JPH0198624A - Production of polyether - Google Patents

Production of polyether

Info

Publication number
JPH0198624A
JPH0198624A JP25677387A JP25677387A JPH0198624A JP H0198624 A JPH0198624 A JP H0198624A JP 25677387 A JP25677387 A JP 25677387A JP 25677387 A JP25677387 A JP 25677387A JP H0198624 A JPH0198624 A JP H0198624A
Authority
JP
Japan
Prior art keywords
polyether
water
clay
thf
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25677387A
Other languages
Japanese (ja)
Inventor
Ryukichi Oshima
大島 龍吉
Yoshihisa Fujimaki
藤巻 佳久
Kiyokazu Jo
城 清和
Nobuyasu Nakasugi
進康 中杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP25677387A priority Critical patent/JPH0198624A/en
Publication of JPH0198624A publication Critical patent/JPH0198624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a narrow-MW distribution polyether in good yields, by performing the polymerization through ring opening in the presence of boron trifluoride and water in producing a polyether by polymerizing tetrahydrofuran or a mixture thereof with an alkylene oxide through ring opening. CONSTITUTION:A polyether is produced by polymerizing tetrahydrofuran or a mixture thereof with a copolymerizable alkylene oxide through ring opening. Said ring opening polymerization is performed in the presence of boron trifluoride and water. It is possible to increase further effects such as an increased product yield and the formation of a narrowed MW distribution, by performing said ring opening polymerization in the presence of clay in addition to boron trifluoride and water. They are usually used in such a ratio that about 0.1-10% boron trifluoride, about 0.05-3% water and about 0.1-10% clay are present based on the weight of the polyether.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はポリエーテルの製造法に関するものである。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for producing polyether.

[従来の技術] 従来、テトラヒドロフラン(THFと略記)またはT1
(Fと他のアルキレンオキシド(AOと略記)との混合
物を触媒として四基化錫、塩化アルミニウム、弗化ほう
素、硫酸−無水酢酸、フルオ[1硫酸、酸で活性化した
漂白土(モンモリロン石)などのルイス酸を使用して開
環重合してポリエーテルを製造する技術がある(例えば
特開昭57−80337号公報、米国特許第4,127
,513号および米国特許第4,228,272号各明
、w書)。
[Prior Art] Conventionally, tetrahydrofuran (abbreviated as THF) or T1
(Tin tetrahydride, aluminum chloride, boron fluoride, sulfuric acid-acetic anhydride, fluoro[1 sulfuric acid, acid-activated bleaching earth (montmorillon) using a mixture of F and other alkylene oxides (abbreviated as AO) as catalysts. There is a technique for producing polyether by ring-opening polymerization using a Lewis acid such as (e.g. Japanese Patent Application Laid-Open No. 57-80337, U.S. Pat. No. 4,127).
, 513 and U.S. Pat. No. 4,228,272, W.).

[発明が解決しようとする問題点コ しかし、この方法は分子量分布ωW/MN)がたとえば
1.5〜2.0と広くなる傾向がある。また、THFの
転化率がイ民<、製品収率が悪くなる。
[Problems to be Solved by the Invention] However, in this method, the molecular weight distribution ωW/MN) tends to be wide, for example, from 1.5 to 2.0. Moreover, if the conversion rate of THF is lower than that, the product yield will be poor.

