JPS60109584A - Depolymerization of polyoxymethylene glycol - Google Patents

Depolymerization of polyoxymethylene glycol

Info

Publication number
JPS60109584A
JPS60109584A JP58215112A JP21511283A JPS60109584A JP S60109584 A JPS60109584 A JP S60109584A JP 58215112 A JP58215112 A JP 58215112A JP 21511283 A JP21511283 A JP 21511283A JP S60109584 A JPS60109584 A JP S60109584A
Authority
JP
Japan
Prior art keywords
acid
depolymerization
heteropolyacid
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58215112A
Other languages
Japanese (ja)
Other versions
JPH0434550B2 (en
Inventor
Atsushi Aoshima
青島 淳
Shoichiro Tonomura
外村 正一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58215112A priority Critical patent/JPS60109584A/en
Publication of JPS60109584A publication Critical patent/JPS60109584A/en
Publication of JPH0434550B2 publication Critical patent/JPH0434550B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound useful as a raw material of polyurethane, in high activity, without causing the corrosion of the apparatus, by carrying out the depolymerization of polyoxytetramethylene glycol using a catalyst comprising a heteropolyacid containing a specific amount of water coordinated or mixed to the acid. CONSTITUTION:Tetrahydrofuran is produced by the depolymerization of polyoxytetramethylene glycol (PTMG), using a catalyst comprising a heteropolyacid (e.g. phosphomolybdic acid, phosphotungstic acid, etc.) containing <=15mol of water coordinated or mixed to 1mol of the acid. The amount of the heteropolyacid is preferably >=0.1wt%, especially >=1wt% of the PTMG, and the reaction is carried out at 50-200 deg.C, preferably 80-150 deg.C. The process is also useful to obtain a PTMG having sharp molecular weight distribution.

Description

【発明の詳細な説明】 本発明は、ポリオキシテトラメチレングリコール(以下
P ’I’ M Oと略す)を解重合してテトラヒドロ
フラン(以下T HFと略す)とする触媒に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for depolymerizing polyoxytetramethylene glycol (hereinafter abbreviated as P'I'MO) to tetrahydrofuran (hereinafter abbreviated as THF).

1) i’ M (1はスパンデックスやポリウレタン
の主要原料である工業的に重要なポリマーである。スパ
ンデックスの原料としては数平均分子槍が♂0θ〜3θ
θθ程度のものが好んで用いられるが、工業的に入手可
能なPTMGは一般に広い分子量分布を持っており、オ
リゴマー程度の低分子+、1体から敵方の高分子晴体ま
でが含まれている。
1) i' M (1 is an industrially important polymer that is the main raw material for spandex and polyurethane. As a raw material for spandex, the number average molecular spear is ♂0θ~3θ
PTMG of the order of θθ is preferably used, but industrially available PTMG generally has a wide molecular weight distribution, and includes everything from oligomer-like low molecules + and 1 substance to the enemy polymer clear substance. There is.

この様なポリオキシテトラメチレングリコールは、場合
により、その全部又は一部をII;μ料ポリマーのテト
ラヒドロフランに解重合する必要を生ずる事がある。こ
の様なケースは例えばq′II I;’の規格外品又は
不要品よりの原料’r II Fの1F)生、或いは、
P T M Gの分子量分布をシャープにするための低
分子量部分や高分子@部分の分別抽出、減圧蒸留処理等
によって分離したポリマーの原料モノマーへの再利用等
が挙げられる。
In some cases, such polyoxytetramethylene glycol may need to be depolymerized, in whole or in part, to tetrahydrofuran, a II; μ-based polymer. In such a case, for example, raw materials from non-standard or unnecessary products of q'II I;
Examples include fractional extraction of low molecular weight portions and polymer @ portions in order to sharpen the molecular weight distribution of PTM G, and reuse of polymers separated by vacuum distillation treatment as raw material monomers.

’r HF’の止金触媒に関しては非常に子くの研究が
ある。それに比べ、解重合に関する研究は少ないが、五
塩化アンチモン(8bC4)を114いた画末y;品が
塩素である’I’ HFポリマーの解重合(11,Me
erwein 。
There has been a great deal of research into 'rHF' stop catalysts. In comparison, there are fewer studies on depolymerization, but the depolymerization of 'I' HF polymers containing antimony pentachloride (8bC4) and chlorine (11,Me
erwein.

