JPS61215621A - Production of polytetramethylene ether glycol - Google Patents

Production of polytetramethylene ether glycol

Info

Publication number
JPS61215621A
JPS61215621A JP5930285A JP5930285A JPS61215621A JP S61215621 A JPS61215621 A JP S61215621A JP 5930285 A JP5930285 A JP 5930285A JP 5930285 A JP5930285 A JP 5930285A JP S61215621 A JPS61215621 A JP S61215621A
Authority
JP
Japan
Prior art keywords
polymerization
catalyst
polymer
thf
ether glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5930285A
Other languages
Japanese (ja)
Inventor
Nobuyasu Nakasugi
進康 中杉
Kaneo Matsuda
松田 兼男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP5930285A priority Critical patent/JPS61215621A/en
Publication of JPS61215621A publication Critical patent/JPS61215621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)

Abstract

PURPOSE:To produce a polytetramethylene ether glycol of stable quality, by hydrolyzing a polymer obtained by polymerizing tetrahydrofuran in the presence of a specified catalyst. CONSTITUTION:100pts.wt. tetrahydrofuran is polymerized at 10-50 deg.C for 3-10hr in the presence of 0.05-10pts.wt. HF, 0.2-20pts.wt. montmorillonite mineral and 0.5-20pts.wt. acetic anhydride. This polymerization is stopped by deactivating the catalyst by the addition of an aqueous alkali solution or the like. Catalyst residues are removed and unreacted tetrahydrofuran is recovered by distillation to leave a polymer. This polymer is mixed with an excess molar amount of an aqueous NaOH solution and, optionally, a solvent and hydrolyzed at 80-120 deg.C for 2-5hr to obtain a polytetramethylene ether glycol of a number- average MW of 500-4,000.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリテトラメチレンエーテルグリコール(以下
PTMGと記す)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polytetramethylene ether glycol (hereinafter referred to as PTMG).

〔従来の技術〕[Conventional technology]

従来PTMGの製造法としてテトラヒドロフラン(以下
THFと記す)の重合触媒としては上壁的安価な活性白
土と無水酢酸を併用してPTMGを製造する方法が知ら
れている(たとえば米国特許第4 、243 、799
号)。しかしこの方法では重合収率が低い。そのため重
合物得量当りの触媒費は高くつく。
Conventionally, as a method for producing PTMG, a method is known in which PTMG is produced using a combination of inexpensive activated clay and acetic anhydride as a polymerization catalyst for tetrahydrofuran (hereinafter referred to as THF) (for example, U.S. Pat. No. 4, 243). , 799
issue). However, this method has a low polymerization yield. Therefore, the catalyst cost per amount of polymer obtained is high.

特にこの触媒系はTHF中の水分により重合収率および
重合物の分子屋が大きく変わり、低水分のTHF Lか
使用できないという離島があり、品質の調整も困難であ
った。
In particular, with this catalyst system, the polymerization yield and molecular weight of the polymer vary greatly depending on the moisture in THF, and there are isolated islands where only low-moisture THF L can be used, making it difficult to control the quality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等はTHF中の水分の彫りを受けにくく、安定
した品質のPTMGを高収率で得られるPTMGの製造
法について鋭意研究を重ね本発明に到達した。
The present inventors have conducted intensive research on a method for producing PTMG that is not easily affected by water content in THF and can obtain stable quality PTMG at a high yield, and have finally arrived at the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は弗化水素、モンモリロナイト系鉱物および無水
酢酸を必須成分とする触媒の存在下にTHF 1)重合
させて得られる重合物を加水分解することを特徴とする
PTMGの製造法である。
The present invention is a method for producing PTMG, which is characterized by hydrolyzing a polymer obtained by 1) polymerization with THF in the presence of a catalyst containing hydrogen fluoride, a montmorillonite mineral, and acetic anhydride as essential components.

本明細書において部および%はそれぞれ重量部、重量%
を示す。
In this specification, parts and % are parts by weight and % by weight, respectively.
shows.

本発明で用いるTI(Fは1.4−ブタンジオールを公
知の方法で閉環脱水して使用できる。また重合後回収さ
れる未反応 THFを公知の方法で精製したものも使用
できる。THFは必ずしも一般市販品しヘルの水分0.
03%以下まで精製する必要がなく、およそTHFの水
分は1%まで許容される。
TI (F) used in the present invention can be used by ring-closing and dehydrating 1,4-butanediol by a known method.Also, unreacted THF recovered after polymerization can be purified by a known method.THF is not necessarily used. A commercially available product with a water content of 0.
There is no need to purify the THF to less than 0.3%, and approximately 1% water content in THF is tolerated.