[問題点を解決するための手段] 本発明者等は製品収率を高めた、分子量分布の狭いポリ
エーテルの製造法につき鋭意検討した結果本発明に到達
した。すなわち本発明はTI(FまたはTHFおよびこ
れと共重合可能なAOの混合物を開環重合し必要により
アルカリ水溶液で加水分解してポリエーテルを製造する
方法において、開環重合を三弗化ほう素(BF3)およ
び水の存在下に行うことを特徴とするポリ、エーテルの
製造法(第一発明)およびTHFまたはTHFおよびこ
れと共重合可能なAOの混合物を開環重合し必要により
アルカリ水溶液で加水分解してポリエーテルを製造する
方法において、開環重合を[3F3、水および白土の存
在下に行うことを特徴とするポリエーテルの製造法(第
二発明)である。
[Means for Solving the Problems] The present inventors have arrived at the present invention as a result of intensive studies on a method for producing a polyether with a narrow molecular weight distribution that increases the product yield. That is, the present invention provides a method for producing polyether by ring-opening polymerization of a mixture of TI (F or THF and AO copolymerizable with the same) and hydrolyzing it with an alkaline aqueous solution if necessary. (BF3) and a method for producing polyether (first invention) characterized in that the process is carried out in the presence of water, and ring-opening polymerization of THF or a mixture of THF and AO copolymerizable with the same is carried out in the presence of an alkaline aqueous solution if necessary. A method for producing polyether by hydrolysis (second invention) characterized in that ring-opening polymerization is carried out in the presence of [3F3, water and clay].

本発明におけるTHFは1,4−ブタンジオールを公知
の方法て閉環脱水したものを使用することができる。ま
た重合後回収される未反応’I’HFを公知の方法で精
製したものも使用できる。THFの水分は一般市販品レ
ベルで通常0.03%以下であるが、必ずしもここまで
精製する必要はなく、1%まで許容される。
The THF used in the present invention can be obtained by ring-closing and dehydrating 1,4-butanediol using a known method. Furthermore, unreacted 'I'HF recovered after polymerization and purified by a known method can also be used. The water content of THF is usually 0.03% or less at the level of general commercial products, but it is not necessarily necessary to refine it to this extent, and up to 1% is allowed.

AOとしては炭素数2〜4のアルキレンオキシドたとえ
ばエチレンオキシド(EOと略記)、プロピレンオキシ
ド(POと略記)、1,2−11,3−12,3−ブチ
レンオキシドおよびこれらの2種以上の併用系が挙げら
れる。これらのうち好ましいものはEOlPOおよびE
OとPOの併用である。
AO includes alkylene oxides having 2 to 4 carbon atoms, such as ethylene oxide (abbreviated as EO), propylene oxide (abbreviated as PO), 1,2-11,3-12,3-butylene oxide, and combinations of two or more of these. can be mentioned. Among these, preferred are EOlPO and E
It is a combination of O and PO.

8F3はBF3単独でもよいが、取扱が難しいのでBF
3−TI−IFまたはBF3−水が好ましい。
8F3 can be used with BF3 alone, but it is difficult to handle, so BF
3-TI-IF or BF3-water is preferred.

本発明において、BF3および水の他に白土を加えるこ
とによって製品収率を高めたり分子量分布の狭いポリエ
ーテルが得られるという効果をさらに向上させることが
できる。
In the present invention, by adding clay in addition to BF3 and water, the effect of increasing the product yield and obtaining a polyether with a narrow molecular weight distribution can be further improved.

この白土としては活性白土たとえばモンモリロナイト属
粘土を主成分とする原料上を酸処理したものが挙げられ
る。活性白土の化学組成は通常、珪酸(S 102)6
0〜90%、好ましくは70〜80%、アルミナ(A1
203)5〜25%、好ましくは9〜13%、酸化鉄(
Fe203)1〜10%、好ましくは4〜6%、苦±(
MgO)0.1〜5%、好ましくは1〜2%、石灰(C
aO)0.1〜5%、好ましくは1〜2%である。具体
的にはガレオンアース[水沢化学(株)]などがある。
Examples of this clay include activated clay, such as one obtained by acid treatment of a raw material containing montmorillonite clay as a main component. The chemical composition of activated clay is usually silicic acid (S 102) 6
0-90%, preferably 70-80%, alumina (A1
203) 5-25%, preferably 9-13%, iron oxide (
Fe203) 1-10%, preferably 4-6%,
MgO) 0.1-5%, preferably 1-2%, lime (C
aO) 0.1-5%, preferably 1-2%. Specifically, there is Galleon Earth [Mizusawa Chemical Co., Ltd.].

