JPH05159174A - Fire sensing method - Google Patents
Fire sensing methodInfo
- Publication number
- JPH05159174A JPH05159174A JP3348547A JP34854791A JPH05159174A JP H05159174 A JPH05159174 A JP H05159174A JP 3348547 A JP3348547 A JP 3348547A JP 34854791 A JP34854791 A JP 34854791A JP H05159174 A JPH05159174 A JP H05159174A
- Authority
- JP
- Japan
- Prior art keywords
- fire
- infrared
- wavelength
- wavelength band
- detecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fire-Detection Mechanisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、火源から放射される赤
外線を検出して火災を検知する火災検知方法に関するも
のであり、特に多波長の赤外線を同時に検出して火災と
非火災の区別を明確化する火災検知方法に関する。本発
明は、電熱器、調理などの非火災源による誤報を無く
し、比較的小規模な火災の状態においても有効な火災検
知を行う赤外線波長帯を提供する特定したものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fire detection method for detecting a fire by detecting infrared rays radiated from a fire source, and particularly to detect infrared rays of multiple wavelengths simultaneously to distinguish between a fire and a non-fire. Fire detection method to clarify The present invention has been specified to provide an infrared wavelength band that eliminates false alarms due to non-fire sources such as electric heaters and cooking equipment, and provides effective fire detection even in a relatively small fire condition.
【0002】[0002]
【従来の技術】従来より、火炎から放射される赤外線を
検知する炎検知方法は実用化されている。また、これら
の炎検知方法では、炎から放射される特有のスペクトル
線(4.4μm帯;CO2の共鳴放射帯)を検出するものが主
流であるが、炎以外の赤外線源による誤動作を減らすい
くつかの試みが提案されている。例えば、特開昭50−
2497号は、4.3μmとその前後の2波長における
放射線量を検出し、4.3μmと他の2波長における放
射線量が一定値以上になった場合に炎として判断してい
る。特開昭57−96492号は、2つの凸部間に谷間
が存在するか否かを判別して炎の発生を感知することを
提唱している。2. Description of the Related Art Conventionally, a flame detection method for detecting infrared rays emitted from a flame has been put into practical use. Most of these flame detection methods detect the characteristic spectral line emitted from the flame (4.4 μm band; CO 2 resonance radiation band), but there are several methods to reduce malfunctions due to infrared sources other than flames. Some attempts have been proposed. For example, JP-A-50-
No. 2497 detects the radiation doses at 4.3 μm and two wavelengths before and after it, and judges it as a flame when the radiation doses at 4.3 μm and other two wavelengths exceed a certain value. Japanese Patent Application Laid-Open No. 57-96492 proposes to detect the occurrence of a flame by determining whether or not a valley exists between two convex portions.
【0003】その他、特開昭61−32195号は、近
赤外線域の波長の放射線を検出する第1の放射線検出手
段と、写真赤外領域の波長の放射線を検出する第2の放
射線検出手段と、前記第1および第2放射線検出手段か
らの出力信号を受信し、これらの出力信号のレベル差と
同期性とにより出力信号の論理的組み合せを演算する演
算手段と、演算手段からの組み合わせ出力信号により火
災信号とノイズ信号とを判別する検出手段を具備する火
災感知装置を開示する。これは、発炎火災と可視光ノイ
ズが2.3μmと0.9μmの赤外線の相関関係に同期
性を有し、燻焼火災は同期性を示さず、又発炎火災と燻
焼火災は近赤外線強度が写真赤外線強度より大きく、可
視光ノイズは近赤外線強度が写真赤外線強度より小さい
ことを利用し、上記2種の放射線を比較して火災と可視
光ノイズの区別、および発炎火災と燻焼火災を区別する
ものである。In addition, Japanese Patent Laid-Open No. 61-32195 discloses a first radiation detecting means for detecting radiation having a wavelength in the near infrared region and a second radiation detecting means for detecting radiation having a wavelength in the photographic infrared region. Calculating means for receiving output signals from the first and second radiation detecting means and calculating a logical combination of the output signals based on a level difference and synchronism of these output signals, and a combined output signal from the calculating means Discloses a fire detection device having a detection means for discriminating between a fire signal and a noise signal. This is because the flaming fire and the visible light noise have synchronism in the correlation of infrared rays of 2.3 μm and 0.9 μm, the smoldering fire does not show the synchrony, and the flaming fire and the smoldering fire are close to each other. Taking advantage of the fact that the infrared intensity is higher than the photographic infrared intensity and the visible light noise is the near-infrared intensity is lower than the photographic infrared intensity, the above two types of radiation are compared to distinguish between fire and visible light noise, and flaming fire and smoke. It distinguishes between fires.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、電灯等
赤外域の輻射強度に比較して可視又は近赤外域の輻射強
度が大きい場合は非火災と判断する方式では、通常的な
電灯による誤報を少なくはしたが、火災以外の発熱体で
あっても可視又は近赤外線を放射しないものあるいはそ
れが弱いものであれば火災と判断し、誤報を発する。す
なわち、電熱器等では誤報を発し、その適用に制約が大
きい。また、4.3μmとその前後の2波長における放
射線量を検出し、4.3μmと他の2波長における放射
線量が一定値以上になった場合に炎として判断する方法
では、炎を検知することはできてもその炎が火災に由来
するものかあるいは有益な熱源に由来するものかは検知
できない。すなわち、ガスレンジ、ガスストーブ等の炎
で誤報を発する欠点がある。さらに、2.3μmと0.