弗化水素は市販の無水弗化水素が使用できる、モンモリ
ロナイト系鉱物は通常活性白土および酸性白土などとし
て市販されているものの中から選ぶことができる。例え
ばガレオンアースNS。
Commercially available anhydrous hydrogen fluoride can be used as the hydrogen fluoride, and the montmorillonite mineral can be selected from those commercially available as activated clay and acid clay. For example, Galleon Earth NS.

ガレオンアースNC,ガレオナイト136、ガレオナイ
ト236Cいずれも水沢化学工業社f!N)などが挙げ
られる。
Galleon Earth NC, Galleonite 136, and Galleonite 236C are all manufactured by Mizusawa Chemical Industry Company f! N), etc.

無水酢酸は市販のものが使用できる。Commercially available acetic anhydride can be used.

THFに対する触媒各成分の比率はTHF 100部に
対して弗化水素は通常0.05〜10部、好ましくは0
.1〜5部、モンモリロナイト系鉱物は通常0.2〜2
0  部、好ましくは1〜10部、無水酢酸は通常0.
5〜20部、好才しくけ1〜15部である。
The ratio of each catalyst component to THF is usually 0.05 to 10 parts of hydrogen fluoride to 100 parts of THF, preferably 0.
.. 1 to 5 parts, montmorillonite minerals usually 0.2 to 2 parts
0 parts, preferably 1 to 10 parts, acetic anhydride usually 0.
5 to 20 copies, and 1 to 15 copies for good people.

弗化水素が0.05部より少いと、THFの水分の影響
を受は易くなり重合収率が低下し、重合物の分子量など
品質もばらつく。10部より多いと、反応が激しくなり
重合物の弗素化反応など好ましくない副反応が起る。
If the amount of hydrogen fluoride is less than 0.05 part, the effect of water in THF will be increased, the polymerization yield will decrease, and the quality of the polymer, such as the molecular weight, will vary. When the amount is more than 10 parts, the reaction becomes violent and undesirable side reactions such as fluorination reaction of the polymer occur.

モンモリロナイト系鉱物が0.2部より少いと重合物の
分子量のばらつきが太き(なり、重合収率も低下し、2
0部より多くしても重合収率は上らず逆に重合物の付着
損失の増大や、廃棄物の増加をきた寸。
If the content of the montmorillonite mineral is less than 0.2 part, the molecular weight of the polymer will vary widely, and the polymerization yield will also decrease.
Even if the amount is more than 0 parts, the polymerization yield will not increase, but on the contrary, the loss of adhesion of the polymer will increase and the amount of waste will increase.

また、無水酢酸が065部より少いと、はとAど重合が
開始せず、20部より多いと、副反応である連1移動反
応が起り、数平均分子量が上らない。
Furthermore, if the amount of acetic anhydride is less than 0.65 parts, polymerization will not start, and if it is more than 20 parts, a series transfer reaction, which is a side reaction, will occur and the number average molecular weight will not increase.

弗化水素とモンモリロナイト系鉱物および鍜水酢酸の合
計重量に基づいて、弗化水素は通常2〜60%、好まし
くは3〜30%、モンモリロナイト系鉱物は通常4〜9
0%、好ましくは8〜60%、無水酢酸は通常5〜95
%、好ましくは10〜80%である。
Based on the total weight of hydrogen fluoride, montmorillonite mineral, and aqueous acetic acid, hydrogen fluoride is usually 2 to 60%, preferably 3 to 30%, and montmorillonite mineral is usually 4 to 9%.
0%, preferably 8-60%, acetic anhydride usually 5-95%
%, preferably 10 to 80%.

これら3種の鋤媒はどの1種が欠けても重合物の収率が
極度に低下し、場合によってはほとんど重合が進行しな
い。重合物が得られる場合でも重合に長時間を要したり
、重合物の分子量の調整が困難で品質面での安定化が図
りにくい。
If any one of these three types of plowing medium is missing, the yield of the polymer will be extremely reduced, and in some cases, polymerization will hardly proceed. Even when a polymer can be obtained, it takes a long time to polymerize, and it is difficult to adjust the molecular weight of the polymer, making it difficult to stabilize the quality.