D、 Delfs 、 HoMorshel 、 An
gew、CI+em、、 7.2.、9 、)、7(/
り6θ))、強酸性イオン交換樹脂を用いた両末端が0
14基であるTHFポリマー、すなわちIJ T M 
Gの解重合(特開昭オ0−73−697号公報)、H2
804水溶液を用いたPTMGの解重合(米国特許第グ
、//タ、グθざ号明細書)がある。
D, Delfs, HoMorschel, An
gew, CI+em,, 7.2. ,9 ,),7(/
(6θ)), both ends are 0 using strongly acidic ion exchange resin.
14 groups, i.e., IJTM
Depolymerization of G (Japanese Unexamined Patent Publication No. 0-73-697), H2
There is a depolymerization of PTMG using an aqueous solution of 804 (U.S. Pat.

一般に、1’ HFの重合は平衡反応と云われるにもか
かわらず、重合に必要な触媒が必ずしもI’TMOの解
重合に好適であるとは云えない。即ち、P i’ M 
Oの解重合に対しては末端OH基への反応性を要求され
るからである。例を挙げれば束合触媒として公知である
フルオロスルフォン酸は末端OH基による活性阻害があ
り、また、一部反応が進行しても解重合により生成する
水により分解するため有効でない。一方、H2804水
溶液や強酸性イオン交換樹脂はi’ HFの重合活性は
持たないが、解重合)IlII媒としては使用される。
Although the polymerization of 1'HF is generally said to be an equilibrium reaction, it cannot be said that the catalyst required for the polymerization is necessarily suitable for the depolymerization of I'TMO. That is, P i' M
This is because depolymerization of O requires reactivity toward the terminal OH group. For example, fluorosulfonic acid, which is known as a bundling catalyst, is not effective because its activity is inhibited by terminal OH groups, and even if the reaction partially proceeds, it is decomposed by water produced by depolymerization. On the other hand, an aqueous H2804 solution and a strongly acidic ion exchange resin do not have i'HF polymerization activity, but are used as a depolymerization (IlII) medium.

しかし、これら公知解重合触媒はそれぞれ欠点を有する
。即ち、H,804水浴液は腐食性が強く、強酸性イオ
ン交換樹脂は槓I脂の使用限度近い高温(/2θ〜/j
O℃)を必要とし、解重合速度も充分でない。
However, each of these known depolymerization catalysts has drawbacks. That is, the H,804 water bath liquid is highly corrosive, and the strongly acidic ion exchange resin has a high temperature (/2θ~/j
(0°C), and the depolymerization rate is also insufficient.

本発明者は、解重合に対し、その活性を阻害されず、高
活性であり、且つ腐食性の少ない触媒を鋭意研究した結
果、これらの条件を満足する触媒としてヘテロポリ酸を
見出し、本発明をなすに至つた。
As a result of intensive research into catalysts that are highly active and less corrosive for depolymerization, the inventors have discovered heteropolyacids as catalysts that satisfy these conditions, and have developed the present invention. I arrived at the eggplant.

即ち、本発明はPTMGを解重合してT )l Fとす
るに際し、/分子当り/j分子以下の水を配位又は存在
させたヘテロポリ酸を触媒としてIllいる事を特徴と
する解重合方法である。
That is, the present invention provides a depolymerization method for depolymerizing PTMG to give T )l F, which is characterized by using a heteropolyacid as a catalyst in which less than /j molecules of water are coordinated or present per molecule. It is.