9μmの2種の放射線のレベル差と同期性とを比較して
火災と可視光ノイズの区別、および発炎火災と燻焼火災
を区別するものでは、火災の種類、燃え方によっては必
ずしもここでいう同期性がみられるとの補償はなく、信
頼性を欠く。However, when the radiation intensity in the visible or near-infrared region is large compared to the radiation intensity in the infrared region such as an electric lamp, the method of judging non-fire is less likely to cause false alarms due to ordinary electric lights. However, if a heating element other than a fire does not emit visible or near-infrared rays or is weak, it is determined to be a fire and a false alarm is issued. That is, an electric heater or the like gives a false alarm and its application is largely restricted. In addition, when the radiation dose at 4.3 μm and two wavelengths before and after that is detected, and the radiation dose at 4.3 μm and other two wavelengths exceeds a certain value, it is judged as a flame. However, it is not possible to detect whether the flame comes from a fire or a useful heat source. That is, there is a drawback that a false alarm is generated by a flame of a gas range, a gas stove, or the like. Furthermore, 2.3 μm and 0.
When comparing the level difference and synchronism of two kinds of radiation of 9 μm to distinguish between fire and visible light noise, and to distinguish between flaming fire and smoldering fire, depending on the type of fire and how it burns There is no compensation to say that such synchronism is seen, and it lacks reliability.
【0005】本発明者らはこのような状況に対して赤外
線源から放射される赤外線を複数の波長帯で検知し、赤
外線検出器の検知出力および該検知出力の比の時間的変
化に基づいて火災か否かを判断する信号処理回路を具備
することによって信頼性の高い火災検知方法を確立する
ための検出波長帯域を提供することを目的としている。The present inventors detect infrared rays emitted from an infrared ray source in a plurality of wavelength bands in such a situation, and based on the detection output of the infrared detector and the temporal change of the ratio of the detection outputs. An object of the present invention is to provide a detection wavelength band for establishing a highly reliable fire detection method by providing a signal processing circuit for determining whether or not there is a fire.
【0006】[0006]
【問題点を解決するための手段】上記目的を達成するた
めに本発明では、比較的高温の発熱を主に検出する短波
長の赤外波長帯と比較的低温の発熱を主に検出する長波
長の赤外波長帯、さらに炎の有無を検出するCO2の共鳴
放射帯を各々検出する手法をとり、これらの波長帯は、
燻焼状態における可燃物の放射スペクトル、赤外線が大
気中を伝播するうえにおいての各種の損失、火災検知器
の構成するうえで必要な筐体における損失等を考慮した
うえで、2.8μm〜3.2μm,4.2μm〜4.6μm,4.6
μm〜5.5μm,8.0μm〜10.0μmの4波長帯を特定し、
各々検出することにした。これらは、まず高温の発熱を
検出するための波長対として,の2波長帯、低温の
発熱を検出するための波長対として,の2波長帯、
さらに炎の有無を検出するの波長帯である。In order to achieve the above object, the present invention has a short-wavelength infrared wavelength band that mainly detects relatively high temperature heat generation and a long wavelength that mainly detects relatively low temperature heat generation. Infrared wavelength band of wavelength, and the method of detecting the resonance radiation band of CO 2 for detecting the presence or absence of flame, respectively, these wavelength bands are
2.8 μm to 3.2 μm after considering the radiation spectrum of combustible materials in the smoldered state, various kinds of loss in propagating infrared rays in the atmosphere, and loss in the casing necessary for constructing a fire detector. , 4.2μm ~ 4.6μm, 4.6
Identifies four wavelength bands of μm to 5.5 μm and 8.0 μm to 10.0 μm,
I decided to detect each. First, these are two wavelength bands as a wavelength pair for detecting high temperature heat generation, two wavelength bands as a wavelength pair for detecting low temperature heat generation,
Furthermore, it is a wavelength band for detecting the presence or absence of flame.
【0007】[0007]
【本発明の具体的説明】以下、本発明を具体的に説明す
る。図1は本発明の検知波長帯を持った火災検知器の一
つの構成例である。この例では、火源または類似の発熱
源から放射された赤外線をチョッパーによって周期的に
分断し、4個の焦電型赤外線センサーで各々異なった4
波長帯を検出する。これらのセンサーには、あらかじめ
定まった波長帯を透過するバンドパスフィルターが内蔵
されている。ただし、4個以下の焦電型赤外線センサー
であっても、切替手段を用いて4つに分割した波長を検
知する方式としてもよい。また、ただ4個以下の焦電型
赤外線センサーであっても、切替手段を用いて4種の波
長帯を検知する方式としてもよい。各々のセンサーで検
出した信号は、増幅回路で増幅した後にA/D変換器に
よってデジタル信号に変換される。マイクロプロセッサ
はこのデジタル信号に対してチョッパーの分断周期によ
る同期検波およびろ波を行ない、チョッパーによって分
断されていた信号を連続的な信号系列に戻している。さ
らに、ここで得られた信号系列を通信用の信号系列に変
換し、ホストコンピュータにデジタル伝送を行なってい
る。DETAILED DESCRIPTION OF THE INVENTION The present invention will be specifically described below. FIG. 1 shows an example of the construction of a fire detector having a detection wavelength band according to the present invention. In this example, infrared rays radiated from a fire source or a similar heat source are periodically divided by a chopper, and four pyroelectric infrared sensors each have different infrared rays.
