozo Yamane
Katsuhisa Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10935883A priority Critical patent/JPS602684A/en
Publication of JPS602684A publication Critical patent/JPS602684A/en
Publication of JPH0210233B2 publication Critical patent/JPH0210233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、付着物により低活性化した不溶性電
極の再活性化方法に関する。 従来、金属チタン等の基体上に白金族金属酸化
物等を含有する活性被覆を設けた不溶性電極がコ
バルト等の電解採取において陽極として用いられ
ている。 コバルトの電解採取は通常、塩化コバルト水溶
液を用い、PH1〜2、電流密度2〜3A/dm2
温度55℃程度の電解条件で行われるが、ある期
間、電解を継続すると、前記の陽極に不良導体物
等が付着し、電極が低活性化するため、電流効率
が大巾に低下する等の現象が生ずる。 このような付着物は、分析の結果、主に水酸化
コバルトCo(OH)3であり、使用されている不溶
性電極表面に強固に付着・堆積して行き、陰極5
〜10ライフで1〜2mmの厚さに達し、電流効率を
著しく低下させる。 そこで、従来、該水酸化コバルトを溶解する方
法として、アンモニアと硫酸アンモニウムの混合
液で処理する方法、硫酸酸性下のSO2による還元
処理法、硫酸酸性下のメタノールによる還元処理
法等が提案されているが、いずれの方法も一長一
短があり、簡単な方法で効率良く不溶性電極上の
付着物を除去することが困難であつた。 本発明は、上記の問題を解決するためになされ
たもので、該付着物を効率良く容易に溶解洗浄
し、不活性化した不溶性電極を容易に再活性化す
る方法を提供することを目的とする。 本発明者等は、かかる付着物の各種の溶解剤に
ついて、鋭意検討したところ有機酸と鉱酸とを混
合した水溶液が、実際の操業で陽極に生じた付着
物に極めて効果的に反応することを見出し、本発
明に到達した。 すなわち、本発明は、不溶性電極の再活性化方
法において、低活性化した不溶性電極を有機酸と
鉱酸とを含有する水溶液を用いて溶解洗浄するこ
とを特徴とする。 以下、本発明をより詳細に説明する。 コバルト等の電解採取において通常使用される
不溶性電極として、特公昭48−3954号、特公昭46
−21884号に記載の如き白金族金属酸化物含有被
覆電極が知られている。これらは、例えば金属チ
タン上にルテニウム及びチタン等の金属酸化物を
被覆したもので、勿論、他の不溶性電極に本発明
を適用することは可能である。 このような不溶性電極を陽極とし、塩化コバル
ト水溶液を電解液として通常の電解条件でコバル
トの電解精製を一定期間行い、その結果、陽極に
堆積した付着物により電流効率が低下するので、
電極を再活性化するため、有機酸と鉱酸を含む水
溶液で溶解洗浄する。 有機酸としては、種々のものを用い得るが、蓚
酸、クエン酸又は酒石酸が好適である。また該有
機酸と混合して用いる鉱酸としては、塩酸又は硫
酸が好ましい。硝酸は有毒ガス発生のおそれがあ
るのでこの点で好ましくない。上記有機酸は、少
くともその一種を重量で1%以上水溶液として含
むことが短時間で効果を達成する上で望ましく、
通常10%以下で十分である。鉱酸の含量は1〜10
%程度とすることが好適である。本発明において
は、水溶液として有機酸と鉱酸の両者を含むこと
が必要であり、それぞれ単独では効果が不十分で
ある。 電解採取に使用して、付着物により不活性化し
た電極を、このような有機酸と鉱酸とを含む混合
水溶液を常温以上好ましくは50〜80℃に保持した
浸漬槽に浸漬し、ガスの発生が見られなくなる程
度迄十分溶解洗浄した後、浸漬槽から引き揚げ、
水洗した後、再活性化した陽極として再び使用す
る。実際の操業上、通常陰極5〜10ライフ(1ラ
イフ8日)の電解を行うと陽極に平均約1〜2mm
の不良導体物が付着するので、この時期毎に本発
明の電極の再活性化処理を行うことが好ましい。 本発明の処理方法においては、溶解反応時に気
泡の発生を伴うが、比較的穏やかに進行し、溶解
は支障なく短時間で完了する。 本発明の方法によれば、従来法に見られた、高
温での処理や、複雑な処理操作をする必要がな
く、該付着物の厚さが約1〜2mmの場合20〜50分
程度で溶解が完了し、付着物により低活性化した
不溶性電極を効率良く容易に再活性化することが
できる。また本発明の処理により電極が損傷され
ることもない。 以下に示す第1表は、コバルト電解採取に使用
した陽極の付着物を乾燥剥離したもの各2gを、
5%の塩酸(No.4のみ5%硫酸)と各種溶解剤と
の混合水溶液100mlを用いて50℃で溶解試験した
結果である。
The present invention relates to a method for reactivating an insoluble electrode whose activation level has been reduced due to deposits. Conventionally, an insoluble electrode in which an active coating containing a platinum group metal oxide or the like is provided on a substrate such as metallic titanium has been used as an anode in the electrowinning of cobalt or the like. Cobalt electrowinning usually uses an aqueous cobalt chloride solution, with a pH of 1 to 2 and a current density of 2 to 3 A/dm 2 .
Electrolysis is carried out at a temperature of approximately 55°C, but if electrolysis is continued for a certain period of time, poor conductors will adhere to the anode, resulting in low activation of the electrode, resulting in a significant drop in current efficiency, etc. A phenomenon occurs. As a result of analysis, such deposits are mainly composed of cobalt hydroxide Co(OH) 3 , which firmly adheres and accumulates on the surface of the insoluble electrode being used, and the cathode 5.
It reaches a thickness of 1-2 mm in ~10 lives, significantly reducing current efficiency. Therefore, conventional methods for dissolving cobalt hydroxide have been proposed, such as treatment with a mixed solution of ammonia and ammonium sulfate, reduction treatment with SO 2 under acidic sulfuric acid, and reduction treatment with methanol under acidic sulfuric acid. However, each method has advantages and disadvantages, and it has been difficult to efficiently remove deposits on insoluble electrodes using a simple method. The present invention was made in order to solve the above problems, and aims to provide a method for efficiently and easily dissolving and cleaning the deposits and easily reactivating an inactivated insoluble electrode. do. The present inventors conducted extensive studies on various agents for dissolving such deposits, and found that an aqueous solution containing a mixture of an organic acid and a mineral acid reacts extremely effectively with deposits formed on the anode during actual operation. They discovered this and arrived at the present invention. That is, the present invention is characterized in that a method for reactivating an insoluble electrode includes dissolving and cleaning a low-activated insoluble electrode using an aqueous solution containing an organic acid and a mineral acid. The present invention will be explained in more detail below. As an insoluble electrode usually used in electrolytic extraction of cobalt etc.,
Coated electrodes containing platinum group metal oxides are known, such as those described in No. 21884. These are, for example, metal titanium coated with metal oxides such as ruthenium and titanium, but it is of course possible to apply the present invention to other insoluble electrodes. Using such an insoluble electrode as an anode and using an aqueous cobalt chloride solution as an electrolyte, electrolytic refining of cobalt is performed for a certain period of time under normal electrolytic conditions.As a result, the current efficiency decreases due to deposits deposited on the anode.
To reactivate the electrode, it is dissolved and cleaned with an aqueous solution containing organic and mineral acids. Various organic acids can be used, but oxalic acid, citric acid, or tartaric acid are preferred. The mineral acid used in combination with the organic acid is preferably hydrochloric acid or sulfuric acid. Nitric acid is not preferred in this respect because it may generate toxic gas. In order to achieve the effect in a short time, it is preferable that the above-mentioned organic acid contains at least one of them as an aqueous solution of 1% or more by weight.
Usually 10% or less is sufficient. The content of mineral acids is 1-10
% is preferable. In the present invention, it is necessary that the aqueous solution contains both an organic acid and a mineral acid, and each alone is insufficiently effective. An electrode used for electrowinning and inactivated by deposits is immersed in an immersion bath in which a mixed aqueous solution containing an organic acid and a mineral acid is kept at room temperature or higher, preferably 50 to 80°C, and the gas is removed. After thoroughly dissolving and cleaning to the extent that no generation can be seen, it is removed from the soaking tank.
After washing with water, it is used again as a reactivated anode. In actual operation, when electrolysis is performed for 5 to 10 lives (1 life is 8 days) on the cathode, the average length of the anode is approximately 1 to 2 mm.
Therefore, it is preferable to perform the reactivation treatment of the electrode of the present invention at each of these times. In the treatment method of the present invention, bubbles are generated during the dissolution reaction, but the process proceeds relatively gently and the dissolution is completed in a short time without any problems. According to the method of the present invention, there is no need for high-temperature treatment or complicated treatment operations that were found in conventional methods, and when the thickness of the deposit is about 1 to 2 mm, it can be done in about 20 to 50 minutes. After the dissolution is completed, the insoluble electrode, which has become low in activation due to deposits, can be efficiently and easily reactivated. Further, the electrodes are not damaged by the treatment of the present invention. Table 1 below shows that 2g of each of the deposits on the anode used for cobalt electrowinning are dried and peeled off.
These are the results of a dissolution test at 50°C using 100 ml of a mixed aqueous solution of 5% hydrochloric acid (5% sulfuric acid for No. 4) and various dissolving agents.