通常へテロポリ酸は20〜グ0の水相物として合成され
るが、この状態でP ’1’ M Oと接触させCも解
重合活性は認められない。しかし、)二記〜テロポリ酸
を乾燥処理して、その水相数を変化させた後重合活性を
調べると、ヘテロポリ酸/分子に対し、水相数を7j以
下にすると解車會活性が出現する。また、ヘテロポリ酸
を無水物にしたものを、ヘテロポリ酸1モルに対し/タ
倍モル以l−の水の存在下で反応させることも有効であ
る。この場合、ヘテロポリ酸に対し/j倍モル以下で共
存させた水は、はとんどヘテロポリ酸に配位した状態で
存在すると考えられる。水和数が75以上のヘテロポリ
酸を用いても、あるいはへテロボ91’lf2に対し7
5倍モル以上の水を共存させても、後に何らかの方法で
系中の水量をヘテロポリ酸の73−倍モル以下に下げる
ことにより解重合活性は出現する。水相数は少ないほど
高活性であり、好ましくはI以下、さらに好ましくはグ
以下である。
Heteropolyacid is usually synthesized as an aqueous phase product of 20 to 0, but no depolymerization activity is observed when it is brought into contact with P'1'MO in this state. However, when examining the polymerization activity after drying the telopolyacid and changing the number of aqueous phases, it was found that when the number of aqueous phases was reduced to 7j or less for the heteropolyacid/molecule, decomposition activity appeared. do. It is also effective to react an anhydride of a heteropolyacid in the presence of water in an amount of 1 times or more per mole of the heteropolyacid. In this case, it is considered that the water coexisting in an amount of /j times the mole or less relative to the heteropolyacid mostly exists in a coordinated state to the heteropolyacid. Even if a heteropolyacid with a hydration number of 75 or more is used, or
Even if more than 5 times the mole of water is allowed to coexist, the depolymerization activity will appear if the amount of water in the system is later reduced to 73 times the mole or less of the heteropolyacid by some method. The smaller the number of aqueous phases, the higher the activity, preferably less than I, more preferably less than G.

P ’I’ M Oをi’ HFへ完全に解重合するた
めには、T HFを蒸留等で反応糸外へ除くことが平#
E好ましい。また、解重合反応がおこると、P T M
 G1モルに対し7モルの水が生成するため、系中の水
量がヘテロポリ酸の7j倍モルを越える場合には水を反
応系外へ除き、ヘテロポリ酸の水和数を/J−以下に保
つことが必要である。水を反応系外へ除く方法としては
、蒸留等の一般的方法が使用される。’l’ HFを反
応糸外へ除きつつ反応を行なう場合は、水は“I”HF
との共沸により容易に除かれるし、T HFを反応系外
へ除かない場合は、たとえば蒸留したi” II Fを
一般に公知の方法で脱水した後再び系にもどす方法か、
触媒活性に影響を与えない乾燥剤により脱水する方法等
がとられる。
In order to completely depolymerize P'I'MO to i'HF, it is common practice to remove THF from the reaction mixture by distillation, etc.
E is preferred. Moreover, when a depolymerization reaction occurs, PTM
Since 7 moles of water are generated per 1 mole of G, if the amount of water in the system exceeds 7j moles of heteropolyacid, remove water from the reaction system to keep the hydration number of heteropolyacid below /J-. It is necessary. A general method such as distillation is used to remove water from the reaction system. When the reaction is carried out while removing 'l' HF to the outside of the reaction thread, the water is 'I' HF.
If THF is not removed from the reaction system, for example, the distilled i''IIF can be dehydrated by a generally known method and then returned to the system.
A method such as dehydration using a desiccant that does not affect the catalyst activity is used.

本発明に於けるヘテロポリ酸はMO,W、 Vのうち、
少なくとも一柿の酸化物と、他の元素、例えば、P、 
8i 、 As、 ()e、 B、 Ti 、 Ce、
 Co等のオキシ酸が縮合して生ずるオキシ酸の総称で
あり、代名に対する0i1者の原子比はλ、j〜7.2
である。
Among MO, W, and V, the heteropolyacid in the present invention is
At least one persimmon oxide and other elements such as P,
8i, As, ()e, B, Ti, Ce,
It is a general term for oxyacids produced by condensation of oxyacids such as Co, and the atomic ratio of Oi1 to the representative is λ, j ~ 7.2
It is.

これらへテロポリ酸の具体例としては、リンモリブデン
酸、リンタングステン酸、リンモリブドタングステン酸
、リンモリブドバナジン酸、リンモリブドタンダストバ
ナジン酸、リンタンダストバナジン酸、リンモリブドニ
オブ酸、ケイタングステン酸、ケイモリブデン酸、ケイ
モリブドタングステン酸、ケイそりブドタングストパナ
ジン酸、ケルマニウムタングステン酸、ホウタングステ
ン酸、ホウモリブデン酸、ホウモリブドタングステン酸
、ホウモリブドバナジン酸、ホフモリブドタンダストバ
ナジン酸、コバルトモリブデン酸、コバルトバナジン酸
、コバルトタングスデン酸、砒素モリブデン酸、砒素タ
ングステン酸、チタンモリブデン酸、セリウムモリブデ
ン酸などである。
Specific examples of these heteropolyacids include phosphomolybdic acid, phosphotungstic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdothanum dust vanadate, phosphorus dust vanadate, phosphomolybdoniobic acid, and tungsten silicoic acid. Acid, silicomolybdic acid, silicomolybdotungstic acid, silicomolybdotungstopanadic acid, kermanium tungstic acid, borotungstic acid, boromolybdic acid, boromolybdotungstic acid, boromolybdovanadate, phofmolybdothanum dust These include vanadic acid, cobalt molybdic acid, cobalt vanadic acid, cobalt tungsdic acid, arsenic molybdic acid, arsenic tungstic acid, titanium molybdic acid, and cerium molybdic acid.