これら3種の触媒の使用法は特に限定する必要はない。There is no need to particularly limit the usage of these three types of catalysts.

最も容易な方法の例を挙げると、3種の触媒をそれぞれ
別々に任意の順序でTHFに加える方法、たとえば弗化
水素およびモンモリロナイト系鉱物を任意の順序で加え
、次いで缶水酢酸を加える方法である。
An example of the easiest method is to add the three catalysts separately to THF in any order, such as adding hydrogen fluoride and montmorillonite minerals in any order, and then adding aqueous acetic acid. be.

触媒をTHFに加える湿度は通常O〜50℃、好ましぐ
−゛βlO〜40℃である。0℃より低いと重合開始が
緩°慢°になり、逆に50℃より高いと着色などの望ま
しくない副反応が起る。
The humidity at which the catalyst is added to the THF is usually from 0 to 50°C, preferably from 0 to 40°C. If the temperature is lower than 0°C, the initiation of polymerization will be slow, while if it is higher than 50°C, undesirable side reactions such as coloring will occur.

重合温度は通常10〜50℃、好ましくは20〜40℃
である。重合温度が50℃より高いとみかけの重合速度
は上るが、逆に重合収率は低下する、加えて、連鎖移動
反応により分子量の調整が難かしくなるばかりでなく着
色などの品位の低下を招く。10℃未満の温度では重合
が遅く工業的生産には不利である。重合湿度の調整は通
常の方法で十分であり例えば冷却水を用いて反応器を冷
却すればよい。
Polymerization temperature is usually 10-50°C, preferably 20-40°C
It is. When the polymerization temperature is higher than 50°C, the apparent polymerization rate increases, but on the contrary, the polymerization yield decreases.In addition, chain transfer reactions not only make it difficult to adjust the molecular weight, but also cause a decrease in quality such as coloring. . At temperatures below 10°C, polymerization is slow and is disadvantageous for industrial production. The polymerization humidity can be adjusted by a conventional method, for example, by cooling the reactor using cooling water.

重合時間は触媒の量比、重合湿度によって変えられるが
、概ね3−10時間、好ましくは4〜8時間である。重
合時間が3時間より短かいと重合収率が低く、10時間
よりも長くしてもこの重合は平衡重合のため重合収率向
上には結びつかない。
The polymerization time varies depending on the catalyst amount ratio and polymerization humidity, but is generally 3 to 10 hours, preferably 4 to 8 hours. If the polymerization time is shorter than 3 hours, the polymerization yield will be low, and if it is longer than 10 hours, this polymerization will be an equilibrium polymerization and will not lead to an improvement in the polymerization yield.

所定の重合反応が終了すればアルカリ水などを加えて触
媒活性を消失させ重合を停止させる。つづいて触媒残滓
の分離除去、未反応THFの留去回収を経て、PTMG
のアセテートが得られる。このPTMGのアセテートは
加水分解によりヒドロキシル基末端のPTMGにするこ
とができる。加水分解は公知の方法でよく、例えば重合
物に苛性ソーダ水溶液を過剰なモル比で加え、必要によ
り適当な溶媒を加えて80〜120℃で2〜5時間攪拌
混合する。つづいて油分を分離し、さらに残存する水分
過剰アルカリ、塩類等を留去、吸着、炉別などの方法で
除去して精製されたPTMGを得ることができる。得ら
れるPTMGの数平均分子量は通常500〜4000 
 である。
When a predetermined polymerization reaction is completed, alkaline water or the like is added to eliminate the catalyst activity and stop the polymerization. Next, the catalyst residue is separated and removed, and unreacted THF is distilled off and recovered.
of acetate is obtained. This PTMG acetate can be hydrolyzed into hydroxyl group-terminated PTMG. Hydrolysis may be carried out by a known method; for example, an aqueous solution of caustic soda is added to the polymer in an excess molar ratio, an appropriate solvent is added if necessary, and the mixture is stirred and mixed at 80 to 120°C for 2 to 5 hours. Subsequently, the oil component is separated, and the remaining water-excess alkali, salts, etc. are removed by distillation, adsorption, furnace separation, or other methods to obtain purified PTMG. The number average molecular weight of the obtained PTMG is usually 500 to 4000.
It is.

〔実施例〕〔Example〕

以下実施例により本発明をさらに説明するが、本発明は
これに限定されるものではない。
The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto.