ポリエーテルを製造するに際し、THF2−AOのモル
比は通常100 : O〜l:99、好ましくはioo
:o〜5:95である。
When producing polyether, the molar ratio of THF2-AO is usually 100:0 to 1:99, preferably ioo
:o~5:95.

8F3の量はポリエーテルの重量に基づいて通常0.1
〜10%、好ましくは0.2〜5%である。BFaが0
.1%未満ではTHFの転化率が低く目的のポリエーテ
ルが得難く、10%を越えても触媒効果が向上しない。
The amount of 8F3 is usually 0.1 based on the weight of the polyether.
-10%, preferably 0.2-5%. BFa is 0
.. If it is less than 1%, the THF conversion rate will be low and it will be difficult to obtain the desired polyether, and if it exceeds 10%, the catalytic effect will not improve.

水の量はポリエーテルの重量に基づいて通常0゜05〜
3%、好ましくは0.1&2.5%である。水が0.0
5%未満では水分コントロールが難しく、3%を越える
と分子量が小さくなり分子量のコントロールが困難とな
る。
The amount of water is usually 0°05~ based on the weight of the polyether.
3%, preferably 0.1 & 2.5%. Water is 0.0
If it is less than 5%, it is difficult to control the moisture content, and if it exceeds 3%, the molecular weight becomes small, making it difficult to control the molecular weight.

白土の量はポリエーテルの重量に基づいて通常0.1〜
10%、好ましくは2〜6%である。白土が0.1%未
満では触媒効果が少なく、10%を越えても触媒効果が
向上しない。
The amount of clay is usually from 0.1 to 0.1 based on the weight of polyether.
10%, preferably 2-6%. If the clay content is less than 0.1%, the catalytic effect will be small, and if it exceeds 10%, the catalytic effect will not improve.

またBFg、水および白土の量は、BF3と水と白土の
合計重量に基づいてBF3の量は通常2〜90%、好ま
しくは3〜75%である。BF3の量が2%未満ではT
)IFの転化率が低く目的のポリエーテルが得難く、9
0%を越えても触媒効果が向上しない。水の爪は通常1
〜50%、好ましくは1.5〜40%である。水の量が
1%未満では水分コントロールが難しく、50%を越え
ると分子量が小さくなり分子量のコントロールが困難と
なる。白土の量は通常0〜95%、好ましくは2〜95
%、さらに好ましくは30〜90%である。
The amounts of BFg, water, and clay are usually 2 to 90%, preferably 3 to 75%, based on the total weight of BF3, water, and clay. If the amount of BF3 is less than 2%, T
) The conversion rate of IF is low and it is difficult to obtain the desired polyether, 9
Even if it exceeds 0%, the catalytic effect will not improve. Water claws are usually 1
-50%, preferably 1.5-40%. If the amount of water is less than 1%, it is difficult to control the moisture content, and if it exceeds 50%, the molecular weight becomes small, making it difficult to control the molecular weight. The amount of white clay is usually 0 to 95%, preferably 2 to 95%.
%, more preferably 30 to 90%.

白土の量が2%未満では触媒効果が少なく、95%を越
えても触媒効果が向上しない。
If the amount of clay is less than 2%, the catalytic effect will be small, and if it exceeds 95%, the catalytic effect will not improve.

THFとAOを開環重合させる場合、刊Fを開環重合す
る方法、THFとAOを開環重合する方法、TIIFの
重合物にAOを開環重合する方法、AOの重合物にTH
Fを開環重合する方法などの方法をとることができる。
When performing ring-opening polymerization of THF and AO, method of ring-opening polymerization of THF and AO, method of ring-opening polymerization of AO to a polymer of TIIF, method of ring-opening polymerization of AO to a polymer of AO, method of ring-opening polymerization of THF and AO, method of ring-opening polymerization of AO to a polymer of AO,
A method such as ring-opening polymerization of F can be used.

