JPH02101119A - Production of high-carbon content martensitic stainless steel having excellent impact toughness - Google Patents

Production of high-carbon content martensitic stainless steel having excellent impact toughness

Info

Publication number
JPH02101119A
JPH02101119A JP25209788A JP25209788A JPH02101119A JP H02101119 A JPH02101119 A JP H02101119A JP 25209788 A JP25209788 A JP 25209788A JP 25209788 A JP25209788 A JP 25209788A JP H02101119 A JPH02101119 A JP H02101119A
Authority
JP
Japan
Prior art keywords
stainless steel
martensitic stainless
hot rolling
impact toughness
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25209788A
Other languages
Japanese (ja)
Other versions
JPH0670252B2 (en
Inventor
Tetsuya Shimada
鉄也 島田
Akio Yamamoto
章夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25209788A priority Critical patent/JPH0670252B2/en
Publication of JPH02101119A publication Critical patent/JPH02101119A/en
Publication of JPH0670252B2 publication Critical patent/JPH0670252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To impart excellent impact toughness by hot rolling high-carbon content martensitic stainless steel at a specific cumulative draft and holding the steel at a specific temp., then cooling the same. CONSTITUTION:The high-carbon content martensitic stainless steel contg. 10.0 to 20.0wt.% C and 0.5 to 1.5% C is subjected to hot rolling at the cumulative draft exceeding 50%. The stainless steel is held at >=780 deg.C for >=30 minutes and is then cooled. Or the hot rolling is ended at >=950 deg.C, is held at >=780 deg.C for >=20 minutes and is cooled. The high-carbon content martensitic stainless steel which is sufficiently softened after spheroidization annealing and has the excellent impact toughness is obtd. in this way. The sheet rupture at the time of trimming and the edge crack at the time of cold rolling in case of a sheet material are decreased by this stainless steel and the disconnection during handling and drawing is decreased in case of bar and wire materials.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、球状化焼鈍後の衝撃靭性に優れる高炭素含有
マルテンサイト系ステンレス鋼の製造方法に関するもの
である。本発明によって、板材ではトリミング時の板破
断および冷間圧延時の耳割れ、棒線材ではハンドリング
時および伸線加工時の断線が大幅に低減される。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a high carbon-containing martensitic stainless steel having excellent impact toughness after spheroidizing annealing. According to the present invention, plate breakage during trimming and edge cracking during cold rolling are significantly reduced in plate materials, and wire breaks during handling and wire drawing are significantly reduced in wire rods.

(ロ)従来の技術 高炭素含有マルテンサイト系ステンレス鋼は、良好な耐
食性、高い焼入れ硬度および優れた耐摩耗性を有するこ
とから、板材は高級ナイフ、カミソリ、包丁、カッター
などの各種刃物類に、棒線材はベアリング、カム、ブツ
シュなどの各種耐摩耗用部材に用いられている。
(b) Conventional technology High carbon content martensitic stainless steel has good corrosion resistance, high quenching hardness, and excellent wear resistance, so it is used as a plate material for various cutlery such as high-grade knives, razors, kitchen knives, and cutters. Rods and wire rods are used in various wear-resistant parts such as bearings, cams, and bushings.

従来、マルテンサイト系ステンレス鋼の熱延鋼帯を得る
には、900℃を超え950℃未満の温度で熱間圧延を
終了しコイル状に捲取った後、常温まで放冷する。Ms
点が約350℃付近にあるため、捲取り後の冷却中にマ
ルテンサイト変態が生ずる。
Conventionally, in order to obtain a hot rolled steel strip of martensitic stainless steel, hot rolling is completed at a temperature of more than 900° C. and less than 950° C., the strip is wound into a coil shape, and then allowed to cool to room temperature. Ms
Since the point is around 350° C., martensitic transformation occurs during cooling after winding.

マルテンサイト相の硬さはtlv> 600と硬く延性
および靭性も低いため、コイルの捲戻しが不可能である
。したがって一般に軟質化を目的として、コイルのまま
バッチ式の球状化焼鈍が施されている。
The martensitic phase has a hardness of tlv>600, and has low ductility and toughness, so it is impossible to unwind the coil. Therefore, generally, the coil is subjected to batch-type spheroidizing annealing for the purpose of softening the coil.