【表】 ※ エチレン・ジアミン・テトラアセテート
第1表より明らかなように、クエン酸、酒石酸
及び蓚酸と塩酸又は硫酸との混合水溶液が最も溶
解作用が強力で、かつ支障がなかつた。また、No.
4は塩酸の代りに同濃度の硫酸を用いたものであ
るがNo.1とほぼ同様の結果が得られている。 以下実施例により説明するが本発明はこれらに
限定されるものではない。 実施例 1 50〜55g/の塩化コバルト水溶液を電解液と
し、液温55℃、給液PH1.2、電流密度2.0A/dm2
槽電圧1.0Vとし、陽極はチタン基体上にルテニ
ウム酸化物及びチタン酸化物を主成分とする被覆
を有する不溶性電極(ペルメレツク電極(株)製)を
アノードボツクスに収納し、陰極はステンレス板
を夫々使用して電解操作を行つた。この電解精製
を継続して8日毎に陰極を引き揚げてコバルトを
採取し、この陰極ライフの8ライフ目には、陰極
のほかに、別途陽極をアノードボツクスと共に引
き揚げ、これを所定の溶解剤の入つた浸漬槽に1
回に19本同時に浸漬して付着物の溶解洗浄処理を
行つた。 このようにして、多数の電極再活性化処理を各
条件で行い、その結果を各回とも平均値で第2表
に示す。 再活性化の手順は、先ず陽極を常温の水洗槽に
浸漬し、次に60〜70℃に保温された浸漬槽に移
し、反応が終了した後、再び水洗槽に浸漬して付
着物の除去を完了し、自然乾燥して陽極として再
び使用するという方法によつた。尚、反応の終了
は気泡発生の有無により判定した。 第2表より明らかなように、本発明の方法によ
れば電解条件等により陽極への不良導体物等の付
着量は多少の変動があるとしても、その除去に要
する時間は1時間以内であり、短時間で効率良く
電極の再活性化を行うことができる。また実操業
では、必ずしも付着物を完全に除去する必要はな
いので、実際には処理時間は更に短縮される。
[Table] * Ethylene Diamine Tetraacetate As is clear from Table 1, a mixed aqueous solution of citric acid, tartaric acid, and oxalic acid with hydrochloric acid or sulfuric acid had the strongest dissolving action and caused no problems. Also, No.
No. 4 used sulfuric acid of the same concentration instead of hydrochloric acid, but almost the same results as No. 1 were obtained. Examples will be described below, but the present invention is not limited thereto. Example 1 A 50-55 g cobalt chloride aqueous solution was used as the electrolyte, the liquid temperature was 55°C, the supply liquid pH was 1.2, the current density was 2.0 A/dm 2 ,
The cell voltage was set to 1.0 V, the anode was an insoluble electrode (manufactured by Pelmerek Electrode Co., Ltd.) having a titanium base coated with ruthenium oxide and titanium oxide as main components, and the cathode was a stainless steel plate. The electrolytic operation was carried out using Continuing this electrolytic refining, the cathode is withdrawn every 8 days to collect cobalt, and in the 8th life of the cathode, in addition to the cathode, the anode is withdrawn together with the anode box, and this is filled with a prescribed dissolving agent. 1 in the ivy soaking tank
At the same time, 19 tubes were immersed at the same time to dissolve and clean the deposits. In this way, a large number of electrode reactivation treatments were performed under various conditions, and the results are shown in Table 2 as average values for each time. The reactivation procedure is to first immerse the anode in a washing tank at room temperature, then transfer it to a soaking tank kept at 60 to 70°C, and after the reaction is complete, immerse it in the washing tank again to remove the deposits. The method was to complete the process, air dry it, and use it again as an anode. The completion of the reaction was determined by the presence or absence of bubble generation. As is clear from Table 2, according to the method of the present invention, even though the amount of bad conductors adhering to the anode varies slightly depending on the electrolytic conditions, etc., the time required to remove them is within one hour. , the electrode can be reactivated efficiently in a short time. Furthermore, in actual operation, it is not always necessary to completely remove deposits, so the processing time is actually further shortened.