゛これらのうち好ましくはTHFを開環重合する方法お
よびTHFとAOを開環重合する方法である。
Among these, preferred are a method of ring-opening polymerization of THF and a method of ring-opening polymerization of THF and AO.

8F3、水および白土をTHFまたはTIFとAOに加
える順序は特に限定されず、任意の順序で別々に加える
方法、同時に加える方法、予め混合してから加える方法
などが挙げられる。
The order in which 8F3, water, and clay are added to THF or TIF and AO is not particularly limited, and examples include a method of adding them separately in any order, a method of adding them at the same time, a method of adding them after mixing in advance, and the like.

8F3、水および白土をTHFに加える温度は通常0〜
50℃、好ましくは10〜40℃である。0℃より低い
と重合開始が緩慢になり、50℃より高いど着色などの
望ましくない副反応が起こる。
8F3, the temperature at which water and clay are added to THF is usually 0~
The temperature is 50°C, preferably 10-40°C. If the temperature is lower than 0°C, polymerization initiation will be slow, and if the temperature is higher than 50°C, undesirable side reactions such as coloring will occur.

反応温度は通常−10〜80℃、好ましくは10〜65
°Cである。反応温度が一10°C未満では重合が遅く
工業的生産には不利である。反応温度が80°Cより高
いとみかけの重合速度は上がるが、重合収率は低下する
。また連鎖移動反応により分子量の調整が難しく、着色
などの品位の低下を招く。反応温度の調整は通常の方法
でよく、たとえば冷却水を用いて反応器を冷却すればよ
い。
The reaction temperature is usually -10 to 80°C, preferably 10 to 65°C.
It is °C. If the reaction temperature is less than 110°C, polymerization is slow and is disadvantageous for industrial production. When the reaction temperature is higher than 80°C, the apparent polymerization rate increases, but the polymerization yield decreases. In addition, it is difficult to adjust the molecular weight due to chain transfer reactions, resulting in deterioration of quality such as coloring. The reaction temperature may be adjusted by a conventional method, for example, by cooling the reactor using cooling water.

反応時間はBF3、水および白土の量、反応温度などに
よって種々変えることができるが、通常1〜24時間、
好ましくは1〜10時間である。反応時間は24時間よ
り長くしても平衡重合のため重合収率向上に結び付かな
い。
The reaction time can be varied depending on the amount of BF3, water and clay, reaction temperature, etc., but is usually 1 to 24 hours.
Preferably it is 1 to 10 hours. Even if the reaction time is longer than 24 hours, the polymerization yield will not be improved due to equilibrium polymerization.

反応は常圧でも加圧でも行うことができる。The reaction can be carried out at normal pressure or under elevated pressure.

反応は不活性ガス(窒素ガスなど)雰囲気中で通常行な
はれる。
The reaction is usually carried out in an atmosphere of inert gas (such as nitrogen gas).

重合反応が終了すればアルカリ(苛性ソーダ、炭酸ナト
リウムなど)水溶液などを加えてBF3を中和し反応停
止ができる。中和は単に室温、加熱して混合、′J!R
,ヰすることで行われる。続いて生成した中和塩を活性
白土、酸化アルミナ、酸化マグネシウム−酸化アルミナ
(合成品)などの吸着剤を併用することにより分離除去
できる。未反応のTHFは蒸留により回収できる。
When the polymerization reaction is completed, the reaction can be stopped by adding an aqueous alkali solution (caustic soda, sodium carbonate, etc.) to neutralize the BF3. Neutralization is simply done at room temperature, heated and mixed, 'J! R
, it is done by doing. Subsequently, the generated neutralized salt can be separated and removed by using an adsorbent such as activated clay, alumina oxide, or magnesium oxide-alumina oxide (synthetic product). Unreacted THF can be recovered by distillation.

得られるポリエーテルの数平均分子量は通常500〜s
 、 ooo、好ましくは500〜6 、000、とく
に好ましくは1.000〜4.000である。
The number average molecular weight of the obtained polyether is usually 500 to s.
, ooo, preferably 500 to 6,000, particularly preferably 1.000 to 4.000.