この球状化焼鈍を省略するため、900℃以下で熱間圧
延を終了し、800℃以上で軟化処理を施し50℃/l
lr以下の冷却速度で徐冷する方法(特開昭59−15
3832号公報)や950℃以上で熱間圧延を終了し、
780℃以上の温度からオーステナイトリフエライト変
態完了温度まで徐冷する方法(特開昭59−15383
0号公報)が実施されている。
In order to omit this spheroidizing annealing, hot rolling is completed at 900°C or lower, and softening treatment is performed at 800°C or higher at 50°C/l.
Method of slow cooling at a cooling rate of less than lr
No. 3832) or hot rolling is completed at 950°C or higher,
A method of slowly cooling from a temperature of 780°C or higher to the completion temperature of austenite-riferite transformation (Japanese Patent Application Laid-Open No. 59-15383
Publication No. 0) has been implemented.

る。Ru.

また、棒線材では950℃〜875℃の温度で熱延終了
後、マルテンサイト変態が生じないように徐冷が施され
ている(ステンレス鋼便覧、長谷用正義監修、P、61
3)’。
In addition, rods and wire rods are slowly cooled after hot rolling at a temperature of 950°C to 875°C to prevent martensitic transformation (Stainless Steel Handbook, supervised by Masayoshi Hase, p. 61
3)'.

しかし、これらの製造方法はいずれも軟化を主たる目的
としており、衝撃靭性の向上について何ら対策をとるこ
となく現在に至っている。
However, all of these manufacturing methods have the main purpose of softening, and up to now, no measures have been taken to improve impact toughness.

高炭素含有マルテンサイト系ステンレス網は、完全にオ
ーステナイト→フェライト+cr炭化物変態が完了し軟
質化してもCr炭化物が鋼中に多量析出しているため、
球状化焼鈍後の衝撃靭性は充分満足いくレベルでない。
In high carbon content martensitic stainless steel mesh, even if the austenite → ferrite + Cr carbide transformation is completely completed and softened, a large amount of Cr carbide is precipitated in the steel.
The impact toughness after spheroidizing annealing is not at a fully satisfactory level.

このため、球状化焼鈍した熱延綱帯のサイI” )リミ
ング工程で発生するスクラップをスクラップポーラ−で
捲取る際、スクラップが破断し作業性が著しく低下する
とともに安全上著しい危険を伴う。さらに靭性が低い場
合には、球状化焼鈍した銅帯を捲戻す際に板破断が生ず
ることもある。
For this reason, when the scrap generated in the rimming process of the hot-rolled steel strip that has been annealed to form a spheroid is wound up with a scrap polarer, the scrap breaks, which significantly reduces workability and poses a significant safety risk. If the toughness is low, plate breakage may occur during unwinding of the spheroidally annealed copper strip.

また、球状化焼鈍後の板材および銅帯を冷間圧延する場
合、低い冷延率で耳割れが生し、著しい歩留り低下を招
く。この耳割れを回避するため、冷間圧延の途中に中間
軟化焼鈍を実施しているものの、生産性の著しい低下を
余儀なくされている。
Further, when cold rolling the plate material and copper strip after spheroidizing annealing, edge cracking occurs at a low cold rolling rate, resulting in a significant decrease in yield. In order to avoid this edge cracking, intermediate softening annealing is performed during cold rolling, but this results in a significant drop in productivity.

棒線材の場合、ハンドリングや伸線加工で断線する危険
が高い。したがって、製品歩留りや生産硅の著しい低下
尋引き起こすとともに、安全上著しい危険を伴う。
In the case of wire rods, there is a high risk of wire breakage during handling or wire drawing. Therefore, it causes a significant decrease in product yield and production volume, and also poses a significant safety risk.

(ハ)発明が解決しようとする課題 上記のように高炭素含有マルテンサイト系ステンレス鋼
の軟質化に関する技術は多数具られるものの、衝撃靭性
の向上について何ら改善がなされていない。
(c) Problems to be Solved by the Invention As mentioned above, although there are many techniques for softening high carbon-containing martensitic stainless steel, no improvements have been made in improving impact toughness.

以上の問題に着目し、本発明は球状化焼鈍後充分軟質化
するとともに衝撃靭性に優れた高炭素含有マルテンサイ
ト系ステンレス鋼の製造方法を提供するものである。
Focusing on the above problems, the present invention provides a method for producing a high carbon-containing martensitic stainless steel that is sufficiently softened after spheroidizing annealing and has excellent impact toughness.