【表】 実施例 2 実施例1に記載の如き通常のコバルト電解採取
に約6ケ月使用した黒色の表面付着物が多量につ
いた不溶性電極を5%蓚酸及び5%塩酸混合水溶
液により溶解洗浄し、電極の再活性化を行つた。 該溶解洗浄は、20℃の上記混合水溶液に該電極
を浸漬して行い、付着物の除去程度は、蛍光X線
法により確認した。 別途、参考として(1)10%蓚酸水溶液、及び(2)10
%塩酸水溶液各単味での溶解洗浄を行つた。 その結果得られた付着物の除去率(Coの残留
率として示す)と浸漬時間の関係は第1図の通り
であつた。 図中1は本発明の方法によるCo残留率と蓚酸
+塩酸混合水溶液中の浸漬時間の関係を示す曲
線、2は10%蓚酸水溶液処理による曲線、3は10
%塩酸水溶液処理による曲線である。第1図から
明らかのように本発明による混合水溶液処理で
は、30分で70%以上、60分で約95%付着物が除去
されたが、蓚酸又は塩酸各単味の水溶液処理で
は、180分の浸漬でも夫々15%及び20%程度の除
去しかできなかつた。 実施例 3 実施例2と同じ不活性化した不溶性電極を酸の
混合割合を変えた蓚酸+塩酸混合水溶液を用いて
溶解洗浄し再活性化を行つた。溶解洗浄は40℃の
各液に浸漬して行い、付着物の除去率は蛍光X線
法により測定した。 参考として10%蓚酸水溶液及び10%塩酸水溶液
各単味での溶解洗浄を同時に行つた。 各液での浸漬5分後及び10分後の洗浄結果を第
3表に示す。
[Table] Example 2 An insoluble electrode with a large amount of black surface deposits that had been used for ordinary cobalt electrowinning as described in Example 1 for about 6 months was dissolved and cleaned with a mixed aqueous solution of 5% oxalic acid and 5% hydrochloric acid. The electrode was reactivated. The dissolution and cleaning was performed by immersing the electrode in the above mixed aqueous solution at 20° C., and the degree of removal of deposits was confirmed by fluorescent X-ray method. Separately, for reference, (1) 10% oxalic acid aqueous solution, and (2) 10
% aqueous hydrochloric acid solution was used for dissolution and cleaning. The relationship between the removal rate of deposits (expressed as the residual rate of Co) and the immersion time was as shown in Figure 1. In the figure, 1 is a curve showing the relationship between Co residual rate and immersion time in a mixed aqueous solution of oxalic acid and hydrochloric acid according to the method of the present invention, 2 is a curve obtained by treatment with a 10% oxalic acid aqueous solution, and 3 is a curve of 10% oxalic acid aqueous solution treatment.
% hydrochloric acid aqueous solution treatment. As is clear from Figure 1, in the mixed aqueous solution treatment according to the present invention, more than 70% of the deposits were removed in 30 minutes and about 95% in 60 minutes, but in the aqueous solution treatment with oxalic acid or hydrochloric acid alone, it took 180 minutes. Even with immersion, only about 15% and 20% could be removed, respectively. Example 3 The same inactivated insoluble electrode as in Example 2 was reactivated by dissolving and cleaning it using a mixed aqueous solution of oxalic acid and hydrochloric acid with different mixing ratios of acids. Dissolution and cleaning was performed by immersion in each solution at 40°C, and the removal rate of deposits was measured by fluorescent X-ray method. As a reference, dissolving and cleaning with a 10% oxalic acid aqueous solution and a 10% hydrochloric acid aqueous solution was simultaneously performed. Table 3 shows the cleaning results after 5 minutes and 10 minutes of immersion in each solution.