ポリエーテルは一般式 %式%(1) (式中、Aは炭素数2〜4のアルキレン基、mは1〜1
00の整数、nは0〜150の整数である。n個のオキ
シアルキレン基は同じでも異なっていてもよい。
Polyether has the general formula % formula % (1) (wherein A is an alkylene group having 2 to 4 carbon atoms, m is 1 to 1
An integer of 00, n is an integer of 0 to 150. The n oxyalkylene groups may be the same or different.

■個のCH2CH2CH2CH20とn個のA○はラン
ダム結合、ブロック結合またはその併用結合てもよい。
(2) CH2CH2CH2CH20 and n A○ may be randomly combined, block combined, or a combination thereof.

)で示すことができる。) can be shown.

[実施例コ 以下、実施例により本発明をさらに説明するが、本発明
はこれに限定されるものではない。実施例中の部は重量
部である 実施例I THFの688部(9,56モル)を加圧反応器に仕込
み、BF3−THF錯体24部および水6.8部を加え
N2置換後、20〜30℃で1.5時間要し、EOを1
44.6部を滴下し反応させたのぢ同温度で0.3時間
熟成しNa01148%水溶液25部加え中和後、50
〜100℃減圧下で未反応THFを留出させた。酸化ア
ルミナをブレコー1− シて濾過することで659部の
ポリエーテルグリコールを得た。このとぎのTHFの転
化率は75%であった。またヒドロキシル価より求めた
分子量は2150(ヒドロキシル価52.4)であった
。MW/MNを表−1に示す。
[Example] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. Parts in Examples are parts by weight. Example I 688 parts (9.56 mol) of THF was charged into a pressurized reactor, 24 parts of BF3-THF complex and 6.8 parts of water were added, and after replacing with N2, It takes 1.5 hours at ~30°C and 1 EO
After adding 44.6 parts dropwise and reacting, it was aged at the same temperature for 0.3 hours, and after neutralization by adding 25 parts of 48% Na011 aqueous solution,
Unreacted THF was distilled off under reduced pressure at ~100°C. 659 parts of polyether glycol was obtained by filtering the alumina oxide through Brecot. The conversion rate of THF at this point was 75%. The molecular weight determined from the hydroxyl value was 2150 (hydroxyl value 52.4). MW/MN is shown in Table-1.

実施例2 [3F3−THF、水および反応温度を表−1に示すと
おりに代える他は実施例1と同様に反応、中和、精製を
行ってポリエーテルグリコールを得た。この分子量およ
びMW/MNを表−1に示す。
Example 2 [3F3-THF, water, and reaction temperature were changed as shown in Table 1, but the reaction, neutralization, and purification were carried out in the same manner as in Example 1 to obtain polyether glycol. The molecular weight and MW/MN are shown in Table-1.

実施例3 THFの688部(9,56モル)を加圧反応器に仕込
み、BF3−T)IF錯体30部、水2.5部および白
土40部を加え、N2置換後、20〜30℃で1.5時
間要し、EOを144.6部を滴下し反応させたのち同
温度で0.3時間熟成した。
Example 3 688 parts (9.56 mol) of THF was charged into a pressurized reactor, 30 parts of BF3-T)IF complex, 2.5 parts of water and 40 parts of clay were added, and after N2 substitution, the temperature was 20-30°C. After 1.5 hours of reaction, 144.6 parts of EO was added dropwise and the mixture was aged for 0.3 hours at the same temperature.

反応終了後、50〜100°C減圧下で未反応THFを
留出させた。酸化マグネシウム−酸化アルミナ(合成品
、協和化学工業(株)製KW−1000)をプレコート
して濾過することで665部のポリエーテルグリコール
を得た。このときのT)IFの転化率は76%であった
。またヒドロキシル価より求めた分子量は2877(ヒ
ドロキシル価39.0)であった。聞/MNを表−1に
示す。
After the reaction was completed, unreacted THF was distilled off under reduced pressure at 50 to 100°C. 665 parts of polyether glycol was obtained by precoating with magnesium oxide-alumina oxide (synthetic product, KW-1000 manufactured by Kyowa Chemical Industry Co., Ltd.) and filtering. The conversion rate of T)IF at this time was 76%. The molecular weight determined from the hydroxyl value was 2877 (hydroxyl value 39.0). MN/MN is shown in Table-1.