(ニ)課題を解決するための手段および作用従来、マル
テンサイト系ステンレス鋼は、球状化焼鈍で母相組織を
フェライト相としCr炭化物を充分に球状析出させるこ
とによって、軟質化が図られてきた。本発明者らは、さ
らに制御熱延を行うことによってフェライト粒が微細化
し球状化焼鈍後の衝撃靭性を向上させることが可能であ
ることを見出し、本発明を成し遂げた。
(d) Means and effects for solving the problem Conventionally, martensitic stainless steel has been softened by spheroidizing annealing, which changes the matrix structure to a ferrite phase and causes sufficient spheroidal precipitation of Cr carbides. . The present inventors have discovered that by further performing controlled hot rolling, it is possible to refine the ferrite grains and improve the impact toughness after spheroidizing annealing, and have accomplished the present invention.

通常、炭素鋼のフェライト粒を微細化するには、低温仕
上げ熱延および低温捲取りが行われる。これ・は、熱延
再結晶によりオーステナイト粒を微細化し、冷却過程で
オーステナイト粒界に析出する初析フェライトを分散析
出させることを目的とする。一方、高炭素含有マルテン
サイト系ステンレス鋼は、Cr含有量が高いため熱延再
結晶が起きにくく制御熱延によるオーステナイト粒の微
細化が困難である。
Usually, low-temperature finishing hot rolling and low-temperature winding are performed to refine the ferrite grains of carbon steel. The purpose of this is to refine the austenite grains by hot rolling recrystallization and disperse and precipitate the pro-eutectoid ferrite that precipitates at the austenite grain boundaries during the cooling process. On the other hand, high carbon content martensitic stainless steel has a high Cr content, so hot rolling recrystallization is difficult to occur and it is difficult to refine the austenite grains by controlled hot rolling.

そこで、高炭素含有マルテンサイト系ステンレス鋼の熱
延焼鈍板の衝撃靭性を向上するには、熱延後初析フェラ
イト相が析出する以前にオーステナイト粒内にCr炭化
物を分散析出させることが有効であるとの新たな知見に
基づき冶金的な材料設計およびプロセス設計を行った。
Therefore, in order to improve the impact toughness of hot-rolled annealed sheets of high-carbon martensitic stainless steel, it is effective to disperse and precipitate Cr carbides within the austenite grains before the pro-eutectoid ferrite phase precipitates after hot rolling. Based on this new knowledge, metallurgical material design and process design were carried out.

本発明者らは、オーステナイト→フェライト変態の初析
フェライトの析出核が旧オーステナイト粒界のみならず
粒内に析出したC「炭化物であり、粒内Cr炭化物を核
に析出したフェライト粒は、微細で衝撃靭性に優れるこ
とを見出した。熱延後のオーステナイト粒内にC,r炭
化物を分散析出させる方法として、熱延後オーステナイ
ト温度域での長時間保持が有効である。
The present inventors have discovered that the precipitation nuclei of pro-eutectoid ferrite in the austenite → ferrite transformation are C carbides precipitated not only at the prior austenite grain boundaries but also within the grains, and the ferrite grains precipitated with intragranular Cr carbides as nuclei are fine. It has been found that the impact toughness is excellent.As a method for dispersing and precipitating C, r carbides in the austenite grains after hot rolling, holding the steel in the austenite temperature range for a long time after hot rolling is effective.