使用するヘテロポリ酸量は、特に限定されないが、反応
器内に於けるヘテロポリ酸が少ないと解重合速度が低く
、)’TM(]のθ、/東lit %以」二使用するの
が好ましい。また、ヘテロポリ酸11が多いと、系中に
存在してもかまわない水の許容量範囲が広くなり、しか
も配位水量が少ないほど高活性であることから、更に好
ましくは、P i’ M Oの/東@係以上用いるのが
よい。
The amount of heteropolyacid used is not particularly limited, but if the amount of heteropolyacid in the reactor is small, the depolymerization rate will be low. Furthermore, when the amount of heteropolyacid 11 is large, the range of acceptable water that may be present in the system is widened, and the smaller the amount of coordinated water, the higher the activity. It is best to use ``/east@person'' or above.

反応器IWは50〜200℃、特にざ0〜750℃が好
ましい。50℃以下では解重合反応は極めて遅く、20
0℃以上ではPTMOが酸化的に分解する危険がある。
The temperature of the reactor IW is preferably 50 to 200°C, particularly 0 to 750°C. The depolymerization reaction is extremely slow below 50°C, and
At temperatures above 0°C, there is a risk of oxidative decomposition of PTMO.

但し、T HF又は水を系外へ除く場合に、常圧では除
けない温度で反応を行なう場合は、系を減圧にして反応
を行なう。解重合反応糸は、特に高温条件下では、PT
MGおよび’1’ HFの酸化を防ぐために不活性雰囲
気とするのが好ましい。
However, when THF or water is removed from the system and the reaction is carried out at a temperature that cannot be removed at normal pressure, the reaction is carried out with the system under reduced pressure. The depolymerized yarn is particularly under high temperature conditions.
An inert atmosphere is preferred to prevent oxidation of MG and '1' HF.

また、本発明の実施に際し、完全にT HFへ解重合す
るのではなく、その一部分を解重合することも好んで用
いられる方法である。この場合は、解重合する掛に応じ
て生成する水かへテロポリ酸の7j倍モル以下なら特に
水を反応系外へ除く必要はなく、さらにT HFとの平
衡量以上に分解しない場合は、i’ HFも反応系外へ
除く必要はない。
Furthermore, in carrying out the present invention, it is also a preferred method to depolymerize a portion of THF, rather than completely depolymerizing it to THF. In this case, there is no need to remove water from the reaction system if the amount of water produced depending on the depolymerization rate is 7j times the mole of heteropolyacid or less, and furthermore, if it is not decomposed to an amount greater than the equilibrium amount with THF, i' HF also does not need to be removed from the reaction system.

本発明の触媒を用いて、この様なP ’II’ M (
Jの部分的分解を試みた所驚くべき事に、P i’ M
 (Jの数平均分子酸は増加し、しかも、分子l(分布
はシャープになる事を見い出した。そのため、本発明の
方法はPTMGの分子緘分布をシャープにする方法とし
ても有用である。
Using the catalyst of the present invention, such P 'II' M (
When we attempted a partial decomposition of J, we surprisingly found that P i' M
It has been found that the number average molecular acid of (J) increases and, moreover, the molecule (1) distribution becomes sharper. Therefore, the method of the present invention is also useful as a method for sharpening the molecular distribution of PTMG.

本発明法で述べる、ポリオキシテトラメチレングリコー
ルにはT I4 Fのホモポリマーは勿論の−jI。
The polyoxytetramethylene glycol mentioned in the method of the present invention includes -jI as well as T I4 F homopolymer.