【表】 第3表の結果から明らかのように、本発明によ
る混合酸水溶液での溶解洗浄では10分間の浸漬で
80%以上の付着物の除去が可能であつたが、各酸
単味の洗浄では除去率が20%以下であつた。尚、
本処理により電極の損傷は全く認められなかつ
た。 以上のとおり、本発明の方法により、効率良く
短時間で容易に不溶性電極を再活性化でき、定期
的に陽極の該洗浄処理を行えば、コバルト等の電
解精製を効率良く長期に亘つて行うことができる
ので、本発明の工業的価値は極めて大きい。
[Table] As is clear from the results in Table 3, when dissolving and cleaning with the mixed acid aqueous solution according to the present invention, 10 minutes of immersion was enough.
Although it was possible to remove more than 80% of deposits, the removal rate was less than 20% when cleaning with each acid alone. still,
No damage to the electrodes was observed as a result of this treatment. As described above, by the method of the present invention, an insoluble electrode can be easily reactivated efficiently and in a short time, and if the anode is periodically cleaned, electrolytic refining of cobalt etc. can be carried out efficiently and over a long period of time. Therefore, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法及び参考方法による効果
を対比して例示する測定グラフである。 1:本発明方法による曲線、2:参考方法(1)に
よる曲線、3:参考方法(2)による曲線。
FIG. 1 is a measurement graph illustrating the effects of the method of the present invention and the reference method in comparison. 1: Curve according to the method of the present invention, 2: Curve according to the reference method (1), 3: Curve according to the reference method (2).