Detect the wavelength band. These sensors have a built-in bandpass filter that transmits a predetermined wavelength band. However, even with four or less pyroelectric infrared sensors, a method of detecting the wavelength divided into four using the switching means may be used. Further, even with only four or less pyroelectric infrared sensors, a method of detecting four kinds of wavelength bands by using the switching means may be adopted. The signal detected by each sensor is amplified by an amplifier circuit and then converted into a digital signal by an A / D converter. The microprocessor performs synchronous detection and filtering on the digital signal according to the division cycle of the chopper, and returns the signal divided by the chopper to a continuous signal sequence. Further, the signal sequence obtained here is converted into a signal sequence for communication and digitally transmitted to the host computer.
【0008】ホストコンピュータでは、例えば送られて
きた各波長帯の赤外線強度の信号から、それぞれの波長
帯の赤外線強度の比に基づいて赤外線源の温度を算出
し、この温度から上記いずれかの波長帯の赤外線強度を
求めこの赤外線放射強度およびその波長帯を検出する赤
外線検知器の出力とに基づいて発熱面積を以下のように
して算出することにより火災の状況判定を行なう。In the host computer, for example, the temperature of the infrared source is calculated from the transmitted infrared intensity signal of each wavelength band based on the ratio of the infrared intensity of each wavelength band, and from this temperature, one of the above wavelengths is calculated. The fire situation is determined by calculating the infrared radiation intensity of the band and calculating the heat generation area as follows based on the infrared radiation intensity and the output of the infrared detector that detects the wavelength band.
【0009】検知波長帯をλ1,λ2,…λn(n=2以上
の整数)とし、赤外線検知部Dにおいて検出されたそれ
ぞれの波長帯の検出出力をV1,V2,…Vnとする。そ
してこれらの検出出力は赤外線検知部Dに入射した各波
長帯の赤外線強度を正確に反映しているものとする。と
ころで、プランクの放射則により、ある温度Tの物体が
波長λで半空間内に放射する赤外線の単位面積当たりの
放射強度は次式で表される。Let .lambda.1, .lambda.2, ... .lambda.n (n = integer of 2 or more) be the detection wavelength bands, and V1, V2, ... Vn are the detection outputs of the respective wavelength bands detected by the infrared detector D. It is assumed that these detection outputs accurately reflect the infrared intensity of each wavelength band incident on the infrared detector D. By the way, according to Planck's radiation law, the radiant intensity per unit area of infrared rays radiated by a body at a certain temperature T into a half space at a wavelength λ is expressed by the following equation.
【0010】[0010]
【数1】 [Equation 1]
【0011】なお、ここでC1,C2は、C1=2πhc2,
C2=hc/kで決まる定数である。ただし、hはプランク
定数、cは光速度、kはボルツマン定数である。Here, C1 and C2 are C1 = 2πhc 2 ,
It is a constant determined by C2 = hc / k. However, h is Planck's constant, c is light velocity, and k is Boltzmann's constant.
【0012】上記の(1)式に2つの検出波長帯λ1,
λ2とその波長帯での放射赤外線強度P1,P2を代入
し、温度Tを求める近似式を導くと、In the above equation (1), two detection wavelength bands λ1,
Substituting the radiated infrared ray intensities P1 and P2 in λ2 and its wavelength band and deriving an approximate expression for obtaining the temperature T,
【数2】 ここで、赤外線源Sから赤外線検知部Dまでの間の吸収
がλ1,λ2ともに無いとすれば上記(2)式のP1,P2
はV1,V2に置き換えることができる。すなわち、[Equation 2] If there is no absorption between the infrared source S and the infrared detector D for both λ1 and λ2, P1 and P2 in the above equation (2) are used.
Can be replaced by V1 and V2. That is,
【数3】 となる。(3)式より、異なった2波長の赤外線を各々
検出することによって赤外線源の温度が求められる。[Equation 3] Becomes From the equation (3), the temperature of the infrared source can be obtained by detecting the infrared rays of two different wavelengths.