実施例1、および比較例1.2 攪拌機、温度計、および滴下ロートを付した密閉できる
SUS製反応器にTHF (水分0.5%含有)250
部を仕込み10℃に冷却し、−5℃に冷オナイト136
(水沢化学工業製)を10部加えてから反応器を密閉し
た。つづいて反応器に接続した滴下ロートから無水酢酸
30部を攪拌下に滴下して重合を開始させた。反応器内
の温度を30℃に保って4時間攪拌後、30%苛性ソー
ダ水溶液70部を加え重合を停止させ触媒残滓を含む水
層を分離除去した。つぎに加水分解を行った。
Example 1 and Comparative Example 1.2 THF (containing 0.5% water) 250 was placed in a sealable SUS reactor equipped with a stirrer, thermometer, and dropping funnel.
136°C, cooled to 10°C, and cooled to -5°C.
(manufactured by Mizusawa Chemical Industry) was added thereto, and the reactor was sealed. Subsequently, 30 parts of acetic anhydride was added dropwise with stirring from a dropping funnel connected to the reactor to initiate polymerization. After stirring for 4 hours while maintaining the temperature inside the reactor at 30° C., 70 parts of a 30% aqueous sodium hydroxide solution was added to stop the polymerization, and the aqueous layer containing catalyst residue was separated and removed. Next, hydrolysis was performed.

加水分解はオートクレーブを用い、ポリマー溶液100
部に対して30%苛性ソーダ水溶液18部を加え温度1
10〜120℃で2時間攪拌した。終了後静置してアル
カリ性水溶液を分離除去し、未反応THFを留去回収し
て粗製のPTMGを得た。
Hydrolysis was carried out using an autoclave, and the polymer solution was
18 parts of a 30% caustic soda aqueous solution was added to the temperature of 1.
The mixture was stirred at 10-120°C for 2 hours. After completion of the reaction, the alkaline aqueous solution was separated and removed by standing still, and unreacted THF was distilled off to obtain crude PTMG.

その後、PTMG中に残存するアルカリ分などの微量の
不純物などを除去するために缶ル合成吸着剤〔ネヨウワ
ード600(協和化学工業社製)〕を加えて吸着処理お
よび濾過を行い、精製されたPTMGを得た。実施例1
および比較のためにTHFの水分量を変え、無水弗化水
素を加えない他はすべて実施例1と同じ条件で実験した
データを表−1に示す。
After that, in order to remove trace impurities such as alkaline content remaining in PTMG, a canned synthetic adsorbent [Neyoward 600 (manufactured by Kyowa Chemical Industry Co., Ltd.)] is added, and adsorption treatment and filtration are performed, resulting in purified PTMG. I got it. Example 1
For comparison, Table 1 shows the data of an experiment conducted under the same conditions as in Example 1, except that the water content of THF was changed and anhydrous hydrogen fluoride was not added.

表  −1 実施例2.3、および比較例3 触媒の1成分である無水酢酸の量を変えた以外はすべて
実施例1と同じ条件で実験したデータを表−2に示す。
Table 1 Example 2.3 and Comparative Example 3 Table 2 shows the data of an experiment conducted under the same conditions as Example 1, except that the amount of acetic anhydride, which is one component of the catalyst, was changed.

表  −2 実施例4〜6および比較例4 勿媒の一成分であるモンモリロナイト系鉱物を変えた以
外はすべて実施例1と同じ条件で実験したデータを表−
3に示す 表  −3 注)苦:モンモリロナイト系鉱物として実施例4はガレ
オンアースNS、実施例シおよび6はガレオンアースN
C(水沢化学工業製)を使用 〔発明の効果〕 本発明の方法によれば安定した品質のPTMGを高収率
で得ることができる。原料のTHFは比較的水分含量が
高くても使用できるため、共沸性であるTHF・水混合
物からの精製費用が逼常の場合より削減でき工業的に有
利である。
Table 2 Examples 4 to 6 and Comparative Example 4 Table 2 shows the data of experiments conducted under the same conditions as Example 1, except that the montmorillonite mineral, which is one of the components of the solvent, was changed.
Table-3 shown in Table 3 Note) Bitterness: As the montmorillonite mineral, Example 4 is Galleon Earth NS, and Examples C and 6 are Galleon Earth N.
C (manufactured by Mizusawa Chemical Industry Co., Ltd.) [Effects of the Invention] According to the method of the present invention, PTMG of stable quality can be obtained in high yield. Since THF as a raw material can be used even if it has a relatively high water content, the cost for purifying an azeotropic THF/water mixture can be reduced compared to the normal case, which is industrially advantageous.

