JPH0196795A - Fire detector - Google Patents

Fire detector

Info

Publication number
JPH0196795A
JPH0196795A JP25354887A JP25354887A JPH0196795A JP H0196795 A JPH0196795 A JP H0196795A JP 25354887 A JP25354887 A JP 25354887A JP 25354887 A JP25354887 A JP 25354887A JP H0196795 A JPH0196795 A JP H0196795A
Authority
JP
Japan
Prior art keywords
wavelength
fire
radiant energy
comparison
partial areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25354887A
Other languages
Japanese (ja)
Other versions
JPH0544078B2 (en
Inventor
Toshiharu Tanaka
俊治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP25354887A priority Critical patent/JPH0196795A/en
Publication of JPH0196795A publication Critical patent/JPH0196795A/en
Publication of JPH0544078B2 publication Critical patent/JPH0544078B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To correctly and automatically sense the occurrence of a fire by passing only a reference wavelength to show the existence of CO2 in a flame and a comparison wavelength not under the influence of the fire out of radiant energies radiated from the partial areas of the respective supervising parts. CONSTITUTION:The radiant energies radiated from the respective partial areas are converged on a converging means 7 for the respective partial areas. The converging means 7 passes specific wavelengths, that is, the reference wavelength lambda1 of the radiation (absorption) band of CO2 generated in the flame and comparison wavelength lambda2 of the radiation (absorption) band of, for example, 'soot' of the flame which is not under the influence of the fire and converges them respectively on different places. A scanning means 8 fetches successively the radiant energy of the reference wavelength and the comparison wavelength of a partial area S1 from respective detector 31A and 32A and sends them to a comparison calculating part 51 in an operation means 5. This comparison calculating part 51 calculates the ratio of the above-mentioned reference wavelength and comparison wavelength and executes successively the detection of the fire in the partial areas.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は所定の監視エリア内から放射される放射エネ
ルギーを捉えて遠距離にある火災を検知することのでき
る火災検知器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fire detector capable of detecting a fire at a long distance by capturing radiant energy emitted from within a predetermined monitoring area.

[従来の技術] 従来、遠距離の所で起きた火災を検出するため、火災の
検出を行う監視エリアを複数の部分エリアに分割し、こ
の部分エリアからの放射エネルギーを順次放射温度計で
捉える火災検知器が知られている。
[Conventional technology] Conventionally, in order to detect fires that occur far away, the monitoring area for fire detection is divided into multiple partial areas, and the radiant energy from these partial areas is sequentially captured by a radiation thermometer. Fire detectors are known.

第4図はこの時の監視エリアSを複数の部分エリアSl
、S2.S3.−Snに分割した様子を示している。
Figure 4 shows the monitoring area S at this time divided into multiple partial areas Sl.
, S2. S3. -Sn is shown.

また第5図は従来のこの種の火災検知器の構成を示して
いる。
Further, FIG. 5 shows the configuration of a conventional fire detector of this type.

第5図に53(Aて、(1)は各部分エリア毎に放射エ
ネルギーを捉えるレンズ、(2)はレンズ(1)で捉え
た放射エネルギーを各部分エリア毎に放射エネルギーの
うち特定の波長のみ通過させるフィルタ(21)を備え
たセクタ、(3)はフィルタ(21)を通過した特定波
長の放射エネルギーを検出してこの放射エネルギーに対
応した電気信号を出力するサーモパイル等の検出素子、
(4)は検出素子(3)から出力される電気信号を増幅
するプリアンプ、(5)はプリアンプ(4)から出力さ
れる信号を演算して火災が生じているかを判断する演算
部、(6)はセクタ(2)を回転させるモータである。
Figure 5 shows 53 (A), (1) is a lens that captures radiant energy for each partial area, and (2) shows that the radiant energy captured by lens (1) is transmitted to a specific wavelength of the radiant energy for each partial area. sector (3) is a detection element such as a thermopile that detects radiant energy of a specific wavelength that has passed through the filter (21) and outputs an electrical signal corresponding to this radiant energy;
(4) is a preamplifier that amplifies the electrical signal output from the detection element (3); (5) is a calculation unit that calculates the signal output from the preamplifier (4) to determine whether a fire has occurred; (6) ) is a motor that rotates sector (2).