第1図にCrを17重量%、Cを0..65重量%含む
マルテン→J゛イト系ステンレス鋼熱延焼鈍板の衝撃靭
性に及ぼず熱延後780℃以上に保持した時間の影響を
示す。熱延後780℃以上で30min以4召呆持する
ことによって、著しく衝撃靭性が向1−する。特乙こ、
熱延温度が950°0以下の場合には、保持時間が2Q
min以上で従来レヘルを超える高い衝撃値を示す。7
80℃で長時間保持するごとによって、オーステナイト
粒に内在する熱延加工歪を核にCr炭化物が粒内に分散
析出するためと考えられる。一方、熱延後保持時間が短
い場合には、衝撃靭性が低い。これば、熱延後オーステ
ナイト粒内に昨炭化物が析出する以前に、保持後の冷却
過程あるいはその後の球状化焼鈍で旧オーステナイト粒
界に初析フェライトが析出成長し結晶粒が粗大化するた
めと考えられる。
Figure 1 shows 17% by weight of Cr and 0.0% of C. .. This figure shows the impact toughness of a hot-rolled annealed stainless steel sheet containing 65% by weight of marten→Jite, showing the influence of the time held at 780° C. or higher after hot-rolling. Impact toughness is significantly improved by holding the steel sheet at 780° C. or higher for 30 minutes or more after hot rolling. Special otoko,
If the hot rolling temperature is 950°0 or less, the holding time is 2Q.
It exhibits a high impact value that exceeds conventional levels at min. 7
It is thought that this is because Cr carbides are dispersed and precipitated within the grains, with the hot rolling strain inherent in the austenite grains as nuclei, as the steel is kept at 80° C. for a long time. On the other hand, when the holding time after hot rolling is short, the impact toughness is low. This is because pro-eutectoid ferrite precipitates and grows at the prior austenite grain boundaries during the cooling process after holding or the subsequent spheroidizing annealing, and the crystal grains become coarser, before pre-carbides precipitate within the austenite grains after hot rolling. Conceivable.

以」−の知見から、衝撃靭性に優れる高炭素含有マルテ
ンサイト系ステンレス鋼焼鈍材の製造が可能となった。
Based on the above knowledge, it has become possible to produce a high carbon content martensitic stainless steel annealed material with excellent impact toughness.

次いで、本発明の限定理由を説明する。Next, the reasons for the limitations of the present invention will be explained.

Cr含イ1量は、良好な耐食性を得るに必要最小限度の
10゜0重量%を下限とした。しかし、Cr含有量が2
0.0重量%を越えると巨大な炭化物が生成しやすくな
り、衝撃靭性劣化の原因となるだけではなく、充分な硬
度を出すことができなくなるため、20.0重量%を上
限とした。
The lower limit of the Cr content was set at 10.0% by weight, which is the minimum amount necessary to obtain good corrosion resistance. However, the Cr content is 2
If it exceeds 0.0% by weight, giant carbides tend to form, which not only causes deterioration of impact toughness but also makes it impossible to achieve sufficient hardness, so the upper limit was set at 20.0% by weight.

C含有量は、各種刃物類あるいは耐摩耗部月として必要
な硬度、切れ味および耐摩耗性を得るに必要最小限度の
0.5重量%を下限とした。しかし1.5重量%を越え
ると耐食性が著しく劣化すると同時に靭性が著しく低下
し使用不能となるため、上限を145重量%とじた。
The lower limit of the C content was set at 0.5% by weight, which is the minimum amount necessary to obtain the hardness, sharpness, and wear resistance required for various types of cutlery or wear-resistant parts. However, if the content exceeds 1.5% by weight, the corrosion resistance will deteriorate significantly and the toughness will also significantly decrease, making it unusable, so the upper limit was set at 145% by weight.

熱延累積圧下率は、オーステナイI・粒内に加工歪を内
在させCr炭化物の析出核となるに必要な50%を超え
る範囲とした。
The hot rolling cumulative reduction ratio was set in a range exceeding 50%, which is necessary to cause processing strain to be present in the austenite I grains and to form precipitation nuclei of Cr carbides.

熱延後の保持温度は、保持中にフェライト相を析出しな
い780℃を下限とした。
The lower limit of the holding temperature after hot rolling was 780° C. at which the ferrite phase does not precipitate during holding.

熱延後780℃以上に保持する時間は、熱延後オーステ
ナイト粒内にCr炭化物が分散析出するに必要最小限度
の30minを下限とした。特に熱間圧延終了温度が9
50℃以下の場合には、熱延加工歪の熱的な解放が少な
くCr炭化物の析出が速いため20minを下限とした
。なお、上記保持時間後の冷却の冷却速度は特に規制は
ないが、200’C/ II r以−上の徐冷とした場
合は球状化焼鈍の省略が可能である。
The lower limit of the time for maintaining the temperature at 780°C or higher after hot rolling was 30 min, which is the minimum necessary for Cr carbide to be dispersed and precipitated within the austenite grains after hot rolling. Especially when the hot rolling end temperature is 9
When the temperature is 50° C. or lower, there is little thermal release of hot rolling strain and Cr carbide is rapidly precipitated, so 20 min was set as the lower limit. There is no particular restriction on the cooling rate after the holding time, but if the slow cooling is 200'C/IIr or more, the spheroidizing annealing can be omitted.