使用する重合触媒は工業的に安価に入手できるものであ
り、加えてTHFからPTMGへの転化率が高いためP
TMG ]It位生産量当りの触媒費が安い、また高転
化率は重合設備の生産性向上ももたらし、重ねて工業的
には有利といえる。
The polymerization catalyst used is industrially available at low cost and has a high conversion rate from THF to PTMG.
TMG] The catalyst cost per unit of production is low, and the high conversion rate also improves the productivity of polymerization equipment, which can be said to be advantageous from an industrial perspective.

本発明により得られるPTMGはウレタン仲性命。The PTMG obtained by the present invention is a urethane-neutral compound.

Claims (1)

【特許請求の範囲】[Claims] 1、弗化水素、モンモリロナイト系鉱物および無水酢酸
を必須成分とする触媒の存在下にテトラヒドロフランを
重合させて得られる重合物を加水分解することを特徴と
するポリテトラメチレンエーテルグリコールの製造法。
1. A method for producing polytetramethylene ether glycol, which comprises hydrolyzing a polymer obtained by polymerizing tetrahydrofuran in the presence of a catalyst containing hydrogen fluoride, a montmorillonite mineral, and acetic anhydride as essential components.
JP5930285A 1985-03-22 1985-03-22 Production of polytetramethylene ether glycol Pending JPS61215621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5930285A JPS61215621A (en) 1985-03-22 1985-03-22 Production of polytetramethylene ether glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5930285A JPS61215621A (en) 1985-03-22 1985-03-22 Production of polytetramethylene ether glycol

Publications (1)

Publication Number Publication Date
JPS61215621A true JPS61215621A (en) 1986-09-25

Family

ID=13109437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5930285A Pending JPS61215621A (en) 1985-03-22 1985-03-22 Production of polytetramethylene ether glycol

Country Status (1)

Country Link
JP (1) JPS61215621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617846A1 (en) * 1987-07-07 1989-01-13 Beghin Say Sa PROCESS FOR PREPARING ANHYDRIDES OF HEXITOLS, HEXONOLACTONES AND HEXOSIDES
US6069226A (en) * 1992-09-04 2000-05-30 Basf Aktiengesellschaft Process for the preparation of polytetramethylene ether glycol diester using an aluminosilicate type catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617846A1 (en) * 1987-07-07 1989-01-13 Beghin Say Sa PROCESS FOR PREPARING ANHYDRIDES OF HEXITOLS, HEXONOLACTONES AND HEXOSIDES
US6069226A (en) * 1992-09-04 2000-05-30 Basf Aktiengesellschaft Process for the preparation of polytetramethylene ether glycol diester using an aluminosilicate type catalyst

Similar Documents

Publication Publication Date Title
JPH0155254B2 (en)
US5665889A (en) Method for the production of N-vinyl-2-pyrrolidone by vinylation
US5410093A (en) Method for removing transesterification catalyst from polyether polyols
US4719259A (en) Process for producing ethylene/vinyl alcohol copolymers
JPS5883028A (en) Preparation of polytetramethylene glycol
GB2298207A (en) One step production of low salt vimylamine polymers
JPS61215621A (en) Production of polytetramethylene ether glycol
TW518330B (en) Depolymerization of polyterahydrofurans derivatives
JPS6118543B2 (en)
JP2754220B2 (en) Lactone monomer polymerization method
US4778924A (en) Process for the production of cinnamic acid
JPH06211744A (en) Production of high-purity dimethyl 4,4'-biphenyldicarboxylate
JPH0442375B2 (en)
JP3267007B2 (en) Method for producing polytetramethylene ether glycol
JP3284665B2 (en) Method for producing polybutylene terephthalate
US4145519A (en) Catalyst for the polymerization of 2-pyrrolidone from alkali metal
US4125523A (en) Catalyst for polymerization of 2-pyrrolidone
US4812594A (en) Process for purification of crude p-hydroxymethylbenzoic acid
KR950015134B1 (en) Process for producing polyphenylenesulfide
US3950361A (en) Process for purifying beta-lactones
US4107411A (en) Method of preparing salts of poly-alpha-hydroxyacrylic acid
JPS61145137A (en) Production of polyglycerol
JP2005089767A (en) Polymerizing method of cyclic ether
JPS6229551A (en) Purification of allyl carboxylate
JP2001019659A (en) Purification of glyoxylic acid