ポリオキシテトラメチレン鎖がブロック的に入った共重
合ポリマー、T )l Fとエチレンオキシド、プロピ
レンオキシド、エピクロルヒドリンなどのアルキレンオ
キシドとの共重合ポリマー、i’ 11 Fとオキサシ
クロブタン等の環状エーテルとの共重合ポリマー、エー
テル結合で連結された異神分子を含むT HFポリマー
等であり、触媒の活性を・阻害する末端基や置換基を持
たないものについても含まれる。
A copolymer containing block polyoxytetramethylene chains, a copolymer of T )l F and an alkylene oxide such as ethylene oxide, propylene oxide, or epichlorohydrin, a copolymer of i' 11 F and a cyclic ether such as oxacyclobutane, etc. Polymerized polymers, THF polymers containing foreign molecules connected by ether bonds, etc., and also include those without terminal groups or substituents that inhibit catalyst activity.

反応は、P 1’ M Gと所定水和水のへテロポリM
を攪拌しつつ行なう事が出来るので、特に6媒は必要と
しないが、反応に不活性なものを加えても良い。
The reaction is a reaction between P 1' M G and a predetermined hydration water heteropoly M
Since the reaction can be carried out with stirring, no particular 6 medium is required, but an inert material may be added to the reaction.

反応型式は、混合攪拌機能を持った一般に用いられる反
応器を使用したパッチ式、連続式のいずれも実施=J能
である。部分的解重合反応では触媒をP1f!J、水洗
、或いは抽出等で分離することによりPTMOを回収す
る。
The reaction type can be either a patch type or a continuous type using a commonly used reactor with a mixing and stirring function. In the partial depolymerization reaction, the catalyst is P1f! J. PTMO is recovered by separation by washing with water or extraction.

実施例/ P ’I” M G (数平均分子にざθO)/θθV
を攪拌器、温度計、収り出し冷却器を備えた三ツロフラ
スコに加える。ついで1.2jθ℃で3時間加熱して無
水の状態にしたケイタングステン酸(H48iW12(
)4o) 3 fを加え、攪拌を行ないながら730℃
に加熱する。直ちに解重合反応が進行し、7時間で仕込
P i’ M Gの9乙チがi’ HFへ解重合して、
系外へ留出した。
Example / P 'I'' MG (Number average molecular weight θO) / θθV
Add to a three-piece flask equipped with a stirrer, thermometer, and condenser. Then, silicotungstic acid (H48iW12 (
)4o) Add 3f and heat to 730°C while stirring.
Heat to. The depolymerization reaction immediately proceeded, and in 7 hours, 9 of the charged P i' MG were depolymerized to i' HF.
Distilled out of the system.

実施例コ 実施例/に記戦したのと同様の三ツ1」フラスコに、P
TMG(数平均分子量/夕θ0)/θθ2と高温で加熱
して、無水状態にした表−/に示す各種へテロポリ酸3
fを加える。攪拌を行ないながら、730℃に加熱し、
7時間後のi’ HF溜出駄を測定した。結果を表−7
にホす。
Into three flasks similar to those recorded in Example/Example/, P
Various heteropolyacids 3 shown in the table -/ which were heated at high temperature and made into an anhydrous state with TMG (number average molecular weight / θ0) / θθ2
Add f. While stirring, heat to 730°C,
After 7 hours, i' HF distillation was measured. Table 7 of the results
nihosu.

表−/ 実施例3 攪拌器、還流冷却器温度計を備えた三ツロフラスコに、
P T M G (数平均分子量♂θθ、 Mw7’M
n=λ、♂)をλθθV仕込み、これに25θ℃で3時
間加熱して無水にし赴ケイタングステン酸ご1を加える
。温度を700℃にし、7時間(硬拌を続けた後、系に
水λθθ1とクロロホルムスθθtを加えて攪拌し、そ
の後二相に分離させる。水相からは触媒が回収され、ク
ロロホルム和からは/乙62のP ’I’ M Uが得
られた。P T M Gの数平均分子量は/2θθで、
MWAnは7.7であった。
Table - / Example 3 In a three tube flask equipped with a stirrer, reflux condenser and thermometer,
P T M G (number average molecular weight ♂θθ, Mw7'M
λθθV (n=λ, male) was prepared, heated at 25θ°C for 3 hours to make it anhydrous, and 1 tungstic acid was added. After raising the temperature to 700°C and continuing stirring for 7 hours, water λθθ1 and chloroformus θθt are added to the system and stirred, followed by separation into two phases. The catalyst is recovered from the aqueous phase, and from the chloroform mixture. / Otsu 62 P 'I' M U was obtained. The number average molecular weight of P T M G is /2θθ,
MWAn was 7.7.

