JP2001140496A - Suspended damping method and suspended damping structure for super-high-rise building - Google Patents

Suspended damping method and suspended damping structure for super-high-rise building

Info

Publication number
JP2001140496A
JP2001140496A JP32611899A JP32611899A JP2001140496A JP 2001140496 A JP2001140496 A JP 2001140496A JP 32611899 A JP32611899 A JP 32611899A JP 32611899 A JP32611899 A JP 32611899A JP 2001140496 A JP2001140496 A JP 2001140496A
Authority
JP
Japan
Prior art keywords
rise building
vibration
suspension
suspended
upper structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32611899A
Other languages
Japanese (ja)
Inventor
Kozo Fukao
康三 深尾
Ryuta Hirose
隆太 広瀬
Motohiro Yamada
基裕 山田
Shusuke Ishigaki
秀典 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP32611899A priority Critical patent/JP2001140496A/en
Publication of JP2001140496A publication Critical patent/JP2001140496A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a suspended damping method and a suspended damping structure capable of greatly contributing to the improvement of habitability and structural safety which is able to greatly improve the damping effect especially for an upper portion of a super-high-rise building where flexural deformation accompanied with the axial expansion a column becomes dominant against a wing load and a seismic load. SOLUTION: This is a suspended damping method for a super-high-rise building where the flexural deformation accompanied with the expansion in the axial direction of the column becomes dominant against a wind load and a seismic load, and the super-high-rise building comprises a superstructure and a substructure, and the superstructure is supported by suspension with the vibration period turned into a longer period by means of the substructure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、吊り制震方法及
び吊り制震構造の技術分野に属し、更に云えば、風荷重
及び地震荷重に対して柱の軸方向への伸縮に伴う曲げ変
形が支配的となる超高層建物、超高層タワー等(以下適
宜、超高層建物という。)に好適に実施される吊り制震
方法及び吊り制震構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a suspension damping method and a suspension damping structure, and more specifically, a bending deformation caused by an axial expansion and contraction of a column with respect to a wind load and an earthquake load. The present invention relates to a suspension vibration control method and a suspension vibration control structure that are suitably implemented for a dominant high-rise building, a high-rise tower, and the like (hereinafter, appropriately referred to as a high-rise building).

【0002】[0002]

【従来の技術】風荷重及び地震荷重に対して柱の軸方向
への伸縮に伴う曲げ変形が支配的となる超高層建物につ
いて、その居住性と構造上の安全性を向上させる目的で
実施される制震方法及び制震構造としては、制震ダンパ
ーを各階毎、又は振幅の大きな階層に配置して地震時応
答を制御する制震方法及び制震構造が現在数多く採用さ
れ、例えば特開平7−4115号公報、特開平11−3
0054号公報等に種々開示され実施に供されてはい
る。
2. Description of the Related Art For high-rise buildings in which bending deformation due to axial expansion and contraction of columns is dominant to wind loads and earthquake loads, the purpose is to improve the livability and structural safety. As the vibration control method and the vibration control structure, a large number of vibration control methods and structures for controlling the response at the time of earthquake by arranging a vibration control damper for each floor or at a layer having a large amplitude are currently employed. -4115, JP-A-11-3
No. 0054 and the like disclose and are used in practice.

【0003】[0003]

【本発明が解決しようとする課題】しかしながら、制震
ダンパーを超高層建物に実施しても、制震部材架構とそ
の他主架構との剛性評価の誤差やダンパー自体の力学モ
デルとの誤差を含むため、制震効果は20〜30%程度
の減少とあまり大きくなく、特に超高層建物の上層部の
振動を抑制するには十分と云えず、改善の余地が残され
ている。
However, even if the damping damper is applied to a high-rise building, errors in rigidity evaluation between the damping member frame and other main frames and errors in the dynamic model of the damper itself are included. Therefore, the damping effect is not so large as a decrease of about 20 to 30%, and it cannot be said that the vibration is particularly sufficient to suppress the vibration of the upper portion of a high-rise building, and there is room for improvement.

【0004】したがって、本発明の目的は、風荷重及び
地震荷重に対して柱の軸方向への伸縮に伴う曲げ変形が
支配的となる超高層建物の特に上層部分の制震効果を飛
躍的に向上させることができ、居住性と構造上の安全性
の向上に大きく寄与する吊り制震方法及び吊り制震構造
を提供することである。
Accordingly, an object of the present invention is to dramatically reduce the vibration damping effect of a high-rise building, particularly an upper part thereof, in which bending deformation accompanying expansion and contraction of columns in the axial direction is dominant against wind loads and earthquake loads. An object of the present invention is to provide a suspension vibration damping method and a suspension vibration damping structure which can be improved and greatly contribute to improvement of livability and structural safety.