実施例4および5 8F3−THF、水、白土および反応温度を表−1に示
すとおりに代える他は実施例3と同様に反応、精製を行
ってポリエーテルグリコールを得た。これらの分子量お
よびMW/MNを表−1に示す。
Examples 4 and 5 Polyether glycols were obtained by reaction and purification in the same manner as in Example 3, except that 8F3-THF, water, clay, and reaction temperature were changed as shown in Table 1. Their molecular weights and MW/MN are shown in Table-1.

比較例I THFの688部(9,56モル)を加圧反応器に注込
み、150℃で4時間乾燥した酸性白土(水分0.1%
)68部およびエチレングリコール28.5部を加え、
N2置換後、20〜40℃で24時間要し、EOを20
2部を滴下し反応させたのち同温度で6時間熟成し、5
0〜100℃減圧下で未反応EOおよびTIIFを留出
させた後、濾過にて酸性白土を濾別することで470部
のポリエーテルグリコールを得た。このときのTl(F
の転化率は42%であった。またヒドロキシル価より求
めた分子量は1021(ヒドロキシル価110)であっ
た。MW/MNを表−1ζこ示す。
Comparative Example I 688 parts (9.56 mol) of THF was poured into a pressurized reactor and acid clay (moisture 0.1%) was dried at 150°C for 4 hours.
) and 28.5 parts of ethylene glycol,
After N2 substitution, it took 24 hours at 20-40℃ and 20
After dropping 2 parts to react, it was aged at the same temperature for 6 hours, and 5 parts
After distilling off unreacted EO and TIIF under reduced pressure at 0 to 100°C, acid clay was removed by filtration to obtain 470 parts of polyether glycol. At this time, Tl(F
The conversion rate was 42%. The molecular weight determined from the hydroxyl value was 1021 (hydroxyl value 110). MW/MN is shown in Table 1ζ.

比較例2 エチレングリコール28.7部、四基化錫3.0部およ
びTHF688部を加圧反応器に仕込み、N2置換後、
EOを202部を15時間要し30〜40℃で滴下、反
応させた。
Comparative Example 2 28.7 parts of ethylene glycol, 3.0 parts of tin tetrahydride, and 688 parts of THF were charged into a pressurized reactor, and after N2 substitution,
202 parts of EO was added dropwise to react at 30 to 40°C over 15 hours.

反応後、同温度で6時間熟成し、50〜100℃減圧下
で未反応刊Fを留出させ、5%炭酸すI・リウム水溶液
を加え、中和し、脱水、濾過して633部のポリエーテ
ルグリコールを得た。このときのTHFの転化率は59
%であった。またヒドロキシル価より求めた分子量は1
380(ヒドロキシル価81)であった。MW/MNを
表−1に示す。
After the reaction, it was aged for 6 hours at the same temperature, and the unreacted F was distilled off under reduced pressure at 50-100°C. A 5% aqueous solution of I carbonate was added, neutralized, dehydrated, and filtered to give 633 parts. Polyether glycol was obtained. The conversion rate of THF at this time was 59
%Met. Also, the molecular weight determined from the hydroxyl value is 1
380 (hydroxyl value 81). MW/MN is shown in Table-1.

表−1 表−1(続き) 表−1(続き) とEO含量の分析の詳細は次の通りである。。Table-1 Table-1 (continued) Table-1 (continued) The details of the analysis of and EO content are as follows. .