なお、P T M Oの数平均分子I@ 、 MwAn
 (Q 量平均分子量/数平均分子@)はゲルパーメイ
ンョンクロマトグラフイ−(G P C)を用いて測定
した。
In addition, the number average molecule I@, MwAn of P TMO
(Q weight average molecular weight/number average molecular weight) was measured using gel permeation chromatography (GPC).

実施例グ 撹拌器、還流冷却器、温度計を備えた二ツロフラスコに
、PTMG (数平均分子量/jθθ)λθθVを加え
る。これに、表−2に示す配位水数を一定に調節したケ
イタングステン酸(H481W46・nH2O) 61
1を加える。730℃でコθ分間攪拌後室温に冷却し、
その後実施例3に記戦の方法でPTMGを回収秤Iして
配位水数による解重合初期活性を比較した。結果を表−
ユに示す。
Example PTMG (number average molecular weight/jθθ) λθθV is added to a Nitro flask equipped with a stirrer, a reflux condenser, and a thermometer. In addition, silicotungstic acid (H481W46・nH2O) with the number of coordinated waters shown in Table 2 adjusted to a constant value 61
Add 1. After stirring at 730°C for θ minutes, cool to room temperature,
Thereafter, PTMG was recovered using a recovery weighing scale I according to the method described in Example 3, and the initial depolymerization activity according to the number of coordinated waters was compared. Display the results -
Show it to Yu.

表−ノ 試料Aグ、りは比較例を示す。Table-no Samples A and RI show comparative examples.

実施例j 攪拌器、温度計、収り出し冷却器を備えた三ツロフラス
コに、THFとエチレンオキサイドとの共重合体(エチ
レンオキサイド/θ束讃係含有、数平均分子量/θθθ
)/θθ1を加える。次いで、2夕θ℃で3時間加熱し
たのち、114水の状態にしたリンタングステン酸(H
3PW1204o)乙Vを加え、攪拌を行ないながら1
30℃に加熱する。直ちに解重合反応が進行し、7時間
で仕込ポリマーの9.2チが分解し、系外へ留出したi
’ HFを回収した。
Example j A copolymer of THF and ethylene oxide (containing ethylene oxide/θ flux ratio, number average molecular weight/θθθ
)/θθ1 is added. Next, after heating for 3 hours at θ°C for 2 nights, phosphotungstic acid (H
3PW1204o) Add V and add 1 while stirring.
Heat to 30°C. The depolymerization reaction proceeded immediately, and 9.2% of the charged polymer was decomposed in 7 hours and distilled out of the system.
' HF was collected.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] ポリオキシテトラメチレングリコールを解重合してテト
ラヒドロフランとするに際し、/分子光り/j分子以下
の水を配位又は存在させた〜テロポリ酸を触媒として用
いる事を特徴とする解重合方法
When polyoxytetramethylene glycol is depolymerized to obtain tetrahydrofuran, a depolymerization method characterized by using telopolyacid as a catalyst in which less than 1 molecule of water is coordinated or present.
JP58215112A 1983-11-17 1983-11-17 Depolymerization of polyoxymethylene glycol Granted JPS60109584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215112A JPS60109584A (en) 1983-11-17 1983-11-17 Depolymerization of polyoxymethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215112A JPS60109584A (en) 1983-11-17 1983-11-17 Depolymerization of polyoxymethylene glycol

Publications (2)

Publication Number Publication Date
JPS60109584A true JPS60109584A (en) 1985-06-15
JPH0434550B2 JPH0434550B2 (en) 1992-06-08

Family

ID=16666948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215112A Granted JPS60109584A (en) 1983-11-17 1983-11-17 Depolymerization of polyoxymethylene glycol

Country Status (1)