【0005】[0005]

【課題を解決するための手段】上記従来技術の課題を解
決するための手段として、請求項1に記載した発明に係
る超高層建物の吊り制震方法は、風荷重及び地震荷重に
対して柱の軸方向への伸縮に伴う曲げ変形が支配的とな
る超高層建物に対する吊り制震方法であって、超高層建
物は上部構造物と下部構造物とから成り、上部構造物
を、下部構造物により振動周期を長周期化して吊り支持
することを特徴とする。
As a means for solving the above-mentioned problems of the prior art, a suspension vibration control method for a high-rise building according to the present invention according to the first aspect of the present invention comprises a column for a wind load and an earthquake load. A suspension vibration control method for a high-rise building in which bending deformation due to expansion and contraction in the axial direction is dominant, wherein the high-rise building is composed of an upper structure and a lower structure, and the upper structure is a lower structure. , The vibration period is made longer to support the suspension.

【0006】請求項2に記載した発明は、請求項1に記
載した超高層建物の吊り制震方法について、超高層建物
の下部構造物は、平面的に見て、上部構造物を間に挟む
配置に設けることを特徴とする。
According to a second aspect of the present invention, in the suspension vibration control method for a high-rise building according to the first aspect, the lower structure of the high-rise building sandwiches the upper structure in plan view. It is characterized by being provided in an arrangement.

【0007】請求項3に記載した発明は、請求項1又は
2に記載した超高層建物の吊り制震方法について、超高
層建物の下部構造物に、上部構造物の振動を抑制する制
震ダンパーを設けることを特徴とする。
According to a third aspect of the present invention, there is provided the suspension vibration damping method for a high-rise building according to the first or second aspect, wherein a vibration damper for suppressing vibration of an upper structure in a lower structure of the high-rise building. Is provided.

【0008】請求項4に記載した発明は、請求項1〜3
のいずれか1項に記載した超高層建物の吊り制震方法に
ついて、超高層建物の下部構造物の基礎部を免震化する
ことを特徴とする。
The invention described in claim 4 is the first to third aspects of the present invention.
The suspension vibration control method for a high-rise building described in any one of the above, is characterized in that a base portion of a substructure of the high-rise building is seismically isolated.

【0009】請求項5に記載した発明に係る超高層建物
の吊り制震構造は、風荷重及び地震荷重に対して柱の軸
方向への伸縮に伴う曲げ変形が支配的となる超高層建物
に対する吊り制震構造であって、超高層建物は上部構造
物と下部構造物とから成り、上部構造物は、下部構造物
に一端を止着したケーブル等の吊り部材により、振動周
期を長周期化して吊り支持されていることを特徴とす
る。
A suspension vibration control structure for a high-rise building according to the invention described in claim 5 is for a high-rise building in which bending deformation due to expansion and contraction of columns in the axial direction is dominant to wind loads and earthquake loads. It is a suspended vibration control structure, and a high-rise building is composed of an upper structure and a lower structure, and the upper structure has a longer vibration period with a suspension member such as a cable having one end fixed to the lower structure. Characterized by being suspended and supported.

【0010】請求項6に記載した発明に係る超高層建物
の吊り制震構造は、風荷重及び地震荷重に対して柱の軸
方向への伸縮に伴う曲げ変形が支配的となる超高層建物
に対する吊り制震構造であって、超高層建物は上部構造
物と下部構造物とから成り、上部構造物は、下部構造物
に一端を止着したケーブル等の吊り部材に吊られた支持
トラスにより、振動周期を長周期化して吊り支持されて
いることを特徴とする。
A suspension vibration control structure for a skyscraper according to the invention described in claim 6 is for a skyscraper in which bending deformation due to expansion and contraction of a pillar in the axial direction is dominant to wind loads and earthquake loads. It is a suspension vibration control structure, and a high-rise building is composed of an upper structure and a lower structure, and the upper structure is supported by a support truss suspended by a suspension member such as a cable fixed at one end to the lower structure. It is characterized in that it is suspended and supported with a long vibration cycle.

【0011】請求項7に記載した発明は、請求項5又は
6に記載した超高層建物の吊り制震構造について、超高
層建物の下部構造物は、平面的に見ると、上部構造物を
間に挟む配置に設けられていることを特徴とする。
According to a seventh aspect of the present invention, in the suspension vibration damping structure for a high-rise building according to the fifth or sixth aspect, the lower structure of the high-rise building is located between the upper structure when viewed in plan. Characterized in that it is provided in an arrangement sandwiched between.

【0012】請求項8に記載した発明は、請求項5〜7
のいずれか1項に記載した超高層建物の吊り制震構造に
ついて、超高層建物の上部構造物の振動周期は5〜10
秒程度とされていることを特徴とする。
The invention described in claim 8 is the invention according to claims 5-7.
The vibration period of the superstructure of the high-rise building is 5 to 10 in the suspension vibration control structure of the high-rise building described in any one of the above.
It is characterized by being on the order of seconds.

【0013】請求項9に記載した発明は、請求項5〜8
のいずれか1項に記載した超高層建物の吊り制震構造に
ついて、超高層建物の下部構造物には、上部構造物の振
動を抑制する制震ダンパーが設けられていることを特徴
とする。
The invention described in claim 9 is the invention according to claims 5 to 8
In the suspension vibration control structure for a high-rise building described in any one of the above items, a vibration damper for suppressing vibration of an upper structure is provided in a lower structure of the high-rise building.

【0014】請求項10に記載した発明は、請求項5〜
9のいずれか1項に記載した超高層建物の吊り制震構造
について、超高層建物の下部構造物の基礎部は免震化さ
れていることを特徴とする。
The invention described in claim 10 is the invention according to claims 5 to
9. The suspended vibration control structure of a high-rise building described in any one of 9 above, wherein a base portion of a substructure of the high-rise building is seismically isolated.

【0015】[0015]

【発明の実施の形態、及び実施例】図1は、請求項1と
請求項6に記載した風荷重及び地震荷重に対して軸方向
への伸縮に伴う曲げ変形が支配的となる超高層建物に対
する吊り制震方法及び吊り制震構造の第1の実施形態を
示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a high-rise building in which bending deformation accompanying expansion and contraction in the axial direction is dominant with respect to the wind load and the seismic load described in claims 1 and 6. 1 shows a suspension vibration control method and a suspension vibration control structure according to a first embodiment.

【0016】この超高層建物1は、上部構造物2と下部
構造物3とから成り、上部構造物2は、下部構造物3に
一端を止着したケーブル4等の吊り部材に吊られた支持
トラス5により、振動周期を長周期化して吊り支持され
ている(請求項6)。前記超高層建物1の下部構造物3
は、平面的に見ると、上部構造物2を間に挟む配置に設
けられている(請求項7)。
The high-rise building 1 is composed of an upper structure 2 and a lower structure 3, and the upper structure 2 is supported by a hanging member such as a cable 4 having one end fixed to the lower structure 3. The truss 5 suspends and supports the vibration cycle with a longer period (claim 6). Substructure 3 of the skyscraper 1
Are provided so as to sandwich the upper structure 2 when viewed in plan (claim 7).

【0017】なお、前記吊り部材はケーブル4に限定さ
れず、PC鋼棒、丸鋼、鉄骨などで実施しても良い。ま
た、前記下部構造物3は、前記上部構造物2の振動によ
る変位を考慮した上で該上部構造物を取り囲む形態で実
施しても良い。
The suspension member is not limited to the cable 4, but may be a PC steel rod, a round bar, a steel frame, or the like. Further, the lower structure 3 may be embodied in a form surrounding the upper structure in consideration of displacement due to vibration of the upper structure 2.

【0018】ちなみに、図示例の超高層建物1の高さは
172.7m(40階)、下部構造物3の高さは41.
5m(1〜8階)、上部構造物2の高さは151.2m
(5〜40階)、前記ケーブル4の長さは略20mとさ
れている。勿論、前記各数値もこれに限定されない。
Incidentally, the height of the high-rise building 1 in the illustrated example is 172.7 m (40 floors), and the height of the substructure 3 is 41.
5m (1st to 8th floor), height of superstructure 2 is 151.2m
(5th to 40th floors), the length of the cable 4 is approximately 20 m. Of course, the numerical values are not limited to these.

【0019】前記上部構造物2の振動周期は、5〜10
秒程度とされている(請求項8)。吊り支持された上部
構造物2の振動を抑制すると共に、全体を振動周期が異
なる二つの振動系(上部構造物2と下部構造物3)で構
成することより、該二つの振動系の振動連成により制震
効果を発揮させるためである。ちなみに、本実施形態で
は、既に公知である下記[式1]より略9秒に設定され
ている。
The vibration period of the upper structure 2 is 5 to 10
It is set to about seconds (claim 8). Vibration of the suspended upper structure 2 is suppressed, and the entire structure is composed of two vibration systems (upper structure 2 and lower structure 3) having different vibration periods. This is to make the seismic effect effective by the formation. Incidentally, in the present embodiment, it is set to about 9 seconds from the following [Formula 1] which is already known.

【0020】[式1] T=2π√(l/g) T:振動周期 l:(ケーブルの)吊り長さ g:重力加速度[Equation 1] T = 2π√ (l / g) T: oscillation period l: suspension length (of cable) g: gravitational acceleration

【0021】なお、上記[式1]より、前記上部構造物
2の振動周期を5〜10秒程度に保持するためのケーブ
ル4の長さは、6.2〜24.85m程度の範囲内とさ
れる。
From the above [Equation 1], the length of the cable 4 for maintaining the vibration period of the upper structure 2 at about 5 to 10 seconds is in the range of about 6.2 to 24.85 m. Is done.

【0022】また、前記超高層建物1の下部構造物3に
は、上部構造物2(支持トラス5)の振動を抑制する制
震ダンパー6が設けられ、減衰性能を付与させている
(請求項9)。
Further, a vibration damper 6 for suppressing vibration of the upper structure 2 (support truss 5) is provided in the lower structure 3 of the high-rise building 1 so as to provide damping performance. 9).

【0023】図2は、前記請求項1と請求項6に記載し
た超高層建物の吊り制震方法及び吊り制震構造の第2の
実施形態を示している。この第2の実施形態は、前記第
1の実施形態に加えて、更に下部構造物3の基礎部が積
層ゴム7により免震化されている(請求項10)。
FIG. 2 shows a suspension damping method and a suspension damping structure for a high-rise building according to a second embodiment of the present invention. In the second embodiment, in addition to the first embodiment, the base portion of the lower structure 3 is further made seismically isolated by a laminated rubber 7 (claim 10).

【0024】以下、前記図1に示した第1の実施形態、
図2に示した第2の実施形態が奏する作用効果を従前の
耐震モデル(図9参照)、免震モデル(図10参照)と
対比し、図4〜図8に示したグラフに基づいて順に説明
する。ここで、各グラフの符号aは第1の実施形態、符
号bは第2の実施形態、符号cは耐震モデル(周期4.
7秒)、符号dは免震モデル(免震層周期4.5秒)を
示している。
Hereinafter, the first embodiment shown in FIG.
The operational effects of the second embodiment shown in FIG. 2 are compared with the conventional seismic model (see FIG. 9) and the seismic isolation model (see FIG. 10), and based on the graphs shown in FIGS. explain. Here, the symbol a of each graph is the first embodiment, the symbol b is the second embodiment, and the symbol c is an earthquake-resistant model (period 4.
7s), and the symbol d indicates a seismic isolation model (isolated layer period 4.5 seconds).

【0025】図4のとおり、最大層間変形角応答値につ
いて、第1の実施形態(a)と第2の実施形態(b)
は、耐震モデル(c)と免震モデル(d)に比して、前
記吊り支持された上部構造物2に相当する部分全般に亘
って激減していることが分かる。このように、従前の設
計手法では不可避な大きな層間変形角でのいわゆる鞭振
り現象を極力緩和させることができると云える。
As shown in FIG. 4, the first embodiment (a) and the second embodiment (b) relate to the maximum interlayer deformation angle response value.
It can be seen that, as compared with the seismic model (c) and the seismic isolation model (d), the total amount drastically decreases over the portion corresponding to the suspended upper structure 2. Thus, it can be said that the so-called whiplash phenomenon at a large interlayer deformation angle, which is inevitable with the conventional design method, can be reduced as much as possible.

【0026】図5のとおり、最大変形応答値について、
第1の実施形態(a)と第2の実施形態(b)は、耐震
モデル(c)と免震モデル(d)に比して、建物高さが
高くなるに従いその差が大きくなることが分かる。特
に、前記吊り支持された上部構造物2に相当する部分に
ついては傾斜角度が急激、すなわち建物高さが高くなっ
てもそれほど最大変形応答値は大きくならないので、超
高層建物について非常に実効性があると云える。
As shown in FIG. 5, for the maximum deformation response value,
In the first embodiment (a) and the second embodiment (b), the difference between the seismic model (c) and the seismic isolation model (d) may increase as the building height increases. I understand. In particular, the portion corresponding to the suspended and supported upper structure 2 has a steep inclination angle, that is, the maximum deformation response value does not increase so much even when the building height is increased. It can be said that there is.

【0027】図6のとおり、最大加速度応答値につい
て、第1の実施形態(a)と第2の実施形態(b)は、
耐震モデル(c)と免震モデル(d)に比して、前記吊
り支持された上部構造物2に相当する部分全般に亘って
激減していることが分かる。このように、構造上の安定
性に非常に優れた超高層建物を構築することができると
云える。
As shown in FIG. 6, regarding the maximum acceleration response value, the first embodiment (a) and the second embodiment (b)
It can be seen that compared to the seismic model (c) and the seismic isolation model (d), the total amount corresponding to the suspended upper structure 2 is drastically reduced. In this way, it can be said that a skyscraper with excellent structural stability can be constructed.

【0028】図7のとおり、最大層せん断力応答値につ
いて、第1の実施形態(a)と第2の実施形態(b)
は、耐震モデル(c)と免震モデル(d)に比して、前
記吊り支持された上部構造物2に相当する部分全般に亘
って小さく、かつ安定していることが分かる。このよう
に、構造上の安定性に非常に優れた超高層建物を構築す
ることができると云える。
As shown in FIG. 7, regarding the maximum layer shear force response value, the first embodiment (a) and the second embodiment (b)
Is smaller and more stable over the entire portion corresponding to the suspended upper structure 2 than the seismic model (c) and the seismic isolation model (d). In this way, it can be said that a skyscraper with excellent structural stability can be constructed.

【0029】図8のとおり、最大転倒モーメント応答値
についても、第1の実施形態(a)と第2の実施形態
(b)は、耐震モデル(c)と免震モデル(d)に比し
て、特に、前記吊り支持された上部構造物2に相当する
部分全般に亘って小さく、かつ安定していることが分か
る。このように、構造上の安定性に非常に優れた超高層
建物を構築することができると云える。
As shown in FIG. 8, the maximum falling moment response value of the first embodiment (a) and the second embodiment (b) is larger than that of the seismic model (c) and the seismic isolation model (d). Thus, it can be seen that, in particular, the entire portion corresponding to the suspended and supported upper structure 2 is small and stable. In this way, it can be said that a skyscraper with excellent structural stability can be constructed.

【0030】以上のように、前記第1と第2の実施形態
は、従前の耐震モデル、免震モデルと比して、変形角、
加速度、せん断力等の応答値を大幅に減少させることが
でき、その作用効果は格別である。特に、風荷重及び地
震荷重に対して柱の軸方向への伸縮に伴う曲げ変形が支
配的となる超高層建物に対しては実効性がある。
As described above, in the first and second embodiments, the deformation angle, the seismic isolation model,
Response values such as acceleration and shear force can be greatly reduced, and the operation and effect are exceptional. In particular, it is effective for a high-rise building in which bending deformation accompanying expansion and contraction in the axial direction of a column is dominant against wind loads and earthquake loads.

【0031】図3は、請求項1と請求項5に記載した風
荷重及び地震荷重に対して軸方向への伸縮に伴う曲げ変
形が支配的となる超高層建物(超高層タワー)に対する
吊り制震方法及び吊り制震構造の実施形態を示してい
る。
FIG. 3 shows a suspension system for a super-high-rise building (super-high-rise tower) in which bending deformation accompanying expansion and contraction in the axial direction is dominant with respect to the wind load and the seismic load according to the first and fifth aspects. 1 shows an embodiment of a vibration method and a suspended vibration control structure.

【0032】この超高層タワー21は、上部構造物(上
部タワー)22と下部構造物(下部タワー)23とから
成り、上部タワー22は、下部タワー23に一端を止着
したケーブル4等の吊り部材により、振動周期を長周期
化して吊り支持されている(請求項5)。ちなみに、図
3中の符号8は、展望台を示しており、符号9は、送信
室を示している。また、前記ケーブル4の長さは略25
mとされている。即ち、上部タワー22の振動周期は上
記[式1]より略10秒とされている(請求項8記載の
発明)。
The super high-rise tower 21 includes an upper structure (upper tower) 22 and a lower structure (lower tower) 23. The upper tower 22 suspends the cable 4 or the like having one end fixed to the lower tower 23. The member is suspended and supported with a longer vibration cycle. Incidentally, reference numeral 8 in FIG. 3 indicates an observatory, and reference numeral 9 indicates a transmission room. The length of the cable 4 is approximately 25.
m. That is, the oscillation period of the upper tower 22 is set to approximately 10 seconds from the above [Equation 1] (the invention according to claim 8).