触媒 1 : BF3−THF錯体 2:白土[ガレオンアース(水沢化学製)コク:白土[
ガレオンアース(水沢化学製)]を150℃で4時間乾
燥し水分0.1%にした。
Catalyst 1: BF3-THF complex 2: White clay [Galleon Earth (Mizusawa Chemical Co., Ltd.) Rich: White clay [
Galleon Earth (manufactured by Mizusawa Chemical Co., Ltd.)] was dried at 150° C. for 4 hours to reduce the moisture content to 0.1%.

4二四塩化鉛 分析法 M’J /MN(分子量分布’) : G、P、C(東
洋曹達株製HLC−802UR) EO含ffi : NMR(VARIAN社製 XL−
300)[発明の効果コ 1、本発明はTHFの転化率が高く(例えば60〜80
%)、製品収率が高くなる製造法である。
424 Lead chloride analysis method M'J/MN (molecular weight distribution'): G, P, C (HLC-802UR manufactured by Toyo Soda Co., Ltd.) EO-containing ffi: NMR (XL- manufactured by VARIAN)
300) [Effect of the invention 1. The present invention has a high conversion rate of THF (for example, 60 to 80
%), this is a manufacturing method with a high product yield.

2、本発明は分子量分布の狭いポリエーテルを製造でき
る製造法である。
2. The present invention is a manufacturing method that can produce polyether with a narrow molecular weight distribution.

3、本発明はポリエーテルの生産時間が短い。3. The production time of polyether is short in the present invention.

4、本発明は触媒除去が中和または吸着剤で行うことが
でき、従来の水洗、分液て行うような廃液もほとんど発
生ぜず簡単な操作で行うことができる。
4. In the present invention, the catalyst can be removed by neutralization or by using an adsorbent, and can be carried out with a simple operation without generating almost any waste liquid, unlike the conventional methods of washing with water and liquid separation.

また回収した白土は再利用することもできるし、そのま
ま廃棄処理することもできる。
In addition, the collected white clay can be reused or disposed of as is.

5、本発明は分子量が低くてEO全含量低いポリエーテ
ルを製造することができる。
5. The present invention can produce polyethers with low molecular weight and low total EO content.

Claims (1)

【特許請求の範囲】 1、テトラヒドロフランまたはテトラヒドロフランおよ
びこれと共重合可能なアルキレンオキシドの混合物を開
環重合してポリエーテルを製造する方法において、開環
重合を三弗化ほう素および水の存在下に行うことを特徴
とするポリエーテルの製造法。 2、三弗化ほう素の量がポリエーテルの重量に基づいて
0.1〜10%である特許請求の範囲第1項記載の製造
法。 3、水の量がポリエーテルの重量に基づいて0.05〜
3%である特許請求の範囲第1項または第2項記載の製
造法。 4、テトラヒドロフランまたはテトラヒドロフランおよ
びこれと共重合可能なアルキレンオキシドの混合物を開
環重合してポリエーテルを製造する方法において、開環
重合を三弗化ほう素、水および白土の存在下に行うこと
を特徴とするポリエーテルの製造法。 5、白土の量がポリエーテルの重量に基づいて0.1〜
10%である特許請求の範囲第4項記載の製造法。
[Claims] 1. A method for producing a polyether by ring-opening polymerization of tetrahydrofuran or a mixture of tetrahydrofuran and an alkylene oxide copolymerizable with the same, wherein the ring-opening polymerization is carried out in the presence of boron trifluoride and water. A method for producing polyether, characterized by carrying out the following steps: 2. The manufacturing method according to claim 1, wherein the amount of boron trifluoride is 0.1 to 10% based on the weight of the polyether. 3. The amount of water is 0.05~ based on the weight of polyether
3% of the manufacturing method according to claim 1 or 2. 4. In a method for producing a polyether by ring-opening polymerization of tetrahydrofuran or a mixture of tetrahydrofuran and an alkylene oxide copolymerizable with the same, the ring-opening polymerization is carried out in the presence of boron trifluoride, water and clay. Characteristic polyether manufacturing method. 5. The amount of clay is 0.1 to 0.1 based on the weight of polyether
10% of the manufacturing method according to claim 4.
JP25677387A 1987-10-12 1987-10-12 Production of polyether Pending JPH0198624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25677387A JPH0198624A (en) 1987-10-12 1987-10-12 Production of polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25677387A JPH0198624A (en) 1987-10-12 1987-10-12 Production of polyether