【0013】次に、上式(3)によって求めた温度Tか
らλ1或はλ2における単位面積当たりの黒体輻射強度
(これをP1’或はP2’とする)がプランクの輻射則す
なわち(1)式より求まる。一方、赤外線検知部Dに入
射する赤外線の強度は赤外線源Sとの距離Lによって、
1/2πL2になる。したがって、上記求めた温度Tのあ
る面積を持った(単位面積のs倍)赤外線源から赤外線
検知部Dに入射すべき赤外線強度P1”或はP2”は、P
1’或はP2’に2πL2とsを乗じた値となる。即ち、 P1”=P1’×2πL2×S (4) P2”=P2’×2πL2×S (5) となる。ここで赤外線検知部の出力が入射赤外線強度を
正確に反映していると仮定しているので、V1或はV2か
ら上記式(3)、(2)を用いてP1或はP2がわかる。
従って、距離Lを既知とすれば実際に検出された入射赤
外線強度P1或はP2と計算によって求めた入射赤外線強
度P1”或はP2”との比は式(4)、(5)から判るよ
うに赤外線源Sの面積sを表していることになる。Next, the blackbody radiation intensity per unit area at λ1 or λ2 from the temperature T obtained by the above equation (3) (this is referred to as P1 'or P2') is Planck's radiation law, that is, (1) ) Equation. On the other hand, the intensity of the infrared rays incident on the infrared detector D depends on the distance L to the infrared source S,
It becomes 1 / 2πL 2 . Therefore, the infrared ray intensity P1 ″ or P2 ″ to be incident on the infrared detecting section D from the infrared ray source having a certain area of the obtained temperature T (s times the unit area) is P
It is a value obtained by multiplying 1'or P2 'by 2πL 2 and s. That is, P1 ″ = P1 ′ × 2πL 2 × S (4) P2 ″ = P2 ′ × 2πL 2 × S (5) Since it is assumed here that the output of the infrared detector accurately reflects the intensity of the incident infrared light, P1 or P2 can be found from V1 or V2 using the above equations (3) and (2).
Therefore, if the distance L is known, the ratio between the actually detected incident infrared ray intensity P1 or P2 and the calculated incident infrared ray intensity P1 ″ or P2 ″ can be found from equations (4) and (5). The area s of the infrared source S is represented by.
【0014】さらに、CO2の共鳴放射帯域を検出する波
長帯を用いて、上記手段で求めた赤外線源の温度および
発熱面積から式(1)によってCO2の共鳴放射帯域にお
ける黒体放射の赤外線強度Pco2’を算出し、上記P1な
どと同様に赤外線検知部に入射すべき赤外線強度Pco
2”を求め、これと実際に観測されたPco2との比を算出
する。ここで、Pco2”》Pco2であれば赤外線源は炎を
伴うものである。このようにして火災の状況を把握し、
火災の警報を発する。Further, by using the wavelength band for detecting the CO 2 resonance radiation band, the infrared of black body radiation in the CO 2 resonance radiation band is calculated by the formula (1) from the temperature and heat generation area of the infrared source obtained by the above means. The intensity Pco2 'is calculated, and the infrared intensity Pco which should be incident on the infrared detector is calculated in the same manner as P1 above.
2 "is calculated and the ratio of this to the actually observed Pco2 is calculated. Here, if Pco2">> Pco2, the infrared source is accompanied by a flame. In this way, the situation of the fire is grasped,
Fire alarm.
【0015】図1の例においてチョッパー(2)、赤外線
センサー(3)、増幅回路およびマイクロコンピュータ(4)
等は、同一の筐体(5)内に図4に示すごとく収納され
る。また、他の例としては増幅回路およびマイクロコン
ピュータ(4)を収納する筐体を別に設けてもよい。図1
において、赤外線が透過する窓部はポリエチレンを使用
している。当然のことながらSiもしくはZnSeなど
の赤外線透過結晶材料も使用可能であり、これらの赤外
線透過結晶材料は透過率も高い。しかしながら上記赤外
線透過結晶材料は機械的強度に問題があり、取扱に注意
しないと破損する恐れが多分にあり、さらに高価であ
る。ポリエチレンは比較的乱暴な取扱でも破損すること
はなく、また非常に安価であることから、赤外線透過率
が上記結晶材料に劣っていることを差し引いてもこのよ
うな用途には最適な材料である。In the example of FIG. 1, a chopper (2), an infrared sensor (3), an amplifier circuit and a microcomputer (4)
Etc. are housed in the same housing (5) as shown in FIG. Further, as another example, a housing for housing the amplifier circuit and the microcomputer (4) may be separately provided. Figure 1
In, the window portion through which infrared rays are transmitted uses polyethylene. As a matter of course, infrared transmissive crystal materials such as Si or ZnSe can also be used, and these infrared transmissive crystal materials have high transmittance. However, the above infrared transparent crystal material has a problem in mechanical strength, and if it is not handled carefully, it may possibly be damaged, and it is more expensive. Polyethylene does not break even with relatively rough handling, and is extremely inexpensive, so even if the fact that its infrared transmittance is inferior to that of the above crystalline materials is subtracted, it is an optimal material for such applications. ..
【0016】図1の例で検出している赤外線の波長帯
は、図2に示すごとく低温域から高温域までの発熱体の
放射を効率良く検出する波長帯とする。すなわち、中
心波長3μm半値幅0.4μm,中心波長4.4μm半値幅0.4
μm,中心波長5.5μm半値幅0.8μm,中心波長8.5μ
m半値幅1.0μmである。上記波長帯については、主に
高温域の発熱体の放射を検出し、波長帯で検出した赤
外線強度と組み合せて400℃以上の高温域の発熱体を監
視する。波長帯については炎の有無を監視する。波長
帯は低温域から高温に到るまで効率良く検出する波長
帯で、波長帯と組み合せて高温域の発熱体の監視と、
波長帯と組み合せて低温域の発熱体の監視を行なう。
波長帯は、400℃以下の低温の発熱体の放射を効率良
く検出し、波長帯と組み合せて400℃以下の低温域の
発熱体の監視を行なう。燻焼状態から火災に到る過程で
は、低温の発熱体が次第に高温になりながら拡大してい
く。従って、低温から高温までの幅広い温度範囲で発熱
源の温度を監視できることが必要となる。The infrared wavelength band detected in the example of FIG. 1 is a wavelength band for efficiently detecting the radiation of the heating element from the low temperature region to the high temperature region as shown in FIG. That is, the center wavelength is 3 μm, the half width is 0.4 μm, the center wavelength is 4.4 μm, the half width is 0.4
μm, center wavelength 5.5 μm, half width 0.8 μm, center wavelength 8.5 μ
The half-width of m is 1.0 μm. Regarding the above wavelength band, the radiation of the heating element in the high temperature region is mainly detected, and the heating element in the high temperature region of 400 ° C. or higher is monitored in combination with the infrared intensity detected in the wavelength band. The presence or absence of flame is monitored for the wavelength band. The wavelength band is a wavelength band that efficiently detects from low temperature to high temperature, and in combination with the wavelength band, it monitors the heating element in the high temperature range.
The heating element in the low temperature range is monitored in combination with the wavelength band.
As for the wavelength band, the radiation of the low-temperature heating element below 400 ° C is efficiently detected, and the heating element in the low-temperature region below 400 ° C is monitored in combination with the wavelength band. In the process from a smoldering state to a fire, a low temperature heating element gradually increases in temperature and expands. Therefore, it is necessary to monitor the temperature of the heat source in a wide temperature range from low temperature to high temperature.
【0017】中心波長3.0μm半値幅0.4μmの検知波長
帯は、高温の発熱体を精度良く監視するため検知する必
要がある。短波長の赤外線を検出する場合、電灯などの
人工光線の影響を避けるためには、2μmより短波長側に
は検知波長帯を設定できない。また2.6μm付近には図3
のごとくCO2と水蒸気による吸収帯があり、大気の透過
率の高い波長帯は2.8μm〜4.1μmであることから、上記
波長帯の短波長側の制限は2.8μmとなる。さらに、筐体
の赤外線透過窓にポリエチレン等を使用すると吸収帯が
図3のごとく3.2μm〜4.0μmにかけて存在するために、
長波長側の制限は3.2μmとなる。筐体の赤外線透過窓材
に赤外線透過結晶材料を使用することにより上記検知波
長帯の帯域幅を広げることは可能ではあるが、3.2μm〜
4.0μmの吸収帯はC―Hの結合によるものであるため例え
ば火災時の熱による有機ガスが生じ、大気中に拡散した
場合などは大気中に拡散したガスによって吸収されるお
それがあるため3.2μm〜4.0μmを検知波長帯に加えるこ
とは適当ではない。The detection wavelength band having a center wavelength of 3.0 μm and a half width of 0.4 μm needs to be detected in order to accurately monitor a high temperature heating element. When detecting infrared rays with a short wavelength, the detection wavelength band cannot be set on the side of a wavelength shorter than 2 μm in order to avoid the influence of artificial rays such as electric lights. Also, in the vicinity of 2.6 μm,
As described above, there is an absorption band due to CO 2 and water vapor, and the wavelength band with high atmospheric transmittance is 2.8 μm to 4.1 μm, so the limitation on the short wavelength side of the above wavelength band is 2.8 μm. Furthermore, when polyethylene or the like is used for the infrared transmitting window of the housing, the absorption band exists from 3.2 μm to 4.0 μm as shown in FIG.
The long wavelength limit is 3.2 μm. Although it is possible to widen the bandwidth of the above detection wavelength band by using an infrared transmissive crystal material for the infrared transmissive window material of the housing, 3.2 μm ~
Since the absorption band of 4.0 μm is due to the bond of CH, for example, when organic gas is generated by the heat of a fire and diffuses into the atmosphere, it may be absorbed by the gas diffused into the atmosphere. It is not appropriate to add μm to 4.0 μm to the detection wavelength band.
【0018】中心波長4.4μm半値幅0.4μmの検知波長
帯は炎の有無を検出する波長帯としている。ここで、炎
燃焼によるCO2の共鳴放射は、図2の炎を伴った燃焼の
曲線のごとく4.2μm〜4.6μmにある。従って、炎の有無
を検知する波長帯はこの範囲に設定することが望まし
い。このうち4.2〜4.3μmは大気中のCO2の吸収帯がある
が感度を優先させたために本実施例ではこの帯域も検知
している。The detection wavelength band having a central wavelength of 4.4 μm and a half value width of 0.4 μm is a wavelength band for detecting the presence or absence of flame. Here, the resonance radiation of CO 2 due to flame combustion is in the range of 4.2 μm to 4.6 μm as shown by the curve of combustion with flame in FIG. Therefore, it is desirable to set the wavelength band for detecting the presence or absence of flame within this range. Of these, 4.2 to 4.3 μm has an absorption band of CO 2 in the atmosphere, but since priority is given to sensitivity, this band is also detected in this embodiment.