【0033】前記超高層タワー21も、前記第1の実施
形態と略同様の構造であるが故に、吊り支持された上部
タワー22について図4〜図8のグラフを参酌すること
ができる。すなわち、吊り支持された上部タワー22の
振動を抑制すると共に、全体を振動周期が異なる二つの
振動系(上部タワー22と下部タワー23)で構成する
ことより、該二つの振動系の振動連成により制震効果を
発揮することができ、その結果、従前の設計手法では不
可避な大きな層間変形角でのいわゆる鞭振り現象を極力
緩和させることができ、また、構造上の安定性に非常に
優れた超高層タワーを構築することができるのである。
Since the super-high-rise tower 21 has substantially the same structure as that of the first embodiment, the graphs of FIGS. 4 to 8 can be referred to for the upper tower 22 suspended and supported. That is, the vibration of the suspended upper tower 22 is suppressed, and the whole is composed of two vibration systems (the upper tower 22 and the lower tower 23) having different vibration periods. As a result, the so-called whip swing phenomenon at a large interlayer deformation angle, which is inevitable with the conventional design method, can be reduced as much as possible, and the structural stability is extremely excellent. High-rise tower can be built.

【0034】なお、図示は省略したが、超高層タワー2
1の下部タワー23に、上部タワー21の振動を抑制す
る制震ダンパーを設けて実施することもでき(請求項
9)、下部タワー23の基礎部を積層ゴム等により免震
化して実施することもできる(請求項10)。
Although not shown, the high-rise tower 2
The lower tower 23 may be provided with a vibration damper for suppressing vibration of the upper tower 21 (claim 9), and the base of the lower tower 23 may be seismically isolated using a laminated rubber or the like. (Claim 10).

【0035】[0035]

【本発明が奏する効果】本発明に係る超高層建物の吊り
制震方法及び吊り制震構造によれば、吊り支持された上
部構造物の振動を抑制すると共に、全体を振動周期が異
なる二つの振動系(上部構造物と下部構造物)で構成す
ることより、該二つの振動系の振動連成により制震効果
を発揮することができる。その結果、従前の設計手法で
は不可避な大きな層間変形角でのいわゆる鞭振り現象を
極力緩和させることができ、また、構造上の安定性に非
常に優れた超高層建物、超高層タワーを構築することが
できる。よって、超高層建物については、特に上層部の
居住性の向上に大きく寄与することができ、超高層タワ
ーについては、例えば、通常、高層部に設置される送信
機より発せられる電波を目的地へより確実に送信するこ
とができる。
According to the suspension control method and the suspension structure for a high-rise building according to the present invention, the vibration of the suspended and supported upper structure is suppressed, and the vibration control is performed on two parts having different vibration periods as a whole. By using a vibration system (an upper structure and a lower structure), a vibration damping effect can be exerted by vibration coupling between the two vibration systems. As a result, it is possible to mitigate the so-called whip swing phenomenon at a large interlayer deformation angle, which is inevitable with the conventional design method, and to construct a high-rise building and a high-rise tower with extremely excellent structural stability. be able to. Therefore, for a high-rise building, it is possible to greatly contribute to the improvement of the livability especially in the upper part, and for a high-rise tower, for example, radio waves emitted from a transmitter installed in a high-rise part are usually transmitted to a destination. Transmission can be performed more reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1の実施形態を示した立面図で
ある。
FIG. 1 is an elevational view showing a first embodiment according to the present invention.

【図2】本発明に係る第2の実施形態を示した立面図で
ある。
FIG. 2 is an elevation view showing a second embodiment according to the present invention.

【図3】本発明に係る第3の実施形態を示した立面図で
ある。
FIG. 3 is an elevation view showing a third embodiment according to the present invention.

【図4】最大層間変形角応答値を示したグラフである。FIG. 4 is a graph showing a maximum interlayer deformation angle response value.

【図5】最大変形応答値を示したグラフである。FIG. 5 is a graph showing a maximum deformation response value.

【図6】最大加速度応答値を示したグラフである。FIG. 6 is a graph showing a maximum acceleration response value.

【図7】最大層せん断力応答値を示したグラフである。FIG. 7 is a graph showing a maximum layer shear force response value.

【図8】最大転倒モーメント応答値を示したグラフであ
る。
FIG. 8 is a graph showing a maximum overturning moment response value.

【図9】耐震モデルを示した立面図である。FIG. 9 is an elevation view showing an earthquake-resistant model.

【図10】免震モデルを示した立面図である。FIG. 10 is an elevation view showing a seismic isolation model.

【符号の説明】[Explanation of symbols]

1、11 超高層建物 2 上部構造物 3 下部構造物 4 ケーブル 5 支持トラス 6 制震ダンパー 7 積層ゴム(免震装置) 8 展望台 9 送信室 21 超高層タワー 22 上部タワー 23 下部タワー DESCRIPTION OF SYMBOLS 1, 11 High-rise building 2 Upper structure 3 Lower structure 4 Cable 5 Support truss 6 Vibration damper 7 Laminated rubber (isolation device) 8 Observation deck 9 Transmission room 21 High-rise tower 22 Upper tower 23 Lower tower

フロントページの続き (72)発明者 山田 基裕 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 石垣 秀典 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内Continued on front page (72) Inventor Motohiro Yamada 8-21-1, Ginza, Chuo-ku, Tokyo Inside Takenaka Corporation Tokyo Main Store (72) Inventor Hidenori Ishigaki 8-2-1-1, Ginza, Chuo-ku, Tokyo Stock Takenaka Corporation Tokyo head office

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】風荷重及び地震荷重に対して柱の軸方向へ
の伸縮に伴う曲げ変形が支配的となる超高層建物に対す
る吊り制震方法であって、超高層建物は上部構造物と下
部構造物とから成り、上部構造物を、下部構造物により
振動周期を長周期化して吊り支持することを特徴とす
る、超高層建物の吊り制震方法。
A suspension vibration control method for a high-rise building in which bending deformation accompanying expansion and contraction of a column in an axial direction is dominant with respect to a wind load and an earthquake load, wherein the high-rise building includes an upper structure and a lower structure. A suspension control method for a super-high-rise building, wherein the suspension structure comprises a structure, and the upper structure is suspended and supported by the lower structure with a longer vibration period.
【請求項2】超高層建物の下部構造物は、平面的に見
て、上部構造物を間に挟む配置に設けることを特徴とす
る、請求項1に記載した超高層建物の吊り制震方法。
2. The suspension control method for a high-rise building according to claim 1, wherein the lower structure of the high-rise building is provided so as to sandwich the upper structure in plan view. .
【請求項3】超高層建物の下部構造物に、上部構造物の
振動を抑制する制震ダンパーを設けることを特徴とす
る、請求項1又は2に記載した超高層建物の吊り制震方
法。
3. The suspension vibration damping method for a high-rise building according to claim 1, wherein a vibration damper for suppressing vibration of the upper structure is provided in a lower structure of the high-rise building.
【請求項4】超高層建物の下部構造物の基礎部を免震化
することを特徴とする、請求項1〜3のいずれか1項に
記載した超高層建物の吊り制震方法。
4. The suspension vibration control method for a high-rise building according to claim 1, wherein a base portion of a substructure of the high-rise building is seismically isolated.
【請求項5】風荷重及び地震荷重に対して柱の軸方向へ
の伸縮に伴う曲げ変形が支配的となる超高層建物に対す
る吊り制震構造であって、超高層建物は上部構造物と下
部構造物とから成り、上部構造物は、下部構造物に一端
を止着したケーブル等の吊り部材により、振動周期を長
周期化して吊り支持されていることを特徴とする、超高
層建物の吊り制震構造。
5. A suspension control structure for a high-rise building in which bending deformation accompanying expansion and contraction of columns in the axial direction is dominant to wind loads and seismic loads, wherein the high-rise building comprises an upper structure and a lower structure. A superstructure, wherein the upper structure is suspended and supported by a suspension member such as a cable having one end fixed to the lower structure with a longer vibration period. Damping structure.
【請求項6】風荷重及び地震荷重に対して柱の軸方向へ
の伸縮に伴う曲げ変形が支配的となる超高層建物に対す
る吊り制震構造であって、超高層建物は上部構造物と下
部構造物とから成り、上部構造物は、下部構造物に一端
を止着したケーブル等の吊り部材に吊られた支持トラス
により、振動周期を長周期化して吊り支持されているこ
とを特徴とする、超高層建物の吊り制震構造。
6. A suspension damping structure for a high-rise building in which bending deformation accompanying expansion and contraction of columns in the axial direction is dominant against wind loads and earthquake loads, wherein the high-rise building comprises an upper structure and a lower structure. The upper structure is suspended and supported by a supporting truss suspended from a suspending member such as a cable having one end fixed to the lower structure with a longer vibration period. , Suspension structure of a high-rise building.
【請求項7】超高層建物の下部構造物は、平面的に見る
と、上部構造物を間に挟む配置に設けられていることを
特徴とする、請求項5又は6に記載した超高層建物の吊
り制震構造。
7. The high-rise building according to claim 5, wherein the lower structure of the high-rise building is provided so as to sandwich the upper structure when viewed in a plan view. Suspended vibration control structure.
【請求項8】超高層建物の上部構造物の振動周期は5〜
10秒程度とされていることを特徴とする、請求項5〜
7のいずれか1項に記載した超高層建物の吊り制震構
造。
8. The vibration period of the superstructure of a high-rise building is 5 to 5.
It is set to about 10 seconds, The claim 5 characterized by the above-mentioned.
7. The suspended vibration control structure for a high-rise building according to any one of items 7 to 7.
【請求項9】超高層建物の下部構造物には、上部構造物
の振動を抑制する制震ダンパーが設けられていることを
特徴とする、請求項5〜8のいずれか1項に記載した超
高層建物の吊り制震構造。
9. The superstructure according to claim 5, wherein a lower structure of the high-rise building is provided with a vibration damper for suppressing vibration of the upper structure. Suspended vibration control structure of a high-rise building.
【請求項10】超高層建物の下部構造物の基礎部は免震
化されていることを特徴とする、請求項5〜9のいずれ
か1項に記載した超高層建物の吊り制震構造。
10. The suspension vibration control structure for a high-rise building according to claim 5, wherein a base portion of a substructure of the high-rise building is seismically isolated.
JP32611899A 1999-11-16 1999-11-16 Suspended damping method and suspended damping structure for super-high-rise building Pending JP2001140496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32611899A JP2001140496A (en) 1999-11-16 1999-11-16 Suspended damping method and suspended damping structure for super-high-rise building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32611899A JP2001140496A (en) 1999-11-16 1999-11-16 Suspended damping method and suspended damping structure for super-high-rise building

Publications (1)

Publication Number Publication Date
JP2001140496A true JP2001140496A (en) 2001-05-22

Family

ID=18184289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32611899A Pending JP2001140496A (en) 1999-11-16 1999-11-16 Suspended damping method and suspended damping structure for super-high-rise building

Country Status (1)

Country Link
JP (1) JP2001140496A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491533B1 (en) * 2009-05-30 2010-06-30 一明 西廣 Swing-isolated building
WO2016045686A1 (en) 2014-09-24 2016-03-31 Mahmoud Galal Yehia Kamel Lateral distribution of loads in super high-rise buildings to reduce the effect of wind, earthquakes and explosions as well as increasing the utilized area
KR20210081252A (en) * 2019-12-23 2021-07-01 남 영 김 Seismic isolation structure using rope foundation
CN114829720A (en) * 2019-12-23 2022-07-29 金男英 Shock insulation structure using rope foundation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491533B1 (en) * 2009-05-30 2010-06-30 一明 西廣 Swing-isolated building
JP2010275847A (en) * 2009-05-30 2010-12-09 Kazuaki Nishihiro Oscillation isolation construction building
WO2016045686A1 (en) 2014-09-24 2016-03-31 Mahmoud Galal Yehia Kamel Lateral distribution of loads in super high-rise buildings to reduce the effect of wind, earthquakes and explosions as well as increasing the utilized area
KR20210081252A (en) * 2019-12-23 2021-07-01 남 영 김 Seismic isolation structure using rope foundation
KR102386263B1 (en) * 2019-12-23 2022-04-13 김남영 Seismic isolation structure using rope foundation
CN114829720A (en) * 2019-12-23 2022-07-29 金男英 Shock insulation structure using rope foundation

Similar Documents

Publication Publication Date Title
JPH09235890A (en) Vibration damping reinforcing structure for existing building
JP2009007916A (en) Vibration damping structure and its specification setting method
JP2009512796A (en) Damping of tall structures
JP5403331B2 (en) Seismic control frame
JP2001140496A (en) Suspended damping method and suspended damping structure for super-high-rise building
JPH11200660A (en) Vibration control structure for construction
JPH1150689A (en) Vibration control mechanism
JP2004169549A (en) Vibration control mechanism
JP7037320B2 (en) Vibration control building
JP2004353351A (en) Upper extension method for existing building
JP2501648B2 (en) Building structure
JP2009256962A (en) Building prolonging natural period
JP2009281074A (en) Connecting vibration control structure of building
JP2005090101A (en) Seismic response control structure
JP2940223B2 (en) Active damping bridge
JPH07252967A (en) Vibration prevention structure
JP3218529B2 (en) Damping structure
JP2013096205A (en) Seismic control structure
JP7370199B2 (en) Vibration damping reinforcement system
JP3612573B2 (en) Suspended floor structure
JPH0860895A (en) Bending-deflection control type earthquake control frame
JP3075550B2 (en) Lever mechanism and structure for vibration damping device
JP2000345732A (en) Hybrid type vibration control method and vibration control structure
JP2006046012A (en) Building using space below structure and construction method of building using space below the structure
JP3820496B2 (en) Large span structure with coupled independent frames

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606