次に動作について説明する。Next, the operation will be explained.

各部分エリアSl、S2.−3nから放射される放射エ
ネルギーはレンズ(1) 着分してセクタ(2)に導び
かれる。
Each partial area Sl, S2. The radiant energy emitted from -3n is distributed to the lens (1) and guided to the sector (2).

ここでモータ(6)を回転し、セクタ(2)のフィルタ
(21)を順次移動していくと、放射エネルギーのうち
特定の波長の放射エネルギーのみが各部分エリア毎に順
次検出素子(3)に入力する。
Here, when the motor (6) is rotated and the filter (21) of the sector (2) is sequentially moved, only the radiant energy of a specific wavelength among the radiant energy is sent to the detection element (3) in each partial area. Enter.

検出素子(3)は放射エネルギーに応じた電気信号を出
力し、プリアンプ(4)はこの検出素子(3)から出力
された電気信号を増幅して演算部(5)に出力する。演
算部(5)はプリアンプ(4)の出力を演算し、監視エ
リア内に火災が生じているか判断する。
The detection element (3) outputs an electrical signal according to the radiant energy, and the preamplifier (4) amplifies the electrical signal output from the detection element (3) and outputs it to the arithmetic unit (5). A calculation unit (5) calculates the output of the preamplifier (4) and determines whether a fire has occurred within the monitoring area.

第6図は波長と放射エネルギーの相対強度の関係を示す
図である。
FIG. 6 is a diagram showing the relationship between wavelength and relative intensity of radiant energy.

図に示すように白熱電球、蛍光灯、太陽光、炎等は各々
固有のスペクトル分布を示すので、火災を検知する場合
は、所定の波長の放射エネルギーを捉えれば、監視エリ
ア内の炎の存在を知ることができる。
As shown in the figure, incandescent light bulbs, fluorescent lights, sunlight, flames, etc. each exhibit a unique spectral distribution, so in order to detect a fire, if you capture the radiated energy of a predetermined wavelength, you can detect the presence of flame within the monitoring area. You can know.

ところで炎のスペクトル分布は第4図に示すよ\ うに波長2μm及び波長4.4μmの2つの所にピーク
がある。
By the way, the spectral distribution of flame has two peaks at wavelengths of 2 μm and 4.4 μm, as shown in Figure 4.

この波長4.4μmのピーク紘炭化水素が燃焼する際に
発生する二酸化炭素CO2の存在によって共鳴放射と呼
ばれる二次的な放射によって生じるものである。
This is caused by secondary radiation called resonance radiation due to the presence of carbon dioxide CO2 generated when this hydrocarbon with a peak wavelength of 4.4 μm is burned.

従りてこの2つの波長の放射エネルギーのレベルを知る
ことによって火災の検知を行うことができる。
Therefore, fire detection can be performed by knowing the levels of radiant energy of these two wavelengths.

[発明が解決しようとする問題点] 従来の火災検知器は以上のようにモータ(6)でセクタ
(2)を回転し、セクタ(2)のフィルタ(21)から
各部分エリアの放射エネルギーを順次取り出すようにし
ていたので、機械的故障が発生しやすく短寿命であった
[Problems to be Solved by the Invention] As described above, the conventional fire detector rotates the sector (2) with the motor (6) and extracts the radiant energy of each partial area from the filter (21) of the sector (2). Since they were removed one after another, mechanical failures were likely to occur and the lifespan was short.

また火災の放射エネルギーのレベルを知らべるだけては
、空気中に存在する炭酸ガスの影響や木の葉によって放
射される光の影響を受は易く、しばしば誤動作する問題
点があった。
In addition, even if the level of radiant energy of a fire could only be determined, it would be susceptible to the effects of carbon dioxide gas present in the air and light emitted by tree leaves, resulting in frequent malfunctions.

この発明は上記問題点をなくすためになされたもので、
長寿命で故障が発生しにくく、しかも誤動作の少ない火
災検知器を得ることを目的としている。
This invention was made to eliminate the above problems.
The objective is to obtain a fire detector that has a long life, is less likely to malfunction, and has fewer malfunctions.