(へ)実施例 第1表に示す成分の高炭素含有マルテンサイト系ステン
レス鋼鋳片を真空溶解炉にて溶製した。
(f) Example A high carbon-containing martensitic stainless steel slab having the components shown in Table 1 was melted in a vacuum melting furnace.

ごの鋳片を第2表に示す条件で累積圧下率95%の熱間
圧延した後、780℃以上の保持を行なった。この熱延
材に790 ’CX 5時間加熱後徐冷の球状化焼鈍を
施し、この材料を用いてVノツチシャルピー衝撃試験お
よびロックウェル硬度の測定を行なった。
The slabs were hot rolled under the conditions shown in Table 2 at a cumulative reduction rate of 95%, and then maintained at a temperature of 780°C or higher. This hot-rolled material was subjected to spheroidizing annealing by heating at 790'CX for 5 hours and then slowly cooling, and using this material, a V-notch Charpy impact test and a Rockwell hardness measurement were performed.

従来法で製造した試料No、 13〜15は、いずれも
HRC≦20で軟化しているものの、衝撃値が硅2゜≦
1.4(kg−m / c+fl )と低い。一方、本
発明法で製造した試料No、 1〜9はいずれも11.
c≦20で充分軟化しており、衝撃値もvEzo≧1−
9 (kg−m/cJ)と従来法で製造した試料に比べ
著しく高靭化している。また、780℃以上の保持時間
が短い試料No、10〜12の衝撃値は、従来法で製造
された試料とあまり差がない。
Samples No. 13 to 15 manufactured by the conventional method were all softened with HRC≦20, but the impact value was ≦2゜≦
It is as low as 1.4 (kg-m/c+fl). On the other hand, samples Nos. 1 to 9 manufactured by the method of the present invention all had 11.
c≦20, it is sufficiently softened, and the impact value is vEzo≧1−
9 (kg-m/cJ), which is significantly higher toughness than the sample manufactured by the conventional method. Moreover, the impact values of samples Nos. 10 to 12 whose holding times at 780° C. or higher were short were not much different from those of samples manufactured by the conventional method.

以上の実施例から、本発明に従って規定された成分およ
び製造プロセスが密接に関連して極めて効果的に作用し
、このため優れた衝撃靭性が付与されうることか明らか
である。
It is clear from the above examples that the components and manufacturing process defined according to the invention work in close conjunction very effectively, so that excellent impact toughness can be imparted.

第  1  表 (重量%) (ト)発明の効果 以上の実施例からも明らかなように、本発明によれば充
分軟質化し優れた衝撃靭性を有する高炭素含有マルテン
サイト系ステンレス鋼の製造が可能となる。
Table 1 (% by weight) (g) Effects of the invention As is clear from the above examples, according to the present invention, it is possible to produce a high carbon-containing martensitic stainless steel that is sufficiently softened and has excellent impact toughness. becomes.

この技術によって、板材ではトリミング時の板破断およ
び冷間圧延時の耳割れ、棒線材ではハンドリング時およ
び伸線加工時の断線が大幅に低減し、製造歩留りおよび
生産性の向上、製造上の危険回避が可能となり、産業上
の寄与は極めて大きい。
This technology significantly reduces plate breakage during trimming and edge cracking during cold rolling for plate materials, and wire breakage during handling and wire drawing for rods and wire rods, improving manufacturing yield and productivity, and reducing manufacturing risks. It has become possible to avoid this, and the industrial contribution is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Crを17重量%、Cを0.65重量%含む
マルテンサイト系ステンレス鋼の熱延焼鈍板の衝撃靭性
に及ぼす熱延後780℃以上に保持した時間の影響を示
す。
FIG. 1 shows the effect of the time held at 780° C. or higher after hot rolling on the impact toughness of a hot rolled annealed martensitic stainless steel plate containing 17% by weight of Cr and 0.65% by weight of C.

