JPH02101269A - Vibration damping/amplifying device for structure - Google Patents

Vibration damping/amplifying device for structure

Info

Publication number
JPH02101269A
JPH02101269A JP25376988A JP25376988A JPH02101269A JP H02101269 A JPH02101269 A JP H02101269A JP 25376988 A JP25376988 A JP 25376988A JP 25376988 A JP25376988 A JP 25376988A JP H02101269 A JPH02101269 A JP H02101269A
Authority
JP
Japan
Prior art keywords
lever
point
floor
damper
load point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25376988A
Other languages
Japanese (ja)
Inventor
Mizuo Yamada
山田 瑞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP25376988A priority Critical patent/JPH02101269A/en
Publication of JPH02101269A publication Critical patent/JPH02101269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To amplify the damping resistance based on the arm ratio of a lever and improve the damping property by supporting the lever on a fulcrum provided at the middle section between the upper layer and the lower layer of a structure, connecting a load point to the upper layer, and connecting a force point to a damper. CONSTITUTION:A lever 3 is rotatably supported on a fulcrum C provided on a support bed 2 erected between the floor 4 of the upper story of a structure and the floor 1 of the lower story. The load point B of the lever 3 is provided on the floor 4 of the upper story, and a force point D is connected to a damper 5 fixed on the floor 1 of the lower story. The arm ratio of the lever 3 is set to the required value lambda. The horizontal displacement and the motion speed at the load point B at the time of an earthquake or the like are amplified lambdatimes and transferred to the damper 5. The damping resistance generated by the damper 5 is amplified lambda times and transferred to the structure via the load point B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は構造物の風、地震等の外力による振動を低減す
るための振動減衰増幅装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vibration damping and amplification device for reducing vibrations caused by external forces such as wind and earthquakes in structures.

(従来の技術) 構造物の地震応答を低減させるためには、構造物の減衰
抵抗を大きくすることが有効であることは周知の事実で
ある。
(Prior Art) It is a well-known fact that increasing the damping resistance of a structure is effective in reducing the seismic response of the structure.

しかし、現実に存在する減衰抵抗は、減衰定数にして0
.01−0.05という微小な値であり、地震応答を大
きく低減させるには至っていない。
However, the damping resistance that actually exists has a damping constant of 0.
.. This is a very small value of 0.01-0.05, and has not resulted in a significant reduction in seismic response.

(発明が解決しようとする課題) 減衰抵抗は、一般に構造物の地震応答速度に比例する。(Problem to be solved by the invention) Damping resistance is generally proportional to the seismic response speed of the structure.

本発明は、前記の梃子を用いて応答速度を増巾すると同
時に、ダンパーの小さな減衰抵抗を梃子の原理を利用し
て、更に増申し、その結果として大きな減衰効果を構造
物に付与しようとするものである。
The present invention attempts to increase the response speed by using the above-mentioned lever, and at the same time further increase the small damping resistance of the damper by using the lever principle, thereby imparting a large damping effect to the structure. It is something.

(課題を解決するための手段) 前記の目的を達成するため、本発明に係る構造物におけ
る振動減衰増幅装置は、構造物の上層と下層との中間部
の下層に立設された支点に梃子を回転自在に支持し、同
梃子における荷重点を上層に接続するとともに、力点を
ダンパーに接続して構成されている。
(Means for Solving the Problems) In order to achieve the above object, a vibration damping amplification device for a structure according to the present invention is provided with a vibration damping amplification device for a structure that uses a lever on a fulcrum that is erected in the lower layer of the intermediate layer between the upper layer and the lower layer of the structure. The lever is rotatably supported, the load point of the lever is connected to the upper layer, and the force point is connected to the damper.

(作用) 本発明によれば前記したように、構造物の上層と下層と
の中間部の支点に回転自在に支持された梃子の荷重点及
び力点が、夫々上層並にダンパーに接続されているので
、前記梃子における力点の水平変位が荷重点における地
震時等の水平変位に対して、梃子のアームの長さの比λ
倍に増幅され、従って前記力点における運動速度も、前
記荷重点における運動速度のλ倍となる。
(Function) According to the present invention, as described above, the load point and force point of the lever rotatably supported on the fulcrum at the intermediate portion between the upper layer and the lower layer of the structure are connected to the upper layer and the damper, respectively. Therefore, the horizontal displacement of the force point on the lever is the ratio λ of the arm length of the lever to the horizontal displacement at the load point during an earthquake, etc.
Therefore, the speed of movement at the force point is also λ times the speed of movement at the load point.

この結果、梃子の原理によって前記荷重点を介して構造
物に伝達される減衰抵抗は、前記力点に作用する減衰抵
抗の更にλ倍に増幅される。
As a result, the damping resistance transmitted to the structure via the load point according to the lever principle is further amplified by λ times the damping resistance acting on the force point.

(実施例) 以下本発明を図面について説明する。(Example) The present invention will be explained below with reference to the drawings.

第3図は本発明の原理を示す模式図で、Aは構造物を代
表する質点系モデルを示す。同質点AにBCDで示す梃
子が連結され、同梃子の荷重点Bが質点Aに接続され、
力点りがダンパー(E)に接続される。0点は支点で、
梃子BCDは同支点Cを中心として回転が可能である。
FIG. 3 is a schematic diagram showing the principle of the present invention, and A shows a mass point system model representing a structure. A lever indicated by BCD is connected to the homogeneous point A, and the load point B of the lever is connected to the mass point A,
The stress point is connected to the damper (E). 0 point is the fulcrum,
The lever BCD can rotate around the fulcrum C.

いま質点Aに接続されたB点の地震時の水平変位をX、
ダンパー已に接続されたD点の水平変位をyとすると、
梃子のアームの長さの比によって、D点における水平変
位yはB点における水平変位Xのλ倍に増幅される。従
ってB点及びD点における運動速度VX、V、 の間に
も、V、=、IVx、即ち9=λにという関係が成立す
る。
The horizontal displacement of point B, which is now connected to mass point A, during the earthquake is X,
If the horizontal displacement of point D connected to the damper is y, then
Depending on the ratio of the lengths of the arms of the lever, the horizontal displacement y at point D is amplified by λ times the horizontal displacement X at point B. Therefore, between the motion velocities VX and V at points B and D, the relationship V,=IVx, that is, 9=λ, also holds true.

前記ダンパーEの減衰係数をCyとすると、D点に作用
する減衰抵抗はCy ・9となり、梃子の原理によって
B点を介して質点Aに伝達される減衰抵抗Cwは更にλ
倍に増幅される。以上を数式%式% 即ち質点の減衰係数CXは、ダンパーEの減衰係数C7
の12倍に増幅される。
If the damping coefficient of the damper E is Cy, then the damping resistance acting on point D is Cy ・9, and the damping resistance Cw transmitted to mass point A via point B according to the lever principle is further λ
amplified twice. The above is expressed as the formula % Formula % In other words, the damping coefficient CX of the mass point is the damping coefficient C7 of the damper E.
is amplified 12 times.

第1図及び第2図は本発明の一実施例を示し、下層階の
床(1)に立設、固定した支持台(2)に垂直の梃子(
3)を支点Cにおいて回転自在に支持し、同梃子(3)
の上端部の荷重点Bを上層階の床(4)に接続し、下端
部の力点りを下層階(1)に設置されたダンパー(5)
に接続する。
Figures 1 and 2 show an embodiment of the present invention, in which a vertical lever (
3) is rotatably supported at the fulcrum C, and the lever (3)
The load point B at the upper end is connected to the floor (4) on the upper floor, and the load point at the lower end is connected to the damper (5) installed on the lower floor (1).
Connect to.

梃子(3)のアーム比はλである。The arm ratio of lever (3) is λ.

図示の実施例は前記したように構成されているので、地
震時の層間変位Xはyに増幅され、この結果、梃子(3
)を介して構造物の上層階に伝達される減衰抵抗は、梃
子(3)のアーム比によって大幅に増幅される。
Since the illustrated embodiment is configured as described above, the interstory displacement X during an earthquake is amplified to y, and as a result, the lever (3
) to the upper floors of the structure is significantly amplified by the arm ratio of the lever (3).

第4図は本発明の他の実施例を示し、梃子(3)を支点
C両端部の長さが夫々ス2となる水平梃子に形成し、そ
の両端力点りを下層階の床(])に設置したダンパー(
5)に接続し、梃子(3)における長さ!なる支点Cの
上方突出部(コ)の端部荷重点Bを上層階の床(4)に
接続したものである。
FIG. 4 shows another embodiment of the present invention, in which the lever (3) is formed into a horizontal lever whose length at both ends of the fulcrum C is 2, and the force points at both ends are connected to the floor of the lower floor (]). The damper installed in (
5) and the length at lever (3)! The end load point B of the upwardly protruding portion (C) of the fulcrum C is connected to the floor (4) of the upper floor.

図中、前記実施例と均等部分には同一符号が附されてい
る。
In the figure, parts equivalent to those of the above embodiment are given the same reference numerals.

第4図は減衰抵抗の増幅率を更に増大するため、前記第
4図に示す水平梃子(3A)に垂直梃子(3B)を組合
せた実施例を示し、同垂直梃子(3B)は支持台(2)
の頂部の支点C′で支持され、上端荷重点B′が上層階
の床(4)に接続され、下端の力点となるビンD′が、
前記水平梃子(3)の上方突出部(3)の溝孔に可摺動
的に嵌合している。
Figure 4 shows an embodiment in which the horizontal lever (3A) shown in Figure 4 is combined with a vertical lever (3B) in order to further increase the amplification factor of the damping resistance. 2)
The bin D' is supported at the fulcrum C' at the top of the bin, the upper end load point B' is connected to the floor (4) of the upper floor, and the lower end is the force point D'.
It is slidably fitted into a slot in the upper protrusion (3) of the horizontal lever (3).

第6図は減衰抵抗の増幅率を更に増大するため、複数の
梃子(3A) (3B) (3C)を組合わせた実施例
を示し、前記梃子(3C) (3B)の上端荷重点B1
、B1と、その上位の梃子(3B) (3^)の下端力
点D2、Dlとが連結稈(6)によってピンを介して接
続され、最上位の梃子(3A)の上端荷重点B1が上層
階の床(4)に接続され、最下位の梃子(3C)の下端
力点り、が、下N階の床(1)に設置されたダンパー(
5)に接続されている。
FIG. 6 shows an embodiment in which a plurality of levers (3A) (3B) (3C) are combined in order to further increase the amplification factor of the damping resistance, and the upper end load point B1 of the levers (3C) (3B) is shown in FIG.
, B1 and the lower end force points D2 and Dl of the upper lever (3B) (3^) are connected via pins by the connecting culm (6), and the upper end force point B1 of the uppermost lever (3A) is The lower end of the lever (3C), which is connected to the floor (4) of the lower floor, is connected to the damper (1) installed on the floor (1) of the lower N floor.
5).

図中C+、 Ct、 Csは夫々前記支持台(2)に設
けられた、前記各梃子(3A) (3B) (3G)の
支点である。
In the figure, C+, Ct, and Cs are the fulcrums of the levers (3A), (3B, and 3G) provided on the support base (2), respectively.

前記梃子をn台使用した場合、前記減衰抵抗の増幅率は
アームの長さ比λの約2n乗倍、λ2″に増幅される。
When n levers are used, the amplification factor of the attenuation resistor is amplified to λ2'', which is approximately 2n times the arm length ratio λ.

地震時における構造物の層間変位Xは、一般には2G以
下の微小な値であるが、梃子のアームの長さの比λ、梃
子の台数nによって所望の増幅が可能となる。
The interstory displacement X of a structure during an earthquake is generally a small value of 2G or less, but desired amplification can be achieved by adjusting the ratio λ of the arm lengths of the levers and the number n of levers.

(発明の効果) 本発明は前記したように、構造物の上層と下層との中間
部に設けた支点に回転自在に支持された梃子の荷重点及
び力点を、夫々L層及びダンパーに接続したことによっ
て、構造物が振動するとき、前記梃子の荷重点を介して
構造物に伝達される減衰抵抗は梃子のアーム比によって
大幅に増幅され、構造物の地震応答、風による振動、及
び機械振動による増幅応答値が低減される。
(Effects of the Invention) As described above, the present invention connects the load point and force point of the lever, which is rotatably supported on a fulcrum provided in the middle between the upper layer and the lower layer of the structure, to the L layer and the damper, respectively. Therefore, when the structure vibrates, the damping resistance transferred to the structure through the load points of the lever is significantly amplified by the arm ratio of the lever, which increases the seismic response of the structure, wind-induced vibration, and mechanical vibration. The amplification response value is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1回及び第2回は夫々本発明に係る構造物における振
動減衰増幅装置の一実施例を示す斜視国益に縦断面図、
第3図は本発明の原理を示す模式図、第4図及び第5国
益に第6図は夫々本発明の他の各実施例を示す縦断面図
である。 (1)−下層階の床  (2)−支持台(3)−一梃子
     (4)−・・上層階の床(5)−・−ダンパ
ー   B−・−荷重点C−支点     D −力点 代理人 弁理士 岡 本 重 文 外2名
The first and second parts are perspective views and vertical cross-sectional views showing one embodiment of the vibration damping amplification device for structures according to the present invention, respectively.
FIG. 3 is a schematic diagram showing the principle of the present invention, and FIGS. 4 and 5 are longitudinal sectional views showing other embodiments of the present invention. (1) - Lower floor floor (2) - Support stand (3) - One lever (4) - Upper floor floor (5) - Damper B - Load point C - Fulcrum D - Force point substitute Person Patent attorney: Shige Okamoto (2 persons)

Claims (1)

【特許請求の範囲】[Claims] 構造物の上層と下層との中間部の下層に立設された支点
に梃子を回転自在に支持し、同梃子における荷重点を上
層に接続するとともに、力点をダンパーに接続してなる
ことを特徴とする構造物における振動減衰増幅装置。
A lever is rotatably supported on a fulcrum installed in the lower layer between the upper and lower layers of the structure, and the load point of the lever is connected to the upper layer, and the force point is connected to the damper. Vibration damping amplification device for structures with
JP25376988A 1988-10-11 1988-10-11 Vibration damping/amplifying device for structure Pending JPH02101269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25376988A JPH02101269A (en) 1988-10-11 1988-10-11 Vibration damping/amplifying device for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25376988A JPH02101269A (en) 1988-10-11 1988-10-11 Vibration damping/amplifying device for structure

Publications (1)

Publication Number Publication Date
JPH02101269A true JPH02101269A (en) 1990-04-13

Family

ID=17255886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25376988A Pending JPH02101269A (en) 1988-10-11 1988-10-11 Vibration damping/amplifying device for structure

Country Status (1)

Country Link
JP (1) JPH02101269A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250278A (en) * 1990-12-28 1992-09-07 Takenaka Komuten Co Ltd Skeleton having vibration controller
JPH04309677A (en) * 1991-04-05 1992-11-02 Taisei Corp Vibration control device for structure
JPH0658006A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
JPH0658007A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
US5915676A (en) * 1996-03-22 1999-06-29 Mitsubishi Jukogyo Kabushiki Kaisha Lever-type frictional resistance force variable system
JP2007211503A (en) * 2006-02-10 2007-08-23 Sumitomo Mitsui Construction Co Ltd Seismic response control apparatus of building and building structure
CN109594671A (en) * 2018-12-18 2019-04-09 西安建筑科技大学 A kind of T shape lever mechanism semi-girder truss energy-dissipating and shock-absorbing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621977U (en) * 1979-07-28 1981-02-26
JPS58174740A (en) * 1982-04-08 1983-10-13 Chiyoda Chem Eng & Constr Co Ltd Vibration suppressor for structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621977U (en) * 1979-07-28 1981-02-26
JPS58174740A (en) * 1982-04-08 1983-10-13 Chiyoda Chem Eng & Constr Co Ltd Vibration suppressor for structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250278A (en) * 1990-12-28 1992-09-07 Takenaka Komuten Co Ltd Skeleton having vibration controller
JPH04309677A (en) * 1991-04-05 1992-11-02 Taisei Corp Vibration control device for structure
JPH0658006A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
JPH0658007A (en) * 1992-08-04 1994-03-01 Ohbayashi Corp Damping device
US5915676A (en) * 1996-03-22 1999-06-29 Mitsubishi Jukogyo Kabushiki Kaisha Lever-type frictional resistance force variable system
JP2007211503A (en) * 2006-02-10 2007-08-23 Sumitomo Mitsui Construction Co Ltd Seismic response control apparatus of building and building structure
CN109594671A (en) * 2018-12-18 2019-04-09 西安建筑科技大学 A kind of T shape lever mechanism semi-girder truss energy-dissipating and shock-absorbing system
CN109594671B (en) * 2018-12-18 2023-07-25 西安建筑科技大学 Energy dissipation and shock absorption system of T-shaped lever mechanism cantilever truss

Similar Documents

Publication Publication Date Title
JPH02101269A (en) Vibration damping/amplifying device for structure
JP2001199680A (en) Mast horizontal-supporting device for tower crane
JP2002213099A (en) Method of constructing building excellent in safety regarding earthquake resistance, etc., and earthquake- controlling building
JPH1181735A (en) Vibration control unit and vibration control damper
JP4684384B2 (en) Compound seismic isolation system
JP4259710B2 (en) Damping building
JPH1150689A (en) Vibration control mechanism
JP2000351424A (en) Rack
JP3075550B2 (en) Lever mechanism and structure for vibration damping device
JP2787204B2 (en) Connecting passage of building with vibration control function
JP3055073B2 (en) Building
JP2001295494A (en) Terraced building
JP2926106B2 (en) Large span suspension structure with V-shaped brace
JP2002227450A (en) Vibration control structure of mega-frame
JPS5842209U (en) Seismic support structure
JPH09112063A (en) Base isolation method of structure and base isolation structure
JPH03183875A (en) Building construction
JP2001140496A (en) Suspended damping method and suspended damping structure for super-high-rise building
JP3215903B2 (en) Suspended seismic isolation structure
JP2582637Y2 (en) Floor damping device
JP2900841B2 (en) Bending deformation control type vibration control structure
JP2552406B2 (en) Vertical damping system for large-scale structures
JP2001254313A (en) Cable vibration control structure
JP2900838B2 (en) Bending deformation control type vibration control structure
JP3204057B2 (en) Seismic control and seismic isolation structure of structures with large tower ratio