【0019】中心波長5μm半値幅0.8μmの検知波長帯
は、およびと組み合せて発熱体の温度を求めるため
の波長帯である。このため、低温の発熱体に対して高い
感度を有し、高温の発熱体に対して良好な精度を確保す
るために比較的短波長側でかつ広い帯域幅を確保する必
要がある。図3に示す大気の吸収を考えると、5.5〜8μ
mは水蒸気の吸収が大きく、4.3μm付近にはCO2の吸収が
あることから4.4〜5.5μmの波長帯を検出することが適
当である。しかしながら、発炎燃焼時にはCO2によって
4.2μm〜4.6μmにわたって非常に強い放射が発生するた
め発炎燃焼時に誤差を少なくするにはこの放射帯域を避
ける必要がある。従って、この波長帯の短波長側の制限
は4.6μm、長波長側の制限は5.5μmとなる。The detection wavelength band having a central wavelength of 5 μm and a half value width of 0.8 μm is a wavelength band for obtaining the temperature of the heating element in combination with and. Therefore, it is necessary to secure a wide bandwidth on the relatively short wavelength side in order to have a high sensitivity to a low temperature heating element and to secure a good accuracy for a high temperature heating element. Considering the absorption of the atmosphere shown in Fig. 3, 5.5-8μ
Since m has a large absorption of water vapor and CO 2 is absorbed in the vicinity of 4.3 μm, it is appropriate to detect the wavelength band of 4.4 to 5.5 μm. However, due to CO 2
Since very strong radiation is generated over 4.2 μm to 4.6 μm, it is necessary to avoid this radiation band to reduce the error during flaming combustion. Therefore, the short wavelength limit of this wavelength band is 4.6 μm, and the long wavelength limit is 5.5 μm.
【0020】中心波長8.5μm半値幅1.0μmの検知波長
帯は、低温の物体を監視するためのものである。燻焼状
態から炎をあげて燃焼するまでに到る過程を捉えること
は火災検知の信頼性を上げるうえで不可欠である。しか
しながら、10μm以上の波長帯では常温に近い人体など
の物体から放射される赤外線まで検出してしまうため誤
動作などの不都合を生じる。従って低温を検出する波長
帯と言えども極端に長い波長帯を選ぶことは適当ではな
く、10μm以下の波長帯であることが望ましい。また、
図3に示すごとく8μmより短波長側では大気による吸収
が大きいことから8μm以上である必要がある。従って低
温の発熱をとらえる長波長の検知帯域は8μm〜10μmの
間が適当である。The detection wavelength band having a central wavelength of 8.5 μm and a half value width of 1.0 μm is for monitoring a low temperature object. It is indispensable to improve the reliability of fire detection by grasping the process from the smoldering state to the burning of the flame. However, in the wavelength band of 10 μm or more, infrared rays emitted from an object such as a human body near room temperature are also detected, which causes malfunctions and the like. Therefore, it is not appropriate to select an extremely long wavelength band even for the low temperature detection wavelength band, and it is desirable that the wavelength band is 10 μm or less. Also,
As shown in FIG. 3, it is necessary to be 8 μm or more because absorption by the atmosphere is large on the shorter wavelength side than 8 μm. Therefore, it is appropriate that the long-wavelength detection band for catching low-temperature heat generation is between 8 μm and 10 μm.
【0021】図5は本発明で使用した赤外線センサーの
構造の一態様である。この態様では赤外線検知素子に焦
電型素子(7)を用い、センサーの窓材に赤外バンドパス
フィルタを使用しているが、図6に示すように赤外線透
過窓(8)の前面に赤外バンドパスフィルタ(6)を独立させ
た構成にしてもよい。また、赤外線検知素子に熱電対型
素子、量子型素子を使用することも可能である。量子型
素子を使用した場合には、検知素子が高価になるが感度
が焦電型および熱電対型に比較して約2桁向上する。従
って、検知帯域幅を上記実施例より狭帯域化して温度の
検出精度を向上させることができる。例えば、それぞれ
のバンドパスフィルターの特性を中心波長3μm半値幅
0.1μm、中心波長4.5μm半値幅0.1μm、中心波長5.
0μm半値幅0.1μm、中心波長9μm半値幅0.1μmとし
て、の波長帯はInSb検知素子、の波長帯は
HgCdTe検知素子を用いた場合には、温度検出精度
で1桁、検知可能エリアで10倍の性能が得られる。FIG. 5 shows an embodiment of the structure of the infrared sensor used in the present invention. In this mode, the pyroelectric element (7) is used as the infrared detection element, and the infrared bandpass filter is used as the window material of the sensor. However, as shown in FIG. The outer bandpass filter (6) may be independent. It is also possible to use a thermocouple type element or a quantum type element for the infrared detecting element. When the quantum type element is used, the sensing element becomes expensive, but the sensitivity is improved by about two digits as compared with the pyroelectric type and the thermocouple type. Therefore, the detection bandwidth can be made narrower than that in the above embodiment, and the temperature detection accuracy can be improved. For example, specify the characteristics of each bandpass filter with a center wavelength of 3 μm
0.1 μm, center wavelength 4.5 μm, half-value width 0.1 μm, center wavelength 5.
When the InSb detection element is used for the wavelength band of, and the HgCdTe detection element is used for the wavelength band of, the temperature detection accuracy is 1 digit and the detection area is 10 times larger. The performance of is obtained.
【0022】[0022]
【実施例】本発明に係る火災検知方法を用いてぶな材の
燻焼から発炎燃焼に到るテストファイアを検知した例を
図7に示す。検知器と火源との距離は10mである。C
H1、CH2、CH3、CH4はそれぞれ前記、、、
の波長帯における強度を示す。その結果前記および
の波長帯で赤外線を検出することにより150℃の発熱
状態から監視が可能であり、過熱開始から約9分後に発
炎燃焼に移行した時点を、前記およびの波長帯で赤
外線を検出することによって温度、発熱面積を捉え、前
記の波長帯で赤外線を検出することによって炎の有無
を正確にとらえることができた。EXAMPLE FIG. 7 shows an example in which a test fire from smoldering of beech wood to flame combustion is detected using the fire detection method according to the present invention. The distance between the detector and the fire source is 10m. C
H 1 , CH 2 , CH 3 , and CH 4 are the same as above,
Shows the intensity in the wavelength band of. As a result, it is possible to monitor from the heat generation state of 150 ° C by detecting infrared rays in the wavelength bands of the above and, and at the time of transition to flaming combustion about 9 minutes after the start of overheating, infrared rays in the wavelength bands of the above and By detecting the temperature and heat generation area, and by detecting infrared rays in the above wavelength band, it was possible to accurately detect the presence or absence of a flame.
【0023】[0023]
【発明の効果】以上説明したように本発明では、火災か
ら放射される赤外線を検出して、赤外線検出器の検知出
力および該検知出力の比の時間的変化に基づいて火災か
否かを判断する信号処理を行うことを特徴とする火災検
知方法において、検知波長帯を2.8μm〜3.2μm,4.
2μm〜4.6μm,4.6μm〜5.5μm,8.0μm〜10.0μm
の4波長帯に特定したことによって低温の燻焼状態から
高温の発炎燃焼の状態までの状態変化を広く監視できる
ようになり、また大気の揺らぎなどに影響されることな
く確実に火災を検知できるようになった。As described above, according to the present invention, infrared rays radiated from a fire are detected, and whether the fire is detected or not is determined based on the detection output of the infrared detector and the temporal change of the ratio of the detection outputs. In the fire detection method, which is characterized by performing the signal processing described above, the detection wavelength band is 2.8 μm to 3.2 μm.
2 μm to 4.6 μm, 4.6 μm to 5.5 μm, 8.0 μm to 10.0 μm
By specifying the 4 wavelength bands of, it becomes possible to widely monitor the state change from the low temperature smoldering state to the high temperature flaming combustion state, and the fire can be detected reliably without being affected by atmospheric fluctuations. I can do it.
【図1】は、本発明による検知器の一例を示す図。FIG. 1 is a diagram showing an example of a detector according to the present invention.
【図2】は、本発明における検出波長帯域を示す図。FIG. 2 is a diagram showing a detection wavelength band in the present invention.
【図3】は、大気およびポリエチレンの代表的な赤外線
分光透過率を示す図。FIG. 3 is a diagram showing typical infrared spectral transmittances of air and polyethylene.
【図4】は、本発明の一実施例の検知部分の構造図。FIG. 4 is a structural diagram of a detection portion according to an embodiment of the present invention.
【図5】は、本実施例における赤外線センサーの一構成
例を示す図。FIG. 5 is a diagram showing a configuration example of an infrared sensor according to the present embodiment.
【図6】は、本実施例における赤外線センサーの一構成
例を示す図。FIG. 6 is a diagram showing a configuration example of an infrared sensor according to the present embodiment.
【図7】は、本実施例による実験結果を示す図。FIG. 7 is a diagram showing an experimental result according to the present embodiment.
1 赤外線透過窓 2 チョッパー 3 赤外線センサー 4 増幅回路、A/D変換、マイクロコンピュータ等
を装備した基板 5 筐体 6 赤外バンドパスフィルター 7 焦電型素子 8 赤外線透過窓1 Infrared transmission window 2 Chopper 3 Infrared sensor 4 Substrate equipped with amplification circuit, A / D converter, microcomputer, etc. 5 Housing 6 Infrared bandpass filter 7 Pyroelectric element 8 Infrared transmission window
Claims (1)
し、該検知した複数の検知出力および前記複数の検知出
力の比の時間的変化に基づいて火災か否かを判断する火
災検知方法において、4波長帯即ち2.8μm〜3.2μm,
4.2μm〜4.6μm,4.6μm〜5.5μm,8.0μm〜10.0
μmを各々検出し、燻焼時からに火災を検知することを
特徴とする火災検知方法。1. A fire detection method for detecting a plurality of infrared rays radiated from a fire, and judging whether or not there is a fire based on a temporal change in a ratio of the detected outputs and the detected outputs. 4 wavelength bands, ie 2.8μm-3.2μm,
4.2μm ~ 4.6μm, 4.6μm ~ 5.5μm, 8.0μm ~ 10.0
A fire detection method characterized by detecting each μm and detecting a fire even after smoldering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348547A JPH05159174A (en) | 1991-12-06 | 1991-12-06 | Fire sensing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3348547A JPH05159174A (en) | 1991-12-06 | 1991-12-06 | Fire sensing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05159174A true JPH05159174A (en) | 1993-06-25 |
Family
ID=18397750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3348547A Pending JPH05159174A (en) | 1991-12-06 | 1991-12-06 | Fire sensing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05159174A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062935A (en) * | 2003-08-11 | 2005-03-10 | Nohmi Bosai Ltd | Fire detector |
JP2006072898A (en) * | 2004-09-06 | 2006-03-16 | Nohmi Bosai Ltd | Flame detector |
JP2006331050A (en) * | 2005-05-26 | 2006-12-07 | Hochiki Corp | Flame detector |
JP2016513785A (en) * | 2013-03-15 | 2016-05-16 | オーワイ ハルトン グループ リミテッド | Water spray fume cleaning with demand-based operation |
CN110500138A (en) * | 2019-09-25 | 2019-11-26 | 中国矿业大学(北京) | A kind of underground coal mine belt fire early-warning system |
JP2021117193A (en) * | 2020-01-29 | 2021-08-10 | 深田工業株式会社 | Optical monitoring device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378899A (en) * | 1989-08-23 | 1991-04-04 | Nippon Mining Co Ltd | Fire detector |
-
1991
- 1991-12-06 JP JP3348547A patent/JPH05159174A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0378899A (en) * | 1989-08-23 | 1991-04-04 | Nippon Mining Co Ltd | Fire detector |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005062935A (en) * | 2003-08-11 | 2005-03-10 | Nohmi Bosai Ltd | Fire detector |
JP2006072898A (en) * | 2004-09-06 | 2006-03-16 | Nohmi Bosai Ltd | Flame detector |
JP2006331050A (en) * | 2005-05-26 | 2006-12-07 | Hochiki Corp | Flame detector |
JP2016513785A (en) * | 2013-03-15 | 2016-05-16 | オーワイ ハルトン グループ リミテッド | Water spray fume cleaning with demand-based operation |
US10195470B2 (en) | 2013-03-15 | 2019-02-05 | Oy Halton Group Ltd. | Water spray fume cleansing with demand-based operation |
CN110500138A (en) * | 2019-09-25 | 2019-11-26 | 中国矿业大学(北京) | A kind of underground coal mine belt fire early-warning system |
CN110500138B (en) * | 2019-09-25 | 2024-05-24 | 中国矿业大学(北京) | Colliery belt conflagration early warning system in pit |
JP2021117193A (en) * | 2020-01-29 | 2021-08-10 | 深田工業株式会社 | Optical monitoring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4738266A (en) | Apnoea monitor | |
US5026992A (en) | Spectral ratioing technique for NDIR gas analysis using a differential temperature source | |
US4296324A (en) | Dual spectrum infrared fire sensor | |
US6107925A (en) | Method for dynamically adjusting criteria for detecting fire through smoke concentration | |
US5612676A (en) | Dual channel multi-spectrum infrared optical fire and explosion detection system | |
US4280058A (en) | Flame detector | |
US4160164A (en) | Flame sensing system | |
US5051590A (en) | Fiber optic flame detection and temperature measurement system having one or more in-line temperature dependent optical filters | |
JPS6360439B2 (en) | ||
US20180059008A1 (en) | System and method of smoke detection using multiple wavelengths of light and multiple sensors | |
US9251683B2 (en) | Flame detector using a light guide for optical sensing | |
US5594421A (en) | Method and detector for detecting a flame | |
JPH05159174A (en) | Fire sensing method | |
JP3938276B2 (en) | Flame detector and flame detection method | |
CA2626753A1 (en) | A method for detecting a fire condition in a monitored region | |
JPH0378899A (en) | Fire detector | |
JP2552149B2 (en) | Fire alarm method and device | |
JP2608512B2 (en) | Fire detection method | |
JP2552148B2 (en) | Fire detection method and device | |
JP2670959B2 (en) | Flame measurement method | |
JPS6132195A (en) | Fire sensor | |
JP7184269B2 (en) | Flame detector | |
US5959299A (en) | Uncooled infrared sensors for the detection and identification of chemical products of combustion | |
JP2673135B2 (en) | Fire detection method and fire detector | |
JP3119926B2 (en) | Fire detector |