Claims (1)

【特許請求の範囲】 1 付着物により低活性化した不溶性電極を有機
酸と鉱酸とを含有する水溶液を用いて溶解洗浄す
ることを特徴とする不溶性電極の再活性化方法。 2 有機酸が蓚酸、クエン酸及び酒石酸から選ば
れた少くとも一種である特許請求の範囲第1項に
記載の方法。 3 鉱酸が塩酸又は硫酸である特許請求の範囲第
1項または第2項に記載の方法。 4 コバルトの電解採取に使用した不溶性電極を
用いる特許請求の範囲第1項に記載の方法。
[Scope of Claims] 1. A method for reactivating an insoluble electrode, which comprises dissolving and cleaning an insoluble electrode whose activation level has been reduced due to deposits using an aqueous solution containing an organic acid and a mineral acid. 2. The method according to claim 1, wherein the organic acid is at least one selected from oxalic acid, citric acid, and tartaric acid. 3. The method according to claim 1 or 2, wherein the mineral acid is hydrochloric acid or sulfuric acid. 4. The method according to claim 1, which uses an insoluble electrode used for electrowinning of cobalt.
JP10935883A 1983-06-20 1983-06-20 Reactivating method of insoluble electrode Granted JPS602684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10935883A JPS602684A (en) 1983-06-20 1983-06-20 Reactivating method of insoluble electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10935883A JPS602684A (en) 1983-06-20 1983-06-20 Reactivating method of insoluble electrode

Publications (2)

Publication Number Publication Date
JPS602684A JPS602684A (en) 1985-01-08
JPH0210233B2 true JPH0210233B2 (en) 1990-03-07

Family

ID=14508200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10935883A Granted JPS602684A (en) 1983-06-20 1983-06-20 Reactivating method of insoluble electrode

Country Status (1)

Country Link
JP (1) JPS602684A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8420430D0 (en) * 1983-08-22 1984-09-12 Ici Plc Treatment of cathodes
JPH02101199A (en) * 1988-10-08 1990-04-12 Idemitsu Kosan Co Ltd Method for washing electrode
US20080115810A1 (en) * 2006-11-20 2008-05-22 Permelec Electrode Ltd. Method of reactivating electrode for electrolysis
JP6142848B2 (en) * 2014-06-16 2017-06-07 住友金属鉱山株式会社 Method for removing deposits from insoluble electrodes
JP2017164409A (en) * 2016-03-18 2017-09-21 セイコーエプソン株式会社 Ultrasonic probe
JP7067215B2 (en) * 2018-02-28 2022-05-16 住友金属鉱山株式会社 Cobalt electrowinning method
CN111349961B (en) * 2020-04-29 2021-05-07 宝鸡钛普锐斯钛阳极科技有限公司 Method for cleaning waste titanium anode plate for foil forming machine and removing and recycling precious metal

Also Published As

Publication number Publication date
JPS602684A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
CN109023399A (en) The regeneration method of regeneration treatment liquid of electrolytic copper foil Ni―Ti anode and preparation method thereof and Ni―Ti anode
JP4462513B2 (en) Electrolyzed water manufacturing method, cleaning water, and cleaning method
JPH0210233B2 (en)
US2945791A (en) Inert lead dioxide anode and process of production
GB2204325A (en) A method of electrolytically treating metals and an electrode for use in the method
CN114540824B (en) Method for regenerating titanium anode plate by using waste acid solution
CN106835163A (en) For the cleaning of Ni―Ti anode noble metal surface plated film
JP3867913B2 (en) Cathode activation
JPH03257199A (en) Production of aluminum base for printing plate
CN112573626A (en) Titanium electrode and preparation method and application thereof
JP4103209B2 (en) Cleaning method for low hydrogen overvoltage electrode
JPH0211775A (en) Treatment to prevent sticking of plating metal to stainless steel which comes in contact with electroless plating liquid
JPH0713320B2 (en) Electrolytic pickling method for strips of special steel
EP1303647B1 (en) A process for improving an electrode
JP3235216B2 (en) Cleaning method for insoluble electrode and / or electroplating tank
JP3855121B2 (en) Method for producing electrode assembly for polymer electrolyte water electrolysis
KR960004271B1 (en) Method for removing a metallic nickel during zn-ni plating
CN110965115A (en) Method for removing oxide layer on surface of titanium alloy
JPH09256184A (en) Regenerating solution for electrolytic electrode and regenerating method therefor
SU1211346A1 (en) Method of removing active coating off oxide ruthenium-titanium anodes
US5019172A (en) Chemical treatment of aluminum cathodes in zinc electrowinning
CN117107249A (en) Method for removing insoluble coating on surface of titanium-based lead dioxide anode
JPH07324198A (en) Cleaning composition and method for cleaning semiconductor substrate using the same
JPS63121692A (en) Method for activating base material of ic lead frame
US3484928A (en) Interconnection of lead parts