の部分エリアからの放射エネルギーのうち火災によって
生じる炎の中のCO2の存在を示す基準波長及び火災の
影響を受けない比較波長のみ通過させるとともに各々の
部分エリア毎に対応して設けられた各検出素子を用いて
部分エリア毎に上記通過した波長の放射エネルギーを捉
える検出手段(IA)と、上記各検出素子に供給された
放射エネルギーを各部分エリア毎に走査することによっ
て上記基準波長及び上記比較波長の放射エネルギーの比
率を各部分エリア毎に求めて監視エリア内の火災の判断
を行う判断手段(2A)を備えたことを特徴としている
Of the radiant energy from the partial area, only the reference wavelength that indicates the presence of CO2 in the flame caused by the fire and the comparison wavelength that is not affected by the fire are allowed to pass through, and each detection is provided correspondingly to each partial area. A detection means (IA) that detects the radiant energy of the wavelength that has passed through each partial area using an element, and scans the radiant energy supplied to each of the detection elements for each partial area to detect the reference wavelength and the comparison. The present invention is characterized in that it includes a determining means (2A) that determines the ratio of radiant energy of wavelength for each partial area and determines whether there is a fire within the monitoring area.

[作 用] この発明に係る検出手段(IA)は、各部分エリアから
放射される放射エネルギーのうち炎の中のCO2の存在
を示す基準波長及び火災の影響を受けない比較波長のみ
通過させて各々の部分エリア毎に各検出素子で上記通過
させた放射エネルギーを検出する。ここで判断手段(2
A)は、上記各検出素子に供給された放射エネルギーを
各部分エリア毎に走査するとともに、上記基準波長及び
上記比較波長の放射エネルギーの比率を各部分エリア毎
に求めて監視エリア内の火災の検出を行う。
[Function] The detection means (IA) according to the present invention allows only the reference wavelength, which indicates the presence of CO2 in the flame, and the comparison wavelength, which is not affected by the fire, to pass among the radiant energy emitted from each partial area. The passed radiant energy is detected by each detection element for each partial area. Here, the means of judgment (2
A) scans the radiant energy supplied to each of the detection elements for each partial area, and calculates the ratio of the radiant energy of the reference wavelength and the comparison wavelength for each partial area to detect fires within the monitoring area. Perform detection.

[実施例]     鵬 以下この発明の一実施例を図について説明する。[Example] Peng An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

図において(7)は各部分エリアからの放射エネルギー
のうち火災によって生じる炎の中の002の存在を検出
する基準波長と火災の影響を受けない比較波長とを分離
して各々異なった場所に集光させる集光手段、(31A
)、(32A)は集光手段(7)によって集光された場
所に各々設置された複数の検出素子を並べて構成された
検出器、(8)は各々の検出素子から出力された放射エ
ネルギーに基づく信号を順次走査して取り出す走査手段
、(51)は基準波長及び比較波長の放射エネルギーの
比率を各部分エリア毎に計算する比較計算部である。
In the figure (7), the reference wavelength for detecting the presence of 002 in the flame caused by the fire and the comparison wavelength that is not affected by the fire are separated from the radiant energy from each partial area and concentrated in different locations. Light condensing means (31A
), (32A) is a detector constructed by arranging a plurality of detection elements each installed in a place where the light is focused by the light collecting means (7), and (8) is a detector configured by arranging a plurality of detection elements arranged in each place where the light is focused by the light collecting means (7). A scanning means (51) is a comparison calculation unit which calculates the ratio of radiant energy of the reference wavelength and the comparison wavelength for each partial area.

ここにおいて、集光手段(7)及び検出器(31A)、
(32A)は検出手段(IA)を構成し、走査手段(8
)及び比較計算部(51)は判断手段(2A)を構成し
ている。
Here, a condensing means (7) and a detector (31A),
(32A) constitutes the detection means (IA), and the scanning means (8
) and the comparison calculation section (51) constitute the determination means (2A).

次に動作について説明する。Next, the operation will be explained.

まず、各部分エリアから放射される放射エネルギーはレ
ンズ(1)を介して各部分エリア毎に集光手段(7)上
に集光される。
First, the radiant energy emitted from each partial area is focused onto the condensing means (7) for each partial area via the lens (1).

この集光手段(7)は集光した放射エネルギーのうち特
定の波長すなわち炎の中に生じるC O2の放射(吸収
)帯域の基準波長(λ1)と火災の影響を受けない例え
ば炎の中のすすの放射(吸収)帯域の比較波長(λ2)
とを通過させ、各々異なった場所に集光させる。これは
例えば、ビームスプリータとフィルタを用いて構成する
。これによって各検出器(31A)、(32A)の各検
出素子には各部分エリア毎の基準波長と比較波長の放射
エネルギーが入力することになる。
This condensing means (7) uses a specific wavelength of the condensed radiant energy, that is, a reference wavelength (λ1) of the emission (absorption) band of CO2 generated in the flame, and a reference wavelength (λ1) of the emission (absorption) band of CO2 generated in the flame. Comparison wavelength (λ2) of soot emission (absorption) band
and focuses the light on different locations. This is constructed using, for example, a beam splitter and a filter. As a result, the radiant energy of the reference wavelength and comparison wavelength for each partial area is input to each detection element of each of the detectors (31A) and (32A).

ここで走査手段(8)は最初に部分エリアS1の基準波
長及び比較波長の放射エネルギーな各検出器(31A)
、(32A)から入力し゛たら、次は部分エリアS2の
基準波長及び比較波長の放射エネルギーを各検出器(3
1A)、(32A)から人力するというふうに、順次各
部分エリアSt、S2.=Snの基準波長及び比較波長
を取り込んで演算手段(5)に出力する。
Here, the scanning means (8) first scans each detector (31A) with radiant energy of the reference wavelength and the comparison wavelength in the partial area S1.
, (32A), the next step is to input the radiant energy of the reference wavelength and comparison wavelength of the partial area S2 to each detector (32A).
1A) and (32A), each partial area St, S2 . =Sn reference wavelength and comparison wavelength are taken in and output to the calculation means (5).

演算手段(5)内の比較計算部(51)は走査手段(8
)によって順次入力される基準波長及び比較波長の放射
エネルギーの比率を計算し、順次部分エリア内の火災の
検出を判断する。この時用いる基準波長は4.5μm、
比較波長は3.8μmである。
The comparison calculation section (51) in the calculation means (5) is connected to the scanning means (8).
), the ratio of the radiant energy of the reference wavelength and the comparison wavelength that are sequentially input is calculated, and the detection of fire within the partial area is sequentially determined. The reference wavelength used at this time is 4.5 μm,
The comparison wavelength is 3.8 μm.

ここで基準波長4.5μm及び比較波長3.8μmの放
射エネルギーの説明を行う。
Here, the radiant energy at the reference wavelength of 4.5 μm and the comparison wavelength of 3.8 μm will be explained.

第2図は空気中に存在するC O2の放射(吸収)する
波長帯域と燃焼によって生じる炎中002の放射(吸収
)する波長帯域との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the wavelength band radiated (absorbed) by CO2 present in the air and the wavelength band radiated (absorbed) by the flame 002 generated by combustion.

図に示すように炎中のC02の放射(吸収・)する波長
帯域は空気中のC02の放射(吸収)する波長帯域に対
して長波長側にずれる性質がある。
As shown in the figure, the wavelength band in which C02 in the flame is radiated (absorbed) has the property of shifting to the longer wavelength side with respect to the wavelength band in which C02 in the air is radiated (absorbed).

従って図に示すように波長4.5μmの放射エネルギー
のみフィルタを介して捉えれば空気中に存在するC O
2の影響を受けないことがわかる。
Therefore, as shown in the figure, if only the radiant energy with a wavelength of 4.5 μm is captured through a filter, CO present in the air can be
It can be seen that it is not affected by 2.

この基準波長4.5μmに対して許容できる範囲は図で
わかるように±0.05μm程度である。また比較波長
3.8μmの放射エネルギーは炎中に存在するすす等火
災の影響を受けない透過帯の波長領域である。
As can be seen from the figure, the allowable range for this reference wavelength of 4.5 μm is approximately ±0.05 μm. Furthermore, the radiant energy at a comparative wavelength of 3.8 μm is in a wavelength region of a transmission band that is not affected by fire such as soot present in a flame.

この比較波長3.8μmに対して許容できる範囲は基準
波長よりも緩められるが±0.2μm程度が適当である
。このようにして波長4.5μmと波長3.8μmの比
率を計算した時各測定源に対してどのような数値が得ら
れるかを示したのが第3図である。
The allowable range for this comparison wavelength of 3.8 μm is looser than the reference wavelength, but approximately ±0.2 μm is appropriate. FIG. 3 shows what numerical values are obtained for each measurement source when the ratio of the wavelength of 4.5 μm and the wavelength of 3.8 μm is calculated in this way.

第3図に示すように炎が検出される時の比率と炎が検出
されない時の比率は異なっているので監視エリア内の火
災の検出が行なえることがわかる。
As shown in FIG. 3, the ratio when flames are detected and the ratio when flames are not detected are different, so it can be seen that fires within the monitoring area can be detected.

[発明の効果] 以上説明したようにこの発明は各部分′エリア毎に基準
波長と比較波長の放射エネルギーを取り出して各検出素
子に供給し、各検出素子からの出力を順次走査して上記
基準波長と比較波長のそれぞれの放射エネルギーの比率
から火災の検出を行うので、長寿命で故障が発生しにく
く、しかも誤動作の少ない火災検知器が得られる。
[Effects of the Invention] As explained above, the present invention extracts the radiant energy of the reference wavelength and the comparison wavelength for each area and supplies it to each detection element, and sequentially scans the output from each detection element to obtain the reference wavelength. Since fire detection is performed based on the ratio of the radiant energy of the wavelength and the comparison wavelength, a fire detector with a long life, less chance of failure, and less malfunction can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図は空
気中のC02の透過特性と炎の放射強度の関係を示す図
、第3図は各測定源における測定波長と比較波長の比率
の数値の関係を示す図、第4図は監視エリアを複数の部
分エリアに分割した様子・を示す図、第5図は従来の火
災検出器の構成図4第6図は波長と放射エネルギーの相
対強度の閏、孫を示す図である。 (1)−レンズ、   (2)−セクタ、(31A)、
(32A)−検出器、 (8)−走査手段、  (51)−比較計算部、(IA
)−検出手段、(2A)−判断手段。 第 3 図 第4図 、lj蝦費2dム属署鯖−
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figure 2 is a diagram showing the relationship between the transmission characteristics of C02 in the air and the radiation intensity of the flame, and Figure 3 is a diagram showing the measurement wavelength and comparison wavelength for each measurement source. Figure 4 shows how the monitoring area is divided into multiple partial areas. Figure 5 shows the configuration of a conventional fire detector. Figure 6 shows the wavelength and radiation. FIG. 3 is a diagram illustrating the step and grandchild of the relative intensity of energy. (1)-lens, (2)-sector, (31A),
(32A) - Detector, (8) - Scanning means, (51) - Comparison calculation section, (IA
)-detection means, (2A)-judgment means. Fig. 3 Fig. 4, lj shrimp cost 2d mu saba

Claims (1)

【特許請求の範囲】[Claims] (1)監視エリアを複数の部分エリアに分割し、この部
分エリア内から放射される放射エネルギーのうち特定の
波長の放射エネルギーを取り込み、この取り込んだ放射
エネルギーを計測して監視エリア内の火災を検出する火
災検知器において、上記複数の部分エリアからの放射エ
ネルギーのうち火災によって生じる炎の中のCO_2の
存在を示す基準波長及び火災の影響を受けない比較波長
のみ通過させるとともに各々の部分エリア毎に対応して
設けられた各検出素子を用いて部分エリア毎に上記通過
した波長の放射エネルギーを捉える検出手段と、 上記各検出素子に供給された放射エネルギーを各部分エ
リア毎に走査することによって上記基準波長及び上記比
較波長の放射エネルギーの比率を各部分エリア毎に求め
て監視エリア内の火災の判断を行う判断手段を備えたこ
とを特徴とする火災検知器。
(1) Divide the monitoring area into multiple partial areas, capture radiant energy of a specific wavelength among the radiant energy emitted from within these partial areas, and measure this captured radiant energy to prevent fires within the monitoring area. Of the radiant energy from the plurality of partial areas, the fire detector that detects it passes only the reference wavelength that indicates the presence of CO_2 in the flame caused by the fire and the comparison wavelength that is not affected by the fire, and a detection means that captures the radiant energy of the wavelength that has passed through each partial area using each detection element provided correspondingly to the detection element; A fire detector characterized in that it is equipped with a determination means for determining a fire within a monitoring area by determining the ratio of radiant energy of the reference wavelength and the comparison wavelength for each partial area.
JP25354887A 1987-10-09 1987-10-09 Fire detector Granted JPH0196795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25354887A JPH0196795A (en) 1987-10-09 1987-10-09 Fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25354887A JPH0196795A (en) 1987-10-09 1987-10-09 Fire detector

Publications (2)

Publication Number Publication Date
JPH0196795A true JPH0196795A (en) 1989-04-14
JPH0544078B2 JPH0544078B2 (en) 1993-07-05

Family

ID=17252899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25354887A Granted JPH0196795A (en) 1987-10-09 1987-10-09 Fire detector

Country Status (1)

Country Link
JP (1) JPH0196795A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890030A (en) * 1972-03-01 1973-11-24
JPS5769492A (en) * 1980-10-18 1982-04-28 Horiba Ltd Flame sensor
JPS6046433A (en) * 1983-07-21 1985-03-13 Asahi Glass Co Ltd Apparatus for detecting flame
JPS60127427A (en) * 1983-12-14 1985-07-08 Ishikawajima Harima Heavy Ind Co Ltd Flame detecting apparatus
JPS6178395U (en) * 1984-10-26 1986-05-26
JPS61115293U (en) * 1984-12-27 1986-07-21

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890030A (en) * 1972-03-01 1973-11-24
JPS5769492A (en) * 1980-10-18 1982-04-28 Horiba Ltd Flame sensor
JPS6046433A (en) * 1983-07-21 1985-03-13 Asahi Glass Co Ltd Apparatus for detecting flame
JPS60127427A (en) * 1983-12-14 1985-07-08 Ishikawajima Harima Heavy Ind Co Ltd Flame detecting apparatus
JPS6178395U (en) * 1984-10-26 1986-05-26
JPS61115293U (en) * 1984-12-27 1986-07-21

Also Published As

Publication number Publication date
JPH0544078B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
US5026992A (en) Spectral ratioing technique for NDIR gas analysis using a differential temperature source
US6317205B1 (en) Method for monitoring an optical system having a front lens disposed immediately at a combustion chamber, and a device for carrying out the method
AU2017315603B2 (en) Measurement apparatus for the absorption measurement of gases
JPS586995B2 (en) Flame detection method
CA2518491A1 (en) Gas leakage monitoring method and its system
GB2188416A (en) Flame condition monitoring
JPH0196795A (en) Fire detector
JP3781247B2 (en) Flame detector
JPH04205400A (en) Smoke sensor
CA2655551A1 (en) System using over fire zone sensors and data analysis
JP3312711B2 (en) Infrared fire detector
JPH0424797A (en) Multi-wavelength diminishing system smoke detector
JP3258778B2 (en) Flame detection and combustion diagnostic device
JP5848082B2 (en) Flame detector and flame judgment method
CN112461778A (en) High-precision multi-channel combustible gas detector
JPH05159174A (en) Fire sensing method
JPS6138430A (en) Fire sensor
JP2894750B2 (en) Flame detector
KR102476185B1 (en) Fire sensing system using a wideband spectrometer
JP2003121257A (en) Flame detector
JP4255420B2 (en) Flame detector
JPH0822584A (en) Fire detecting device
US11366048B2 (en) Smoke detector for aspiration smoke detector system
WO1982003487A1 (en) Optical fire detector
JPH0684077A (en) Fire detection method