Country Link
JP (1) JPS60109584A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596859A2 (en) * 1988-08-02 1994-05-11 Union Carbide Chemicals And Plastics Company, Inc. Carbonylation catalyst
WO1995002625A3 (en) * 1993-07-16 1995-05-26 Du Pont Polymerization/depolymerization catalyst for polyethers
US5541346A (en) * 1992-10-21 1996-07-30 E. I. Du Pont De Nemours And Company Polymerization of, and depolymerization to, cyclic ethers using selected metal compound catalysts
JP2010516822A (en) * 2007-01-19 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for changing predetermined average molecular weight Mn when continuously producing polytetrahydrofuran or THF copolymer
JP2010538136A (en) * 2007-09-06 2010-12-09 ビーエーエスエフ ソシエタス・ヨーロピア Process for the depolymerization of mixtures containing monoesters and / or diesters of polytetrahydrofuran
WO2011071503A1 (en) 2009-12-11 2011-06-16 Invista Technologies S.A.R.L. Depolymerization of oligomeric cyclic ethers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277051A (en) * 1975-11-26 1977-06-29 Gen Electric Production of tetrahydrofuran

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277051A (en) * 1975-11-26 1977-06-29 Gen Electric Production of tetrahydrofuran

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0596859A2 (en) * 1988-08-02 1994-05-11 Union Carbide Chemicals And Plastics Company, Inc. Carbonylation catalyst
EP0596859B1 (en) * 1988-08-02 1997-10-29 Union Carbide Chemicals And Plastics Company, Inc. Carbonylation catalyst
US5541346A (en) * 1992-10-21 1996-07-30 E. I. Du Pont De Nemours And Company Polymerization of, and depolymerization to, cyclic ethers using selected metal compound catalysts
WO1995002625A3 (en) * 1993-07-16 1995-05-26 Du Pont Polymerization/depolymerization catalyst for polyethers
EP0750000A3 (en) * 1993-07-16 1997-02-19 Du Pont Depolymerisation of polyethers using heterogeneous catalysts
JP2010516822A (en) * 2007-01-19 2010-05-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for changing predetermined average molecular weight Mn when continuously producing polytetrahydrofuran or THF copolymer
JP2010538136A (en) * 2007-09-06 2010-12-09 ビーエーエスエフ ソシエタス・ヨーロピア Process for the depolymerization of mixtures containing monoesters and / or diesters of polytetrahydrofuran
WO2011071503A1 (en) 2009-12-11 2011-06-16 Invista Technologies S.A.R.L. Depolymerization of oligomeric cyclic ethers
US8809491B2 (en) 2009-12-11 2014-08-19 INVISTA North America S.à r.l. Depolymerization of oligomeric cyclic ethers

Also Published As

Publication number Publication date
JPH0434550B2 (en) 1992-06-08

Similar Documents

Publication Publication Date Title
JP2969275B2 (en) Method for extracting double metal cyanide complex catalyst from polymer
JP5652691B2 (en) Polyalkylene glycol derivative and method for producing the same
US5099074A (en) Process for the preparation of polyether glycols
KR20010110796A (en) Long-Chain Polyether Polyols with a High Proportion of Primary OH Groups
US11608413B2 (en) Polytrimethylene ether glycol and preparation method thereof
JP2002533495A (en) Process for producing hyperbranched polyols based on glycidol
JPS60109584A (en) Depolymerization of polyoxymethylene glycol
JPS61123628A (en) Synthesis of polyalkylene ether polyol
JP2000500478A (en) Method for producing alkylene glycol
US5097077A (en) Purification of heteropolyacid-containing polyalkylene ether glycols
Kuran et al. Polymerization of 1, 2‐epoxypropane and 1, 2‐epoxycyclohexane by diethylzinc‐polyhydric phenol and/or phenol or 1‐phenoxy‐2‐propanol as catalysts
JPS59159824A (en) Production of polyether compound
US6414109B1 (en) Process for producing tetrahydrofuran polymer
JPH08157591A (en) Polyoxybutylene ether composition having hydroxyl functionality
US5103042A (en) Method for reducing unsaturation of polyethers
JPS61120832A (en) Depolymerization of polyalkylene ether
JPH0713140B2 (en) Method for depolymerizing polyoxyalkylene glycol and / or cyclic polyalkylene ether
JPS6279223A (en) Production of polyalkylene ether polyol
JPH0558012B2 (en)
Iwasa et al. Ring-opening polymerization of various oxirane derivatives using organotin phosphate condensate; Selective synthesis of the polyether containing oxirane ring in the side chain
JP3284031B2 (en) Method for producing polyether glycol
JPS61143428A (en) Production of polyalkylene ether polyol
JP2506363B2 (en) Poly-β-methyl-δ-valerolactone-based polyester polyol having a low carboxyl group content and method for producing the same
JP4896296B2 (en) Crystallized polyether polyol
JPH0446291B2 (en)