Publications (1)

Publication Number Publication Date
JPH0198624A true JPH0198624A (en) 1989-04-17

Family

ID=17297247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25677387A Pending JPH0198624A (en) 1987-10-12 1987-10-12 Production of polyether

Country Status (1)

Country Link
JP (1) JPH0198624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6639041B2 (en) 1999-12-03 2003-10-28 Dupont-Toray Co. Ltd. Spandex having low set at low temperatures
US6726936B1 (en) 1998-06-19 2004-04-27 Sumitomo Metal Mining Co., Ltd. Antimicrobial agents
WO2009032560A1 (en) * 2007-08-31 2009-03-12 Invista Technologies S.Ar.L. Oxygen scavenging plastic compositions
JP2010077417A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol
US8647728B2 (en) 2009-02-20 2014-02-11 Invista North America S.A.R.L. Oxygen scavenging resin with short induction period

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726936B1 (en) 1998-06-19 2004-04-27 Sumitomo Metal Mining Co., Ltd. Antimicrobial agents
US6639041B2 (en) 1999-12-03 2003-10-28 Dupont-Toray Co. Ltd. Spandex having low set at low temperatures
WO2009032560A1 (en) * 2007-08-31 2009-03-12 Invista Technologies S.Ar.L. Oxygen scavenging plastic compositions
JP2010077417A (en) * 2008-08-26 2010-04-08 Sanyo Chem Ind Ltd Method for producing polyoxyalkylene alcohol
US8647728B2 (en) 2009-02-20 2014-02-11 Invista North America S.A.R.L. Oxygen scavenging resin with short induction period

Similar Documents

Publication Publication Date Title
US5099074A (en) Process for the preparation of polyether glycols
CN101389689A (en) Manufacture of polytrimethylene ether glycol
JP2003513119A (en) Production of highly reactive polyisobutene
JPH0198624A (en) Production of polyether
JPH02248426A (en) Manufacture of oxetane polyether polyol
JPH0388825A (en) Production of high molecular weight polyalkylene oxide having unsaturate terminal group
MXPA01012851A (en) Method for the continuous production of polybutylene terephthalate from terephthal acid and butane diole.
US5344964A (en) Method for preparing ester end-capped polyalkylene ether
JPH03126722A (en) Purification of crude polyalkylene ether glycol
WO2012057370A1 (en) Metal oxide catalyst for etherification, preparation method thereof, and method for preparing linear polyglycerin using same
CN106188521B (en) Synthesis of polymer polyalcohol macromolecule dispersing agent
JP3659042B2 (en) Process for producing polyalkylene ether glycol
JPH0713140B2 (en) Method for depolymerizing polyoxyalkylene glycol and / or cyclic polyalkylene ether
CN109970572B (en) Synthetic method of double-bond end-capping compound
JP3845180B2 (en) Process for producing fatty acid polyoxyalkylene alkyl ether, and composite metal oxide catalyst used in the process
JPS60109584A (en) Depolymerization of polyoxymethylene glycol
JP2002030144A (en) Process for producing polyether compound
JPH0597996A (en) Method for purifying polyethers
JPS63178131A (en) Copolymerization of tetrahydrofuran with lactones
US4145519A (en) Catalyst for the polymerization of 2-pyrrolidone from alkali metal
JPS61143428A (en) Production of polyalkylene ether polyol
JP6202471B2 (en) Method for producing medical polyoxypropylene polymer and method for producing medical polyoxypropylene / polyoxyethylene block copolymer
JP3267007B2 (en) Method for producing polytetramethylene ether glycol
JPH0559167A (en) Production of 2-pyrrolidone polymer
JPS61215621A (en) Production of polytetramethylene ether glycol