Claims (2)

【特許請求の範囲】[Claims] (1)Cr:10.0〜20.0重量%、C:0.5〜
1.5重量%を含む高炭素含有マルテンサイト系ステン
レス鋼に累積圧下率50%を超える熱間圧延を施した後
、780℃以上の温度に30min以上保持し冷却する
ことを特徴とする衝撃靭性に優れた高炭素含有マルテン
サイト系ステンレス鋼の製造方法。
(1) Cr: 10.0~20.0% by weight, C: 0.5~
Impact toughness characterized by hot rolling a high carbon content martensitic stainless steel containing 1.5% by weight with a cumulative reduction of more than 50%, and then cooling by holding at a temperature of 780°C or more for 30 minutes or more. A method for producing high-carbon martensitic stainless steel with excellent properties.
(2)Cr:10.0〜20.0重量%、C:0.5〜
1.5重量%を含む高炭素含有マルテンサイト系ステン
レス鋼に累積圧下率50%を超える熱間圧延を施し95
0℃以下で熱間圧延終了した後、780℃以上の温度に
20min以上保持し冷却することを特徴とする衝撃靭
性に優れた高炭素含有マルテンサイト系ステンレス鋼の
製造方法。
(2) Cr: 10.0~20.0% by weight, C: 0.5~
High carbon content martensitic stainless steel containing 1.5% by weight is subjected to hot rolling with a cumulative reduction rate of over 50%95
A method for producing a high carbon-containing martensitic stainless steel having excellent impact toughness, which comprises hot rolling at 0° C. or lower and then cooling the steel by maintaining it at a temperature of 780° C. or higher for 20 minutes or more.
JP25209788A 1988-10-07 1988-10-07 Method for producing martensitic stainless steel with high carbon content and excellent impact toughness Expired - Fee Related JPH0670252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25209788A JPH0670252B2 (en) 1988-10-07 1988-10-07 Method for producing martensitic stainless steel with high carbon content and excellent impact toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25209788A JPH0670252B2 (en) 1988-10-07 1988-10-07 Method for producing martensitic stainless steel with high carbon content and excellent impact toughness

Publications (2)

Publication Number Publication Date
JPH02101119A true JPH02101119A (en) 1990-04-12
JPH0670252B2 JPH0670252B2 (en) 1994-09-07

Family

ID=17232488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25209788A Expired - Fee Related JPH0670252B2 (en) 1988-10-07 1988-10-07 Method for producing martensitic stainless steel with high carbon content and excellent impact toughness

Country Status (1)

Country Link
JP (1) JPH0670252B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070229A (en) * 2012-09-27 2014-04-21 Hitachi Metals Ltd Manufacturing method of band steel for blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070229A (en) * 2012-09-27 2014-04-21 Hitachi Metals Ltd Manufacturing method of band steel for blade

Also Published As

Publication number Publication date
JPH0670252B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
KR101150365B1 (en) High carbon hot rolled steel coil and manufacturing method thereof
EP0523375B1 (en) Process for producing steel bar wire rod for cold working
Wada et al. Effect of trace elements, molybdenum, and intercritical heat treatment on temper embrittlement of 2-1/4Cr-1 Mo steel
JPH10273756A (en) Cold tool made of casting, and its production
JPH02101119A (en) Production of high-carbon content martensitic stainless steel having excellent impact toughness
JPH0665639A (en) Production of high carbon stainless steel strip having uniform fine carbite structure and excellent impact toughness
JPS58199812A (en) Manufacture of steel material with superior resistance to stress corrosion cracking due to sulfide
KR100419046B1 (en) Method for Manufacturing Martensite Stainless Steel Coil by Batch Annealing Furnace
JPH1025521A (en) Method to spheroidizing wire rod
JP2781325B2 (en) Method for producing medium and high carbon martensitic stainless steel strip having fine carbides
JPH0920923A (en) Production of high carbon stainless steel plate
JPH03249126A (en) Soaking treatment in production of high strength steel
JPH06330240A (en) High carbon steel site rod or steel wire excellent in wire drawability and its production
JPH02274810A (en) Production of high tensile untempered bolt
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPH1060540A (en) Production of high carbon cold rolled steel strip
JPS6293343A (en) Non-heattreated steel wire
JPH066750B2 (en) Method for producing high strength ERW oil well steel pipe with excellent low temperature toughness
JPH10298646A (en) Production of stainless steel plate
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JPH0525548A (en) Production of cr-ni stainless steel sheet excellent in material and surface quality
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
KR20040057216A (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
JPS5819725B2 (en) Manufacturing method of ferritic stainless steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees