JP5848082B2 - Flame detector and flame judgment method - Google Patents

Flame detector and flame judgment method Download PDF

Info

Publication number
JP5848082B2
JP5848082B2 JP2011214081A JP2011214081A JP5848082B2 JP 5848082 B2 JP5848082 B2 JP 5848082B2 JP 2011214081 A JP2011214081 A JP 2011214081A JP 2011214081 A JP2011214081 A JP 2011214081A JP 5848082 B2 JP5848082 B2 JP 5848082B2
Authority
JP
Japan
Prior art keywords
light
signal
flame
predetermined
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011214081A
Other languages
Japanese (ja)
Other versions
JP2013072834A5 (en
JP2013072834A (en
Inventor
嘉夫 中村
嘉夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2011214081A priority Critical patent/JP5848082B2/en
Publication of JP2013072834A publication Critical patent/JP2013072834A/en
Publication of JP2013072834A5 publication Critical patent/JP2013072834A5/ja
Application granted granted Critical
Publication of JP5848082B2 publication Critical patent/JP5848082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire Alarms (AREA)

Description

本発明は、火災に伴う炎を検知して発報する炎感知器及び炎判定方法に関する。
The present invention relates to a flame detector and a flame determination method for detecting and reporting a flame associated with a fire.

従来、有炎燃焼により発生する赤外線放射を検出して、炎の有無を検出する炎感知器にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射による波長帯域を含む複数の波長帯域における放射強度を検出して、それら複数の波長帯域における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。 Conventionally, in a flame detector that detects the presence or absence of flame by detecting infrared radiation generated by flaming combustion, it is generated at the time of flaming combustion in order to distinguish between flames and infrared radiators other than flame. Two-wavelength, three-wavelength, etc. flames that detect radiation intensities in a plurality of wavelength bands including a wavelength band due to resonance emission of CO 2 and detect the presence or absence of flames by a relative ratio of detection values in the plurality of wavelength bands Detection devices and flame detection methods are well known.

従来技術の2波長式や3波長式の炎感知器の検出原理は次のようになる。燃焼炎においては、CO2の共鳴放射により4.5μm付近の波長帯域に放射強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、短波長側の3.8μm付近や長波長側の5.1μm付近に、放射強度が低い波長帯域が存在する。 The detection principle of the conventional two-wavelength or three-wavelength flame detector is as follows. In the combustion flame, there is a peak of radiation intensity in the wavelength band near 4.5 μm due to the resonance radiation of CO 2 , and the characteristic wavelength existing in the vicinity of this peak wavelength is, for example, 3 on the short wavelength side. A wavelength band with low radiation intensity exists in the vicinity of .8 μm and in the vicinity of 5.1 μm on the long wavelength side.

なお、放射源としての炎はCO2の共鳴放射により、4.3μm帯に赤外線の放射強度のピークがあることが知られている。しかしながら、炎感知器は放射源から離れた位置で炎からの放射エネルギーを検知しており、このため炎感知器の設置場所で実際に測定した場合にあっては、4.5μm付近に放射強度のピークが現れることが経験的に示されている。したがって、以下では、特に断らない限り、CO2共鳴放射帯とは、4.5μm帯を指すものとする。 It is known that a flame as a radiation source has a peak of infrared radiation intensity in the 4.3 μm band due to CO 2 resonance radiation. However, the flame detector detects the radiant energy from the flame at a position away from the radiation source. For this reason, when actually measured at the place where the flame detector is installed, the radiation intensity is around 4.5 μm. It has been empirically shown that the peak appears. Therefore, hereinafter, unless otherwise specified, the CO 2 resonance radiation band refers to the 4.5 μm band.

このため2波長式の炎感知器にあっては、4.5μm付近の波長帯域と、例えば3.8μm付近の波長帯域における各々の放射エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光素子により該放射エネルギーを検出して対応する電気信号に変換し、それぞれの検出出力の相対比をとり、所定の閾値と比較することにより炎と判定する。これにより、炎以外の赤外線放射体、例えば、太陽光等の高温放射体や、300°C程度の比較的低温の放射体、人体などの低温放射体等との識別が可能となる。   For this reason, in a two-wavelength flame detector, each radiant energy in a wavelength band near 4.5 μm and a wavelength band near 3.8 μm, for example, is selectively transmitted (passed) by a narrow-band optical wavelength bandpass filter. And detecting the radiant energy by the light receiving element and converting it into a corresponding electric signal, taking the relative ratio of the respective detection outputs, and comparing with a predetermined threshold value to determine a flame. This makes it possible to distinguish from infrared radiators other than flames, for example, high-temperature radiators such as sunlight, relatively low-temperature radiators of about 300 ° C., low-temperature radiators such as human bodies, and the like.

また3波長式の炎感知器にあっては、上述した2波長に加え、CO2の共鳴放射帯である4.5μm帯の長波長側の、例えば、5.1μm付近の波長帯域における放射エネルギーを、上記2波長式と同様の手法で検出し、これらの3波長帯域における検出出力の相対比によって炎の有無を判定しており、このような炎検出方法により、炎と炎以外の赤外線放射体との識別性能をさらに向上させることができる。
In addition, in the case of a three-wavelength flame detector, in addition to the two wavelengths described above, the radiation energy in the long wavelength side of the 4.5 μm band, which is the resonance radiation band of CO 2 , for example, in the wavelength band near 5.1 μm. Is detected by the same method as the above-mentioned two-wavelength type, and the presence or absence of flame is determined by the relative ratio of the detection outputs in these three wavelength bands. With such a flame detection method, infrared radiation other than flame and flame is emitted. The identification performance with the body can be further improved.

特公昭55−33119号公報Japanese Patent Publication No.55-33119 特公昭59−34252号公報Japanese Patent Publication No.59-34252

しかしながら、このような従来の炎感知器を工場等に設置していた場合に、アーク溶接作業により炎感知器が誤作動してしまう問題がある。   However, when such a conventional flame detector is installed in a factory or the like, there is a problem that the flame detector malfunctions due to arc welding work.

これはアーク溶接の溶接光には、有炎燃焼時に発生するCO2の共鳴放射による4.5μm付近の赤外線が含まれていることによる。例えばアーク溶接に使用する溶接棒の被覆には、でんぷんなどの有機物が成分として含まれており、有機物が燃焼することで4.5μm付近の赤外線が放射CO2の共鳴放射により出ているほか、高温となっている溶接部位から黒体放射により出ており、従来の炎感知器では判別が難しく、アーク溶接光により誤作動するという問題がある。 This is because the arc welding light includes infrared rays in the vicinity of 4.5 μm due to resonance emission of CO 2 generated during flammable combustion. For example, the covering of the welding rod used for arc welding contains organic substances such as starch as an ingredient, and in addition to burning the organic substances, infrared rays in the vicinity of 4.5 μm are emitted by resonance radiation of CO 2 , It is emitted from the welded part that is at a high temperature due to black body radiation, and it is difficult to distinguish with a conventional flame detector, and there is a problem that malfunction occurs due to arc welding light.

本発明は、炎とアーク溶接光との識別性を高め、アーク溶接光により誤作動することなく確実に炎の存在を判定して火災発報することを可能とする炎感知器及び炎判定方法を提供することを目的とする。
The present invention relates to a flame detector and a flame determination method capable of improving the distinguishability between a flame and arc welding light, and reliably determining the presence of a flame without causing malfunction by the arc welding light and issuing a fire. The purpose is to provide.

(炎感知器)
本発明は、炎感知器に於いて、
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1検知部と、
所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2検知部と、
第1検知部及び第2検知部からの第1受光信号と第2受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定する炎判定部と、
炎判定部で炎の存在を判定した場合に火災信号を出力する発報回路と、
を備え、炎判定部は、
第2受光信号e2が所定の受光閾値eth未満の場合は、第1受光信号e1と第2受光信号e2との比率K=e1/e2を求め、
第2受光信号e2が所定の受光閾値eth以上の場合は、第1受光信号e1と所定の定数cの比率K=e1/cを求め、
比率Kが所定の判定閾値Kth以上の場合に炎の存在を判定することを特徴とする。
(Flame detector)
The present invention provides a flame detector,
Narrowband wavelength light centered around 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal, and a signal component of a predetermined frequency is converted from the electrical signal. A first detector for selectively extracting and outputting a first light receiving signal;
A second detector that selectively transmits near-infrared light in a predetermined wavelength band, converts the light into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal;
A flame determination unit that identifies the presence of a flame and the radiation source of the arc welding light based on the first light reception signal and the second light reception signal from the first detection unit and the second detection unit;
An alarm circuit that outputs a fire signal when the flame determination unit determines the presence of a flame,
The flame determination unit
When the second light reception signal e2 is less than the predetermined light reception threshold eth, the ratio K = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained.
When the second light reception signal e2 is equal to or greater than a predetermined light reception threshold eth, a ratio K = e1 / c between the first light reception signal e1 and a predetermined constant c is obtained.
The presence of flame is determined when the ratio K is equal to or greater than a predetermined determination threshold value Kth .

第1検知部は、The first detector is
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過させる第1光学フィルタと、A first optical filter that selectively transmits light having a narrow band wavelength centered around 4.5 μm, which is emitted by CO 2 resonance generated during flammable combustion;
第1光学フィルタを透過した光を受光し電気信号に変換して出力する第1受光素子と、A first light receiving element that receives light transmitted through the first optical filter, converts the light into an electrical signal, and outputs the electrical signal;
第1受光素子の出力から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1周波数抽出部と、A first frequency extracting unit that selectively extracts a signal component of a predetermined frequency from the output of the first light receiving element and outputs a first light receiving signal;
を備え、With
第2検知部は、The second detector
所定の波長帯域の近赤外線光を透過させる第2光学フィルタと、A second optical filter that transmits near-infrared light in a predetermined wavelength band;
第2光学フィルタを透過した光を受光し電気信号に変換して出力する第2受光素子と、A second light receiving element that receives light transmitted through the second optical filter, converts the light into an electrical signal, and outputs the electrical signal;
第2の受光素子の出力から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2周波数抽出部と、A second frequency extracting section for selectively extracting a signal component of a predetermined frequency from the output of the second light receiving element and outputting a second light receiving signal;
を備える。Is provided.

第2光学フィルタは、0.7μm乃至1.0μm付近(700nm〜1000nm付近)の波長帯域の近赤外線光を透過させる。The second optical filter transmits near-infrared light having a wavelength band in the vicinity of 0.7 μm to 1.0 μm (near 700 nm to 1000 nm).

第2光学フィルタと第2受光素子は、近赤外帯域の光を透過させる透過窓を備え、近赤外帯域の所定波長にピーク波長を持つフォトトランジスタまたはフォトダイオードである。The second optical filter and the second light receiving element are a phototransistor or a photodiode that includes a transmission window that transmits light in the near infrared band and has a peak wavelength at a predetermined wavelength in the near infrared band.

本発明は、炎感知器に於いて
有炎燃焼時に発生するCO 2 共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1検知部と、
所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2検知部と、
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする波長帯域に隣接した所定波長を中心波長とする狭帯域波長の光のみを選択透過させて電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出する第3検知部と、
第1検知部、第2検知部及び第3検知部からの第1受光信号、第2受光信号及び第3受光信号に基づいて炎とアーク溶接光の放射線源とを識別判定する炎判定部と、
炎判定部で炎の存在を判定した場合に火災信号を出力する発報回路と、
備え、炎判定部は、
第2受光信号e2が所定の受光閾値eth未満の場合は、第1受光信号e1と第2受光信号e2との第1比率K1=e1/e2を求めると共に第1受光信号e1と第3受光信号e3との第2比率K2=e1/e3を求め、
第2受光信号e2が所定の受光閾値eth以上の場合は、第1受光信号e1と所定の定数cとの第1比率K1=e1/cを求めると共に第1受光信号e1と第3受光信号e3との第2比率K2=e1/e3を求め、
第1比率K1が所定の第1判定閾値Kth1以上で且つ第2比率K2が所定の第2判定閾値Kth2以上の場合に炎の存在を判定することを特徴とする
The present invention, in the flame detector,
Narrowband wavelength light centered around 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal, and a signal component of a predetermined frequency is converted from the electrical signal. A first detector for selectively extracting and outputting a first light receiving signal;
A second detector that selectively transmits near-infrared light in a predetermined wavelength band, converts the light into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal;
Only light of a narrow band wavelength centered on a predetermined wavelength adjacent to a wavelength band centered on 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal. A third detector for selectively extracting a signal component of a predetermined frequency from the electrical signal ;
A flame determination unit for discriminating between a flame and a radiation source of arc welding light based on the first light reception signal, the second light reception signal, and the third light reception signal from the first detection unit, the second detection unit, and the third detection unit; ,
An alarm circuit that outputs a fire signal when the flame determination unit determines the presence of a flame,
The flame determination unit
When the second light reception signal e2 is less than the predetermined light reception threshold eth, a first ratio K1 = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained and the first light reception signal e1 and the third light reception signal are obtained. A second ratio K2 = e1 / e3 with e3 is obtained,
When the second light reception signal e2 is equal to or greater than the predetermined light reception threshold eth, a first ratio K1 = e1 / c between the first light reception signal e1 and the predetermined constant c is obtained and the first light reception signal e1 and the third light reception signal e3. The second ratio K2 = e1 / e3 with
The presence of flame is determined when the first ratio K1 is equal to or greater than a predetermined first determination threshold value Kth1 and the second ratio K2 is equal to or greater than a predetermined second determination threshold value Kth2 .

第3検知部は、
4.5μm付近を中心波長とする波長帯域に隣接した所定波長を中心波長とする狭帯域波長の光を選択透過させる第3光学フィルタと、
第3光学フィルタを透過した光を受光し電気信号に変換して出力する第3受光素子と、
第3受光素子の出力から所定の周波数の信号成分を選択抽出して第3受光信号を出力する第3周波数抽出部と、
を備える。
The third detector
A third optical filter that selectively transmits light having a narrowband wavelength centered on a predetermined wavelength adjacent to a wavelength band centered around 4.5 μm;
A third light receiving element that receives the light transmitted through the third optical filter, converts the light into an electrical signal, and outputs the electrical signal;
A third frequency extracting section for selectively extracting a signal component of a predetermined frequency from the output of the third light receiving element and outputting a third light receiving signal;
Is provided.

第3光学フィルタは、第1光学フィルタの4.5μm付近の透過波長帯域に隣接した3.8μm付近または5.1μmを付近中心波長とする狭帯域波長の光のみを選択透過させる。   The third optical filter selectively transmits only light having a narrow band wavelength having a central wavelength in the vicinity of 3.8 μm or 5.1 μm adjacent to the transmission wavelength band in the vicinity of 4.5 μm of the first optical filter.

炎判定部は、第1信号乃至第3受光信号を積分した積分信号に基づいて炎の存在を判定する。   The flame determination unit determines the presence of a flame based on an integrated signal obtained by integrating the first signal to the third light reception signal.

(炎判定方法)
本発明は、炎判定方法に於いて、
第1検知部により、有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力し、
第2検知部により、所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力し、
炎判定部により、第1検知部及び第2検知部からの第1受光信号と第2受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定し、炎判定部は、
第2受光信号e2が所定の受光閾値eth未満の場合は、第1受光信号e1と第2受光信号e2との比率K=e1/e2を求め、
第2受光信号e2が所定の受光閾値eth以上の場合は、第1受光信号e1と所定の定数cの比率K=e1/cを求め、
比率Kが所定の判定閾値Kth以上の場合に炎の存在を判定することを特徴とする炎判定方法。

(Flame judgment method)
The present invention provides a flame determination method,
The first detector selectively transmits light having a narrow band wavelength centered around 4.5 μm, which is radiated by CO 2 resonance generated during flammable combustion, and converts it into an electrical signal. The first light receiving signal is output by selectively extracting the signal component of the frequency of
The second detector selectively transmits near-infrared light in a predetermined wavelength band and converts it into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal.
The flame determination unit discriminates and determines the presence of the flame and the radiation source of the arc welding light based on the first light reception signal and the second light reception signal from the first detection unit and the second detection unit,
When the second light reception signal e2 is less than the predetermined light reception threshold eth, the ratio K = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained.
When the second light reception signal e2 is equal to or greater than a predetermined light reception threshold eth, a ratio K = e1 / c between the first light reception signal e1 and a predetermined constant c is obtained.
A flame determination method characterized by determining the presence of a flame when the ratio K is equal to or greater than a predetermined determination threshold value Kth .

本発明による炎判定方法の他の特徴は、前述した炎感知器の場合と基本的に同じになる。
Other features of the flame determination method according to the present invention are basically the same as those of the flame detector described above.

本発明の炎感知器によれば、有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光による第1受光信号を検出すると共に、アーク溶接光により放射される、0.7〜1.0μm付近の波長帯域の近赤外線の光による第2受光信号を検出し(2波長方式)、第1受光信号と第2受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定したため、アーク溶接作業を行う工場等に設置した場合に、アーク溶接光では誤作動せず、また日光、白熱電球、ハロゲンランプ等でも誤作動せず、火災による炎の存在を確実に検知して報知することができる。 According to the flame detector of the present invention, the first received light signal by the light of the narrow band wavelength centered around 4.5 μm, which is radiated by CO 2 resonance generated at the time of flammable combustion, is detected, and arc welding is performed. A second received light signal is detected by near infrared light in a wavelength band near 0.7 to 1.0 μm radiated by light (two-wavelength method), and the flame is detected based on the first received light signal and the second received light signal. Since the existence and the radiation source of the arc welding light are discriminated and determined, when installed in a factory where arc welding work is performed, the arc welding light does not malfunction, and the sunlight, incandescent bulb, halogen lamp, etc. do not malfunction. It is possible to reliably detect and notify the presence of a flame due to a fire.

また、アーク溶接を行う工場等に本発明による炎感知器を設置することで、工場での火災感知を早めることができる。従来、アーク溶接作業を行う工場では、炎感知器が使用できないために、熱感知器を使用している。なお、煙感知器は通常の状態で工場内に煙が発生するので使用できない。工場で熱感知器を使用する場合、熱感知器は高天井に設置されており、火災に伴う熱気流が高天井に届いて熱感知器で火災を検知するまでには時間がかかり、そのあいだに火災が拡大してしまう可能性が高い。しかしながら、アーク溶接光に対し誤作動することのない本発明の炎感知器を使用することで、アーク溶接を行う工場等の高天井に設置していても火災による炎の存在を早期に検知することができ、火災が大きくなってしまう前に火災を報知することができる。   In addition, by installing the flame detector according to the present invention in a factory where arc welding is performed, fire detection in the factory can be accelerated. Conventionally, in a factory where arc welding work is performed, a flame detector cannot be used, so a heat detector is used. The smoke detector cannot be used because smoke is generated in the factory under normal conditions. When using a heat sensor in a factory, the heat sensor is installed on the high ceiling, and it takes time until the thermal airflow accompanying the fire reaches the high ceiling and the fire is detected by the heat sensor. There is a high possibility that the fire will spread. However, by using the flame detector of the present invention that does not malfunction with respect to arc welding light, the presence of flame due to fire can be detected at an early stage even if installed on a high ceiling in a factory or the like that performs arc welding. It is possible to notify the fire before it becomes large.

また、有炎燃焼によるCO2共鳴で放射される、4.5μm付近の光による第1受光信号と、アーク溶接光による、0.7〜1.0μm付近の近赤外線光による第2受光信号をとの比率を求めることで、炎の場合に求めた比率を、アーク溶接光の場合に求めた比率に対し、充分に大きな値とすることができ、両者の差を大きくすることで、炎の存在とアーク溶接光の放射線源とを識別判定をより正確にできる。 In addition, a first light reception signal by light near 4.5 μm radiated by CO 2 resonance due to flammable combustion and a second light reception signal by near infrared light near 0.7 to 1.0 μm by arc welding light. The ratio obtained in the case of flame can be made sufficiently large with respect to the ratio obtained in the case of arc welding light, and by increasing the difference between the two, It is possible to more accurately discriminate the presence and the radiation source of the arc welding light.

また、アーク溶接光(外乱光)や照明、太陽光による、0.7〜1.0μm付近の近赤外線光の第2受光信号が大きくなりすぎると、有炎燃焼によるCO2共鳴で放射される4.5μm付近の光による第1受光信号との比率が低下して感度が極端に低下する。そこで本発明にあっては、第2受光信号が所定レベルを超えた場合、第2受光信号の代りに所定の定数を使用して第1受光信号との比率を求めることで、外乱光となるアーク溶接光による感度低下を抑制することができる。 In addition, if the second received light signal of near infrared light in the vicinity of 0.7 to 1.0 μm due to arc welding light (disturbance light), illumination, or sunlight becomes too large, it is emitted by CO 2 resonance due to flammable combustion. The ratio with the first received light signal due to light in the vicinity of 4.5 μm is lowered, and the sensitivity is extremely lowered. Therefore, in the present invention, when the second light receiving signal exceeds a predetermined level, disturbance light is obtained by obtaining a ratio with the first light receiving signal by using a predetermined constant instead of the second light receiving signal. Sensitivity deterioration due to arc welding light can be suppressed.

また、CO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光による第1受光信号、アーク溶接光に固有な0.7〜1.0μm付近となる近赤外線の光による第2受光信号の検出に加え、CO2共鳴による4.5μm付近に隣接した3.8μmまたは5.1μmを中心波長とする狭帯域波長の光による第3受光信号を検出し(3波長方式)、第1受光信号、第2受光信号及び第3受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定することで、工場などに炎感知器を設置した場合にアーク溶接作業を行っても誤作動せず、また日光、白熱電球、ハロゲンランプ等でも誤作動せず、火災による炎の存在を更に確実に検知して報知することができる。
Further, the first received light signal by the light having a narrow band wavelength centered around 4.5 μm, which is emitted by CO 2 resonance, and the near infrared light having a wavelength of 0.7 to 1.0 μm inherent to the arc welding light. In addition to the detection of the second received light signal by the CO 2 resonance, the third received light signal by the light having a narrow band wavelength centered at 3.8 μm or 5.1 μm adjacent to the vicinity of 4.5 μm by the CO 2 resonance is detected (three-wavelength method). ), Arc welding when a flame detector is installed in a factory or the like by discriminating and determining the presence of the flame and the radiation source of the arc welding light based on the first light receiving signal, the second light receiving signal and the third light receiving signal Even if the work is performed, it does not malfunction, and it does not malfunction even in sunlight, incandescent bulbs, halogen lamps, etc., and the presence of a flame due to a fire can be detected and notified more reliably.

2波長方式となる本発明による炎感知器の実施形態を示したブロック図The block diagram which showed embodiment of the flame detector by this invention used as a 2 wavelength system 図1の炎判定部の機能構成を示したブロック図The block diagram which showed the function structure of the flame determination part of FIG. 図1の炎判定部をプロセッサのプログラム制御で実現する場合の炎判定処理を示したフローチャートThe flowchart which showed the flame determination process in the case of implement | achieving the flame determination part of FIG. 1 by the program control of a processor 炎とアーク溶接光の分光特性を示した放射スペクトル特性図Radiation spectrum diagram showing spectral characteristics of flame and arc welding light アーク溶接光に対する4.5μm積分値と近赤外積分値から算出した比率Kの時間変化を示したタイムチャートTime chart showing time change of ratio K calculated from 4.5 μm integral value and near infrared integral value for arc welding light ヘプタン炎に対する4.5μm積分値と近赤外積分値から算出した比率Kの時間変化を示したタイムチャートTime chart showing time change of ratio K calculated from 4.5μm integral value and near infrared integral value for heptane flame 3波長方式となる本発明による炎感知器の実施形態を示したブロック図The block diagram which showed embodiment of the flame detector by this invention used as a 3 wavelength system 図7の炎判定部の機能構成を示したブロック図The block diagram which showed the function structure of the flame determination part of FIG. 図7の炎判定部をプロセッサのプログラム制御で実現する場合の炎判定処理を示したフローチャートThe flowchart which showed the flame determination process in the case of implement | achieving the flame determination part of FIG. 7 by the program control of a processor

図1は本発明による炎感知器の実施形態を示したブロック図であり、2波長方式を例にとっている。図1において、炎感知器10は、第1検知部11aによりCO2の共鳴放射(4.5μm波長帯域の赤外線を出す元は、炎とは限らない)による波長帯域を検知し、第2検知部11bによりアーク溶接光による近赤外線の波長帯域における放射線強度を検知し、炎判定部26で第1検知部11aと第2検知部11bで検知した2つの波長帯域における検知値の相対比により炎の存在を判定する2波長式による炎検知を行う。 FIG. 1 is a block diagram showing an embodiment of a flame detector according to the present invention, taking a two-wavelength system as an example. In FIG. 1, the flame detector 10 detects the wavelength band by the resonance radiation of CO 2 (the source that emits infrared rays in the 4.5 μm wavelength band is not necessarily flame) by the first detection unit 11a, and performs the second detection. The radiation intensity in the near-infrared wavelength band by the arc welding light is detected by the part 11b, and the flame is determined by the relative ratio of the detection values in the two wavelength bands detected by the flame detection part 26 by the first detection part 11a and the second detection part 11b. The flame detection is performed by the two-wavelength method for determining the presence of the.

第1検知部11aには、CO2の共鳴放射により4.5μm付近の波長帯域を有する赤外線エネルギーを透過して電気信号に変換して出力する第1光学フィルタ14aと焦電型の第1受光素子16aを備えたセンサモジュール12aと、センサモジュール12aから出力される信号から炎のゆらぎ周波数と知られた所定の周波数帯域、例えば2Hzを中心とした周波数帯域の信号成分のみを通過させる前置フィルタを用いた第1周波数抽出部18aと、第1周波数抽出部18aを通過した信号成分を初段増幅するプリアンプ20aと、プリアンプ20aからの出力を、炎判定処理に適した信号レベルに増幅するメインアンプ22aと、メインアンプ22aから出力される増幅出力(アナログ信号)をデジタル信号となる4.5μm受光信号e1に変換するA/D変換器24aとを設けている。ここで、4.5μm受光信号は特許請求範囲の第1受光信号に対応する。 The first detector 11a includes a first optical filter 14a that transmits infrared energy having a wavelength band of about 4.5 μm through resonance radiation of CO 2 and converts the infrared energy into an electrical signal, and outputs the first optical filter 14a. A sensor module 12a having an element 16a, and a prefilter that passes only signal components in a predetermined frequency band known as a flame fluctuation frequency, for example, a frequency band centered on 2 Hz, from a signal output from the sensor module 12a A first frequency extraction unit 18a using a preamplifier, a preamplifier 20a that amplifies the signal component that has passed through the first frequency extraction unit 18a, and a main amplifier that amplifies the output from the preamplifier 20a to a signal level suitable for flame determination processing The 4.5 μm light reception signal e1 that becomes a digital signal from the amplified output (analog signal) output from the main amplifier 22a and 22a. It is provided an A / D converter 24a for converting. Here, the 4.5 μm light reception signal corresponds to the first light reception signal in the claims.

また第2検知部11bには、700〜1000nm(0.7〜1.0μm)付近となる近接赤外線の波長帯域を有する近赤外線エネルギーを透過して電気信号に変換して出力する第2光学フィルタ14bとフォトトランジスタまたはフォトダイオードを用いた第2受光素子16bを備えたセンサモジュール12bと、センサモジュール12bから出力される信号から炎のゆらぎ周波数と知られた所定の周波数帯域、例えば2Hzを中心とした周波数帯域の信号成分のみを通過させる前置フィルタを用いた第2周波数抽出部18bと、第2周波数抽出部18bを通過した信号成分を初段増幅するプリアンプ20bと、プリアンプ20bからの出力を、炎判定処理に適した信号レベルに増幅するメインアンプ22bと、メインアンプ22bから出力される増幅出力(アナログ信号)をデジタル信号となる近赤外受光信号e2に変換するA/D変換器24bとを設けている。   In addition, the second detection unit 11b transmits a near-infrared energy having a near-infrared wavelength band in the vicinity of 700 to 1000 nm (0.7 to 1.0 μm), converts it into an electrical signal, and outputs the electrical signal. 14b and a sensor module 12b having a second light receiving element 16b using a phototransistor or a photodiode, and a predetermined frequency band known as a flame fluctuation frequency from the signal output from the sensor module 12b, for example, centering on 2 Hz. The second frequency extraction unit 18b using a pre-filter that passes only the signal component of the frequency band that has been transmitted, the preamplifier 20b that amplifies the signal component that has passed through the second frequency extraction unit 18b, and the output from the preamplifier 20b, A main amplifier 22b that amplifies to a signal level suitable for flame determination processing, and a main amplifier 22b Amplified output is provided to an A / D converter 24b for converting the (analog signal) to the near-infrared light reception signal e2 as a digital signal.

なお、一般に近赤外線の波長は700〜2500nm付近(0.7〜2.5μm付近)であるが、第2受光素子16bとして使用するフォトトランジスタやフォトダイオードのピーク感度波長に基づき本実施形態にあっては、700〜1000nm付近の近赤外線波長帯域の放射強度を検知するようにしている。また、近赤外受光信号は特許請求範囲の第2受光信号に対応する。   In general, the wavelength of near-infrared light is around 700 to 2500 nm (near 0.7 to 2.5 μm), but this embodiment is based on the peak sensitivity wavelength of the phototransistor or photodiode used as the second light receiving element 16b. Thus, the radiation intensity in the near-infrared wavelength band near 700 to 1000 nm is detected. The near-infrared light reception signal corresponds to the second light reception signal in the claims.

また、第2受光素子16bとしてフォトトランジスタを使用する場合、フォトトランジスタのケースに設けた透過窓(フィルタ)が、近接赤外線の700〜1000nm付近(0.7〜1.0μm付近)の波長帯域を有する近赤外線エネルギーを透過して電気信号に変換して出力する第2光学フィルタ14bとしてそのまま機能し、第2受光素子としてのフォトトランジスタは、ピーク感度波長として例えば800〜900nm付近にある市販品をそのまま使用できる。
When a phototransistor is used as the second light receiving element 16b, the transmission window (filter) provided in the phototransistor case has a wavelength band in the vicinity of 700 to 1000 nm (near 0.7 to 1.0 μm) of near infrared light. It functions as it is as the second optical filter 14b that transmits the near-infrared energy it has, converts it into an electrical signal and outputs it, and the phototransistor as the second light receiving element is a commercially available product with a peak sensitivity wavelength of, for example, around 800 to 900 nm. Can be used as is.

また、第2受光素子16bとして使用するフォトトランジスタとしては透過窓にフィルタを設けないものも使用できる。この場合には、透過窓の特性ではなく、半導体素子の分光特性として、700〜1000nm付近に感度を持つものを使用する。   Further, as the phototransistor used as the second light receiving element 16b, a phototransistor without a filter in the transmission window can be used. In this case, not a transmission window characteristic but a spectral characteristic of a semiconductor element having a sensitivity near 700 to 1000 nm is used.

この点は第2受光素子16bとしてフォトダイオードを使用した場合も同様であり、例えばピーク感度波長を1050nm付近にをもつフォトPINダイオードなどが使用できる。   This is the same when a photodiode is used as the second light receiving element 16b. For example, a photo PIN diode having a peak sensitivity wavelength near 1050 nm can be used.

A/D変換器24a,24bからの4.5μm受光信号e1と近赤外受光信号e2は炎判定部26に入力される。炎判定部26は、4.5μm受光信号e1と近赤外受光信号e2に基づいて炎の存在とアーク溶接光の放射線源との識別判定を行う。炎判定部26で炎の存在が判定された場合、発報回路28に炎判定信号が出力され、スイッチング素子等をオンすることで、感知器端子30a,30bに接続している受信機からの感知器回線L,C間に発報電流を流し、受信機に火災発報信号を送出する。   The 4.5 μm light reception signal e 1 and the near infrared light reception signal e 2 from the A / D converters 24 a and 24 b are input to the flame determination unit 26. The flame determination unit 26 performs discrimination determination between the presence of the flame and the radiation source of the arc welding light based on the 4.5 μm light reception signal e1 and the near infrared light reception signal e2. When the presence of the flame is determined by the flame determination unit 26, a flame determination signal is output to the alarm circuit 28, and the switching elements and the like are turned on, so that the receivers connected to the sensor terminals 30a and 30b An alarm current is passed between the sensor lines L and C, and a fire alarm signal is sent to the receiver.

炎判定部26は4.5μm受光信号e1と近赤外受光信号e2の比率Kとして
K=e1/e2
を求め、当該比率Kが所定の閾値Kth以上の場合に炎の存在を判定することを基本とする。
The flame determination unit 26 sets K = e1 / e2 as the ratio K between the 4.5 μm light reception signal e1 and the near-infrared light reception signal e2.
And the presence of flame is determined when the ratio K is equal to or greater than a predetermined threshold value Kth.

このような基本的な炎判定に対し、本実施形態の炎判定部26にあっては、近赤外受光信号e2が極端に大きくなった場合の外乱光となるアーク溶接光による感度低下を抑制するため、近赤外受光信号e2が所定レベルを超えた場合、近赤外受光信号e2の代りに所定の定数cを使用して4.5μm受光信号との比率Kを求めることでアーク溶接光による感度低下を抑制することができる。   In contrast to such basic flame determination, the flame determination unit 26 of the present embodiment suppresses a decrease in sensitivity due to arc welding light that becomes disturbance light when the near-infrared light reception signal e2 becomes extremely large. Therefore, when the near-infrared light reception signal e2 exceeds a predetermined level, the arc welding light is obtained by using the predetermined constant c instead of the near-infrared light reception signal e2 to obtain the ratio K to the 4.5 μm light reception signal. It is possible to suppress a decrease in sensitivity due to.

即ち、炎判定部26は、近赤外受光信号e2が所定の受光閾値eth未満の場合は、4.5μm受光信号e1と近赤外受光信号e2との比率Kとして
K=e1/e2
を求め、一方、近赤外受光信号e2が所定の受光閾値eth以上の場合は、4.5μm受光信号e1と、所定の定数cの比率Kとして
K=e1/c
を求め、比率が所定の判定閾値Kth以上の場合に炎の存在を判定する。
That is, when the near-infrared light reception signal e2 is less than the predetermined light reception threshold eth, the flame determination unit 26 sets K = e1 / e2 as the ratio K between the 4.5 μm light reception signal e1 and the near-infrared light reception signal e2.
On the other hand, if the near-infrared light reception signal e2 is equal to or greater than the predetermined light reception threshold eth, the ratio K between the 4.5 μm light reception signal e1 and the predetermined constant c is K = e1 / c
And the presence of flame is determined when the ratio is equal to or greater than a predetermined determination threshold value Kth.

図2は図1に設けた炎判定部の機能構成の一例を示したブロック図である。図2において、炎判定部26には積分器32a、32bが設けられ、図1のA/D変換器24a,24bからの4.5μm受光信号e1と近赤外受光信号e2を所定時間単位で積分し、4.5μm積分信号E1と近赤外積分信号E2を出力する。この積分により受光信号のノイズなどによる急激な変動を抑制する。   FIG. 2 is a block diagram illustrating an example of a functional configuration of the flame determination unit provided in FIG. In FIG. 2, the flame determination unit 26 is provided with integrators 32a and 32b. The 4.5 μm light reception signal e1 and the near infrared light reception signal e2 from the A / D converters 24a and 24b in FIG. Integration is performed, and a 4.5 μm integration signal E1 and a near-infrared integration signal E2 are output. This integration suppresses a rapid fluctuation caused by noise of the received light signal.

積分器32a、32bによる積分動作は、A/D変換器24a,24bのサンプリングにより一定の単位時間に得られる受光信号(デジタル信号)の和を求める。またA/D変換器24a,24bのサンプリング毎に、現時点から一定の単位時間前までに得られた受光信号(デジタル信号)の和となる移動加算による和を求めても良い。   In the integrating operation by the integrators 32a and 32b, the sum of received light signals (digital signals) obtained in a fixed unit time by sampling of the A / D converters 24a and 24b is obtained. In addition, for each sampling of the A / D converters 24a and 24b, a sum by moving addition that is a sum of light reception signals (digital signals) obtained from a current time to a certain unit time before may be obtained.

積分器32aからの4.5μm積分信号E1は比率演算器42に与えられ、また積分器32aからの近赤外積分信号E2は切替器40の切替端子aを介して比率演算器42に与えられる。切替器40の他方の切替端子bには所定の定数cを出力する定数設定器34を接続している。   The 4.5 μm integrated signal E1 from the integrator 32a is supplied to the ratio calculator 42, and the near-infrared integrated signal E2 from the integrator 32a is supplied to the ratio calculator 42 via the switching terminal a of the switch 40. . A constant setting device 34 that outputs a predetermined constant c is connected to the other switching terminal b of the switching device 40.

切替器40は比較器36により切替制御される。比較器36は積分器32bからの近赤外積分信号E2と基準電圧源38で設定した所定の受光閾値Ethとを比較しており、近赤外積分信号E2が受光閾値Eth未満の場合のLレベル出力で、図示のように、切替器40を切替端子aに切替え、積分器32bからの近赤外積分信号E2を比率演算器42に与え、比率演算器42は
K=E1/E2
として比率Kを演算する。尚、この比率Kは4.5μm受光信号e1と近赤外受光信号e2に基づく
K=e1/e2
と実質的に同じ値となる。
The switch 40 is controlled to be switched by the comparator 36. The comparator 36 compares the near-infrared integrated signal E2 from the integrator 32b with the predetermined light receiving threshold Eth set by the reference voltage source 38, and the L when the near-infrared integrated signal E2 is less than the light receiving threshold Eth. At the level output, as shown in the figure, the switch 40 is switched to the switch terminal a, the near-infrared integrated signal E2 from the integrator 32b is given to the ratio calculator 42, and the ratio calculator 42 is K = E1 / E2.
The ratio K is calculated as follows. The ratio K is K = e1 / e2 based on the 4.5 μm light reception signal e1 and the near infrared light reception signal e2.
And substantially the same value.

一方、比較器36は近赤外積分信号E2が受光閾値Eth以上となった場合にHレベル出力を生じ、切替器40を切替端子b側に切替え、定数設定器34からの定数cを比率演算器42に与え、率演算器42は
K=E1/c
として比率Kを演算する。尚、この比率Kは4.5μm受光信号e1と定数cに基づく
K=e1/c
と実質的に同じ値となる。
On the other hand, the comparator 36 generates an H level output when the near-infrared integrated signal E2 becomes equal to or greater than the light reception threshold Eth, switches the switch 40 to the switch terminal b side, and calculates the ratio c of the constant c from the constant setter 34. The rate calculator 42 is K = E1 / c.
The ratio K is calculated as follows. This ratio K is K = e1 / c based on the 4.5 μm light reception signal e1 and the constant c.
And substantially the same value.

比率演算器42で算出された比率Kは比較器44に与えられ、基準電圧源45により設定した所定の判定閾値Kthと比較され、比率Kが判定閾値Kth以上の場合、比較器44は炎判定信号としてHレベル出力を生ずる。   The ratio K calculated by the ratio calculator 42 is given to the comparator 44 and compared with a predetermined determination threshold value Kth set by the reference voltage source 45. When the ratio K is equal to or greater than the determination threshold value Kth, the comparator 44 determines the flame. An H level output is generated as a signal.

図3は図1の炎判定部の機能をプロセッサによるプログラムの実行により実現する場合の炎判定処理を示したフローチャートである。図3において、炎判定処理は、ステップS1でA/D変換器24aからの4.5μm受光信号e1を積分した4.5μm積分値E1を読込み、続いてステップS2でA/D変換器24bからの近赤外受光信号e2を積分した近赤外積分値E2を読込む。   FIG. 3 is a flowchart showing a flame determination process when the function of the flame determination unit in FIG. 1 is realized by executing a program by a processor. In FIG. 3, the flame determination process reads a 4.5 μm integrated value E1 obtained by integrating the 4.5 μm light reception signal e1 from the A / D converter 24a in step S1, and then in step S2 from the A / D converter 24b. The near-infrared integrated value E2 obtained by integrating the near-infrared light receiving signal e2 is read.

続いてステップS3で近赤外積分値E2が所定の受光閾値Eth未満か否か判別し、受光閾値Eth未満を検知した場合はステップS4に進み、比率Kを
K=E1/E2
として計算する。
Subsequently, in step S3, it is determined whether or not the near-infrared integrated value E2 is less than a predetermined light reception threshold Eth. If it is detected that the light reception threshold Eth is less than, the process proceeds to step S4, and the ratio K is set to K = E1 / E2
Calculate as

一方、ステップS3で近赤外積分値E2が所定の受光閾値Eth以上となることを検知した場合はステップS5に進み、近赤外積分値E2を定数cに変更し、比率Kを
K=E1/c
として計算する。
On the other hand, if it is detected in step S3 that the near-infrared integrated value E2 is equal to or greater than the predetermined light receiving threshold Eth, the process proceeds to step S5, the near-infrared integrated value E2 is changed to a constant c, and the ratio K is set to K = E1. / C
Calculate as

続いてステップS7で比率Kが所定の判定閾値Kth以上か否か判定し、判定閾値Kth以上であることを判定した場合はステップS8に進み、炎の存在を判定すると共に炎判定信号を発報回路28に出力して動作させることで、火災発報信号を受信機に出力させる。   Subsequently, in step S7, it is determined whether or not the ratio K is equal to or greater than a predetermined determination threshold value Kth. If it is determined that the ratio K is equal to or greater than the determination threshold value Kth, the process proceeds to step S8 to determine the presence of flame and issue a flame determination signal. By outputting to the circuit 28 and operating it, a fire alarm signal is output to the receiver.

次に本発明における炎とアーク溶接光の識別判定の原理を説明する。図4は炎とアーク溶接光の分光特性を示した放射スペクトル特性図であり、炎スペクトル46とアーク溶接光スペクトル48につき、有炎燃焼時に発生するCO2の共鳴放射共鳴放射による4.5μm付近の放射強度を略同じ状態として測定した結果を示している。 Next, the principle of discrimination determination between the flame and the arc welding light in the present invention will be described. FIG. 4 is a radiation spectrum characteristic diagram showing the spectral characteristics of the flame and arc welding light. The flame spectrum 46 and the arc welding light spectrum 48 are around 4.5 μm due to the resonance radiation resonance emission of CO 2 generated during flame combustion. The result of having measured the radiant intensity of the substantially the same state is shown.

図4において、炎スペクトル46はCO2の共鳴放射により4.5μm付近に放射強度のピーク値をもっている。アーク溶接光スペクトル48は4.5μm付近に大きな放射強度をもち、700〜1000nm付近(0.7〜1.0μm付近)の波長帯域となる近赤外線波長帯域およびそれより短波長側の帯域に放射強度が分布している。 In FIG. 4, the flame spectrum 46 has a peak value of the radiation intensity in the vicinity of 4.5 μm due to the resonance radiation of CO 2 . The arc welding light spectrum 48 has a large radiation intensity in the vicinity of 4.5 μm, and radiates in the near-infrared wavelength band, which is a wavelength band in the vicinity of 700 to 1000 nm (near 0.7 to 1.0 μm), and a band on the shorter wavelength side. The intensity is distributed.

ここで図1の実施形態に設けたセンサモジュール12bにあっては、第2光学フィルタ14bとフォトトランジスタまたはフォトダイオードを用いた第2受光素子16bにより、図4における700〜1000nm付近(0.7〜1.0μm付近)となる近赤外線波長帯域50に放射強度をもつ近赤外線エネルギーを検知している。
Here, in the sensor module 12b provided in the embodiment of FIG. 1, the second optical filter 14b and the second light receiving element 16b using a phototransistor or a photodiode are used in the vicinity of 700 to 1000 nm in FIG. Near-infrared energy having a radiant intensity in the near-infrared wavelength band 50 of about 1.0 μm is detected.

アーク溶接光スペクトラム48が近赤外波長帯域50に分布する理由は、アーク溶接に使用する溶接棒の被覆には例えば長石が含まれており、長石に含まれるカリウムが燃焼する場合に、760nm付近にピークをもつ近赤外線光が特徴的に放射されることによると考えられる。またアルゴンガスを保護用ガスとして用いるTIG溶接(タングステン・イナート・ガス溶接の略)にあっては、アーク溶接に伴うアルゴンガスのプラズマから811nm付近の近赤外線が特徴的に放射されることによると考えられる。このようなアーク溶接に使用する溶接棒の被覆成分の燃焼に起因し、アーク溶接光スペクトル48は、CO2共鳴放射による4.5μm付近の放射強度のピーク値を持つと共に、センサモジュール12bの検知波長帯域となる700〜1000nm付近(0.7〜1.0μm付近)の近赤外線波長帯域50に放射強度が分布している。
The reason why the arc welding light spectrum 48 is distributed in the near-infrared wavelength band 50 is that, for example, feldspar is included in the coating of the welding rod used for arc welding, and the potassium contained in the feldspar burns around 760 nm. This is considered to be due to the characteristic emission of near-infrared light having a peak at. According to TIG welding (abbreviation of tungsten inert gas welding) using argon gas as a protective gas, near infrared light near 811 nm is characteristically emitted from the argon gas plasma accompanying arc welding. Conceivable. Due to the combustion of the covering component of the welding rod used for such arc welding, the arc welding light spectrum 48 has a peak value of the radiation intensity in the vicinity of 4.5 μm due to the resonance radiation of CO 2 and the sensor module 12b. The radiant intensity is distributed in the near-infrared wavelength band 50 in the vicinity of 700 to 1000 nm (near 0.7 to 1.0 μm) as the detection wavelength band.

この炎スペクトル46とアーク溶接光スペクトル48の分光特性から明らかなように、従来の例えば2波長方式において、CO2の共鳴放射帯である4.5μm付近を中心波長とした狭波長帯域と、その長波長側の例えば、5.1μm付近の狭波長帯域における放射エネルギーを検知し、これらの2波長帯域における検知出力の相対比によっては、炎とアーク溶接光を識別判定することはできないことが分かる。 As is apparent from the spectral characteristics of the flame spectrum 46 and the arc welding light spectrum 48, in the conventional two-wavelength method, for example, a narrow wavelength band centered around 4.5 μm, which is the CO 2 resonance radiation band, For example, it is understood that the radiant energy in a narrow wavelength band near 5.1 μm on the long wavelength side is detected, and the flame and the arc welding light cannot be discriminated and determined depending on the relative ratio of the detected output in these two wavelength bands. .

図5は、断続的にアーク溶接を行った場合のアーク溶接光に対する4.5μm積分信号と近赤外積分信号から算出した比率Kの時間変化を示したタイムチャートである。   FIG. 5 is a time chart showing the change with time of the ratio K calculated from the 4.5 μm integrated signal and the near-infrared integrated signal with respect to the arc welding light when the arc welding is intermittently performed.

図5において、CO2の共鳴放射共鳴放射による4.5μm付近の放射強度を検知した4.5μm積分信号は測定特性52に示すように、アーク溶接を断続的に行う毎にピーク値が生じている。 In FIG. 5, the 4.5 μm integrated signal obtained by detecting the radiation intensity in the vicinity of 4.5 μm due to the resonant radiation of CO 2 has a peak value every time the arc welding is intermittently performed, as indicated by the measurement characteristic 52. Yes.

この測定特性52となる4.5μm積分信号と共に検知している近赤外線波長帯域の放射強度に対応した近赤外積分信号(図示せず)とに基づき計算した比率K=E1/E2は、比率特性54に示すように変化する。即ち、測定特性52において4.5μm積分信号が大きくなると、比率特性54のように比率Kの値が小さくなる関係にあり、この場合、比率Kは概ねK=2以下に収まっている。   The ratio K = E1 / E2 calculated based on the near-infrared integrated signal (not shown) corresponding to the radiation intensity in the near-infrared wavelength band detected together with the 4.5 μm integrated signal that becomes the measurement characteristic 52 is the ratio It changes as shown by the characteristic 54. That is, when the 4.5 μm integrated signal increases in the measurement characteristic 52, the ratio K decreases as in the ratio characteristic 54. In this case, the ratio K is approximately within K = 2.

図6は、ヘプタン炎に対する4.5μm積分信号と、近赤外積分信号から算出した比率Kの時間変化を示したタイムチャートである。   FIG. 6 is a time chart showing the time change of the ratio K calculated from the 4.5 μm integrated signal and the near-infrared integrated signal for the heptane flame.

図6において、CO2の共鳴放射による4.5μm付近の放射強度を検知した4.5μm積分信号は測定特性56に示すように、炎の大きさの変化に対応して変動している。 In FIG. 6, the 4.5 μm integrated signal obtained by detecting the radiation intensity in the vicinity of 4.5 μm due to the resonance radiation of CO 2 fluctuates in accordance with the change in the size of the flame as indicated by the measurement characteristic 56.

この測定特性56となる4.5μm積分信号と共に検知している近赤外線波長帯域の放射強度に対応した近赤外積分信号(図示せず)とに基づき計算した比率K=E1/E2は、比率特性58に示すように変化する。即ち、測定特性58において、4.5μm積分信号が大きくなると、比率特性54のように比率Kの値も大きくなる関係にあり、この場合、比率Kは概ねK=50〜200といった大きな値を示している。   The ratio K = E1 / E2 calculated based on the near-infrared integrated signal (not shown) corresponding to the radiation intensity in the near-infrared wavelength band detected together with the 4.5 μm integrated signal that becomes the measurement characteristic 56 is the ratio It changes as shown by the characteristic 58. That is, in the measurement characteristic 58, when the 4.5 μm integral signal becomes large, the value of the ratio K also becomes large like the ratio characteristic 54. In this case, the ratio K generally shows a large value such as K = 50 to 200. ing.

この結果、図5に示したアーク溶接の場合の比率Kが概ねK=2以下であったのに対し、図6のヘプタン炎の場合の比率Kは概ねK=50〜200と非常に大きくなり、このように変化する比率Kを比較判定することで炎の存在とアーク溶接光とを確実に識別判定することができる。   As a result, the ratio K in the arc welding shown in FIG. 5 is approximately K = 2 or less, whereas the ratio K in the heptane flame of FIG. 6 is very large, approximately K = 50 to 200. Thus, by comparing and determining the changing ratio K, it is possible to reliably identify and determine the presence of the flame and the arc welding light.

このため図2及び図3に示した判定閾値Kthとして例えばKth=50を設定することで、算出した比率Kとの比較により炎の存在とアーク溶接光とを確実に識別判定することができる。   For this reason, by setting, for example, Kth = 50 as the determination threshold value Kth shown in FIGS. 2 and 3, the presence of the flame and the arc welding light can be reliably identified and determined by comparison with the calculated ratio K.

図7は本発明による炎感知器の他の実施形態を示したブロック図であり、3波長方式を例にとっている。図7において、炎感知器10は、有炎燃焼時に発生するCO2の共鳴放射による4.5μm付近の波長帯域と、CO2の共鳴放射による4.5μm付近の波長帯域に隣接した5.1μm付近の波長帯域と、アーク溶接光による近赤外線の0.7〜1.0μm付近の波長帯域における放射強度を検知し、3つの波長帯域における検知値の相対比により炎の有無を検知する3波長式による炎判定を行う。 FIG. 7 is a block diagram showing another embodiment of the flame detector according to the present invention, taking a three-wavelength system as an example. In FIG. 7, the flame detector 10 has a wavelength band of about 4.5 μm due to the resonance emission of CO 2 generated during flammable combustion and a 5.1 μm adjacent to the wavelength band of about 4.5 μm due to the resonance emission of CO 2. Three wavelengths that detect the intensity of radiation in the nearby wavelength band and the near-infrared wavelength band of 0.7 to 1.0 μm of arc welding light, and detect the presence or absence of flames by the relative ratio of the detected values in the three wavelength bands The flame is determined by the formula.

炎感知器10は、第1光学フィルタ14aと第1受光素子16aを備えたセンサモジュール12a、第1周波数抽出部18a、プリアンプ20a、メインアンプ22a及びA/D変換器24aを備えた第1検知部11aにより4.5μm受光信号e1を検知し、また、第2光学フィルタ14bと第2受光素子16bを備えたセンサモジュール12b、第2周波数抽出部18b、プリアンプ20b、メインアンプ22b及びA/D変換器24bを備えた第2検知部11bにより近赤外受光信号e2を検知し、この点は図1の実施形態と同じである。   The flame detector 10 includes a sensor module 12a including a first optical filter 14a and a first light receiving element 16a, a first frequency extraction unit 18a, a preamplifier 20a, a main amplifier 22a, and an A / D converter 24a. The unit 11a detects a 4.5 μm light reception signal e1, and also includes a sensor module 12b including a second optical filter 14b and a second light receiving element 16b, a second frequency extraction unit 18b, a preamplifier 20b, a main amplifier 22b, and an A / D. The near-infrared light reception signal e2 is detected by the second detection unit 11b including the converter 24b, and this is the same as the embodiment in FIG.

これに加え本実施形態にあっては、CO2の共鳴放射による4.5μm付近の波長帯域に隣接した5.1μm付近の波長帯域の放射強度を検知する第3検知部11cを設けており、第3検知部11cには、5.1μm付近を中心波長と擦る狭波長帯域を有する赤外線エネルギーを透過して電気信号に変換して出力する第3光学フィルタ14cと焦電型の第3受光素子16cを備えたセンサモジュール12cと、センサモジュール12cから出力される信号から炎のゆらぎ周波数と知られた所定の周波数帯域、例えば2Hzを中心とした周波数帯域の信号成分のみを通過させる前置フィルタを用いた第3周波数抽出部18cと、第3周波数抽出部18cを通過した信号成分を初段増幅するプリアンプ20cと、プリアンプ20cからの出力を、炎判定処理に適した信号レベルに増幅するメインアンプ22cと、メインアンプ22cから出力される増幅出力(アナログ信号)をデジタル信号となる5.1μm受光信号e3に変換するA/D変換器24cとを設けている。なお、5.1μm受光信号は特許請求の範囲の第3受光信号に対応する。 In addition to this, in the present embodiment, the third detector 11c that detects the radiation intensity in the wavelength band near 5.1 μm adjacent to the wavelength band near 4.5 μm due to the resonance radiation of CO 2 is provided. The third detector 11c includes a third optical filter 14c that transmits infrared energy having a narrow wavelength band that rubs around 5.1 μm with the center wavelength, converts the energy into an electrical signal, and outputs the electrical signal, and a pyroelectric third light receiving element. A pre-filter that passes only signal components in a predetermined frequency band known as a flame fluctuation frequency, for example, a frequency band centered on 2 Hz, from the signal output from the sensor module 12c. The third frequency extraction unit 18c used, the preamplifier 20c that amplifies the signal component that has passed through the third frequency extraction unit 18c, and the output from the preamplifier 20c A main amplifier 22c that amplifies the signal level suitable for constant processing, and an A / D converter 24c that converts the amplified output (analog signal) output from the main amplifier 22c into a 5.1 μm light reception signal e3 that is a digital signal. Provided. The 5.1 μm light reception signal corresponds to the third light reception signal in the claims.

炎判定部260は、A/変換器24a,24b,24cからの4.5μm受光信号e1、近赤外受光信号e2及び5.1μm受光信号e3を入力し、当該3つの受光信号e1,e2,e3に基づいて炎の存在とアーク溶接光の放射線源との識別判定を行い、炎の存在を判定した場合、発報回路28に炎判定信号を出力し、スイッチング素子等をオンすることで、感知器端子30a,30bに接続している受信機からの感知器回線に発報電流を流し、受信機に火災発報信号を送出する。   The flame determination unit 260 inputs the 4.5 μm light reception signal e1, the near infrared light reception signal e2, and the 5.1 μm light reception signal e3 from the A / converters 24a, 24b, and 24c, and receives the three light reception signals e1, e2, and e2. Based on e3, the determination of the presence of the flame and the radiation source of the arc welding light is performed. When the presence of the flame is determined, a flame determination signal is output to the alarm circuit 28, and the switching element or the like is turned on. An alarm current is supplied to the sensor line from the receiver connected to the sensor terminals 30a and 30b, and a fire alarm signal is sent to the receiver.

炎判定部260は4.5μm受光信号e1と近赤外受光信号e2の第1比率K1として
K1=e1/e2
を求め、また炎判定部260は4.5μm受光信号e1と5.1μm受光信号e3の第2比率K2として
K2=e1/e3
を求め、第1比率K1が所定の第1判定閾値Kth1以上で、且つ第2比率K2か所定の第2判定閾値Kth2以上の場合に炎の存在を判定することを基本とする。なお、第2比率K2は炎のみに特徴的に大きく出る出力による信号e1と、その他の光源で特徴的な出力による信号e3を比較するものである。
The flame determination unit 260 sets K1 = e1 / e2 as the first ratio K1 between the 4.5 μm light reception signal e1 and the near infrared light reception signal e2.
Further, the flame determination unit 260 sets K2 = e1 / e3 as the second ratio K2 of the 4.5 μm light reception signal e1 and the 5.1 μm light reception signal e3.
And the presence of flame is basically determined when the first ratio K1 is equal to or greater than a predetermined first determination threshold Kth1 and equal to or greater than the second ratio K2 or the predetermined second determination threshold Kth2. Note that the second ratio K2 is a comparison between the signal e1 due to the output characteristically generated only by the flame and the signal e3 due to the characteristic output from other light sources.

この基本的な炎判定に対し本実施形態の炎判定部260にあっては、近赤外受光信号e2が所定の受光閾値eth未満の場合は、4.5μm受光信号e1、近赤外受光信号e2及び5.1μm受光信号e3から第1比率K1及び第2比率K2として
K1=e1/e2
K2=e1/e3
を求め、一方、近赤外受光信号e2が所定の受光閾値eth以上の場合は、4.5μm受光信号e1、近赤外受光信号e2に代る所定の定数c及び5.1μm受光信号e3により第1比率K1及び第2比率K2として
K1=e1/c
K2=e1/e3
を求め、いずれの場合も第1比率K1が所定の第1判定閾値Kth1以上で、且つ第2比率K2か所定の第2判定閾値Kth2以上の場合に炎の存在を判定する。
In contrast to this basic flame determination, in the flame determination unit 260 of the present embodiment, when the near-infrared light reception signal e2 is less than a predetermined light reception threshold eth, the 4.5 μm light reception signal e1 and the near-infrared light reception signal From e2 and 5.1 μm light reception signal e3, K1 = e1 / e2 as first ratio K1 and second ratio K2.
K2 = e1 / e3
On the other hand, if the near-infrared light reception signal e2 is equal to or greater than the predetermined light-receiving threshold value eth, the 4.5 μm light-receiving signal e1, the predetermined constant c in place of the near-infrared light-receiving signal e2, and the 5.1 μm light-receiving signal e3 As the first ratio K1 and the second ratio K2, K1 = e1 / c
K2 = e1 / e3
In any case, the presence of flame is determined when the first ratio K1 is equal to or greater than the predetermined first determination threshold Kth1 and the second ratio K2 is equal to or greater than the predetermined second determination threshold Kth2.

このように近赤外受光信号e2が所定レベルを超えた場合、近赤外受光信号e2の代りに所定の定数cを使用して比率K1,K2を求めることで、外乱光となるアーク溶接光による感度低下を抑制することができる。   Thus, when the near-infrared light receiving signal e2 exceeds a predetermined level, arc welding light that becomes disturbance light is obtained by using the predetermined constant c instead of the near-infrared light receiving signal e2 to obtain the ratios K1 and K2. It is possible to suppress a decrease in sensitivity due to.

図8は図7に設けた炎判定部の機能構成の一例を示したブロック図である。図8において、炎判定部260に設けた積分器32a,32b、定数設定器34、比較器36、切替器40は図2の2波長方式の実施形態と同じである。   FIG. 8 is a block diagram illustrating an example of a functional configuration of the flame determination unit provided in FIG. In FIG. 8, the integrators 32a and 32b, the constant setting unit 34, the comparator 36, and the switching unit 40 provided in the flame determination unit 260 are the same as those in the two-wavelength embodiment of FIG.

これに加え本実施形態では、積分器32cが設けられ、図7のA/D変換器24cからの5.1μm受光信号e3を所定時間単位で積分し、5.1μm積分信号E3を出力する。   In addition, in this embodiment, an integrator 32c is provided, which integrates the 5.1 μm light reception signal e3 from the A / D converter 24c of FIG. 7 in a predetermined time unit and outputs a 5.1 μm integration signal E3.

比率演算器420は、積分器32bからの近赤外積分信号E2が基準電圧源38で設定した受光閾値Eth未満の場合の比較器36のLレベル出力で、図示のように、切替器40を切替端子aに切替えて積分器32bからの近赤外積分信号E2を入力し、4.5μm積分信号E1、近赤外積分信号E2及び5.1μm積分信号E3から第1比率K1及び第2比率K2として
K1=E1/E2
K2=E1/E3
を求める。
The ratio calculator 420 is an L level output of the comparator 36 when the near-infrared integrated signal E2 from the integrator 32b is less than the light reception threshold Eth set by the reference voltage source 38, and the switch 40 is switched as shown in the figure. Switching to the switching terminal a and inputting the near infrared integration signal E2 from the integrator 32b, the first ratio K1 and the second ratio from the 4.5 μm integration signal E1, the near infrared integration signal E2, and the 5.1 μm integration signal E3. As K2, K1 = E1 / E2
K2 = E1 / E3
Ask for.

また比率演算器420は、積分器32bからの近赤外積分信号E2が基準電圧源38で設定した受光閾値Eth以上の場合の比較器36のHレベル出力で、切替器40を切替端子bに切替えて定数設定器34からの定数cを入力し、4.5μm積分信号E1、近赤外受光積分信号E2に代る所定の定数c及び5.1μm積分信号E3から第1比率K1及び第2比率K2として
K1=E1/c
K2=E1/E3
を求める。
The ratio calculator 420 is an H level output of the comparator 36 when the near-infrared integrated signal E2 from the integrator 32b is equal to or higher than the light reception threshold Eth set by the reference voltage source 38, and the switch 40 is switched to the switch terminal b. The constant c from the constant setter 34 is inputted and the 4.5 μm integration signal E1, the predetermined constant c in place of the near-infrared received light integration signal E2, and the first ratio K1 and the second from the 5.1 μm integration signal E3. The ratio K2 is K1 = E1 / c
K2 = E1 / E3
Ask for.

比率演算器420で算出された第1及び第2比率K1,K2は比較判定部440に与えられる。比較判定部440は、第1比率K1が所定の第1判定閾値Kth1以上で、且つ第2比率K2が所定の第2判定閾値Kth2以上の場合に炎の存在を判定する。   The first and second ratios K1 and K2 calculated by the ratio calculator 420 are given to the comparison determination unit 440. The comparison determination unit 440 determines the presence of a flame when the first ratio K1 is equal to or greater than a predetermined first determination threshold value Kth1 and the second ratio K2 is equal to or greater than a predetermined second determination threshold value Kth2.

このように3番目の波長としてCO2の共鳴放射による4.5μm付近の波長帯域に隣接した5.1μm付近の波長帯域の放射強度を検知して炎の存在を判定することで、炎以外の赤外線放射体、例えば、太陽光等の高温放射体や、300°C程度の比較的低温の放射体、人体などの低温放射体等との識別判定をより確実に行うことできる。 In this way, by detecting the radiation intensity in the wavelength band near 5.1 μm adjacent to the wavelength band near 4.5 μm due to the resonance radiation of CO 2 as the third wavelength, the presence of the flame is determined. It is possible to more reliably discriminate and distinguish from an infrared radiator, for example, a high-temperature radiator such as sunlight, a relatively low-temperature radiator of about 300 ° C., a low-temperature radiator such as a human body, and the like.

図9は図7の炎判定部の機能をプロセッサによるプログラムの実行により実現する場合の炎判定処理を示したフローチャートである。図9において、炎判定処理は、ステップS11でA/D変換器24aからの4.5μm受光信号e1を積分した4.5μm積分値E1を読込み、ステップS12でA/D変換器24bからの近赤外受光信号e2を積分した近赤外積分値E2を読込み、更にステップS13でA/D変換器24cからの近赤外受光信号e3を積分した近赤外積分値E3を読込む。   FIG. 9 is a flowchart showing a flame determination process when the function of the flame determination unit in FIG. 7 is realized by executing a program by a processor. In FIG. 9, the flame determination process reads a 4.5 μm integrated value E1 obtained by integrating the 4.5 μm light reception signal e1 from the A / D converter 24a in step S11, and in step S12, the flame determination process from the A / D converter 24b. A near-infrared integrated value E2 obtained by integrating the infrared received light signal e2 is read, and further, a near-infrared integrated value E3 obtained by integrating the near-infrared received signal e3 from the A / D converter 24c is read in step S13.

続いてステップS14で近赤外積分値E2が所定の受光閾値Eth未満か否か判別し、受光閾値Eth未満を検知した場合はステップS15に進み、第1及び第2比率K1,K2を
K1=E1/E2
K2=E1/E3
として計算する。
Subsequently, in step S14, it is determined whether or not the near-infrared integrated value E2 is less than a predetermined light reception threshold Eth. If the light reception threshold Eth is detected, the process proceeds to step S15, and the first and second ratios K1 and K2 are set to K1 = E1 / E2
K2 = E1 / E3
Calculate as

一方、ステップS14で近赤外積分値E2が所定の受光閾値Eth以上となることを検知した場合はステップS16に進み、近赤外積分値E2を定数cに変更し、第1及び第2比率K1,K2を
K1=E1/c
K2=E1/E3
として計算する。
On the other hand, if it is detected in step S14 that the near-infrared integral value E2 is equal to or greater than the predetermined light reception threshold Eth, the process proceeds to step S16, the near-infrared integral value E2 is changed to a constant c, and the first and second ratios K1 and K2 are K1 = E1 / c
K2 = E1 / E3
Calculate as

続いてステップS18で第1比率K1が所定の第1判定閾値Kth1以上か否か判定し、第1判定閾値Kth1以上であることを判定した場合はステップS19に進み、第2比率K2が所定の第2判定閾値Kth2以上か否か判定する。ステップS19で第2比率K2が所定の第2判定閾値Kth2以上であることを判定した場合はステップS20に進み、火災の存在を判定すると共に発報回路28を動作させることで、火災発報信号を受信機に出力させる。   Subsequently, in step S18, it is determined whether or not the first ratio K1 is equal to or greater than a predetermined first determination threshold value Kth1, and if it is determined that the first ratio K1 is equal to or greater than the first determination threshold value Kth1, the process proceeds to step S19. It is determined whether or not the second determination threshold value Kth2 or more. If it is determined in step S19 that the second ratio K2 is greater than or equal to a predetermined second determination threshold value Kth2, the process proceeds to step S20, where the presence of a fire is determined and the alarm circuit 28 is operated, thereby causing a fire alarm signal. Is output to the receiver.

なお、上記の実施形態にあっては、炎の存在を判定した場合に発報回路の動作で受信機からの感知回線の発報電流を流して火災発報信号を送出しているが、発報回路に代えて適宜の伝送回路を設け、炎判定に基づき火災信号を受信側に伝送するようにしても良い。   In the above embodiment, when the presence of a flame is determined, a fire alarm signal is sent by causing the alarm current of the sensing line from the receiver to flow by the operation of the alarm circuit. An appropriate transmission circuit may be provided instead of the information circuit, and the fire signal may be transmitted to the receiving side based on the flame determination.

また上記の実施形態の3波長方式にあっては、CO2の共鳴放射による4.5μm付近の波長帯域に隣接した長波長側の5.1μm付近の波長帯域の放射強度を検知しているが、4.5μm付近の波長帯域に隣接した短波長側の3.8μm付近の波長帯域の放射強度を検知するようにしても良い。 In the three-wavelength system of the above embodiment, the radiation intensity in the wavelength band near 5.1 μm on the long wavelength side adjacent to the wavelength band near 4.5 μm due to the resonance radiation of CO 2 is detected. The radiation intensity in the wavelength band near 3.8 μm on the short wavelength side adjacent to the wavelength band near 4.5 μm may be detected.

また本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
The present invention is not limited to the above-described embodiments, includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above-described embodiments.

10:炎感知器
11a,11b,11c:第1〜第3検知部
12a,12b,12c:センサモジュール
14a,14b,14c:第1〜第3光学フィルタ
16a,16b,16c:第1〜第3受光素子
18a,18b,18c:第1〜第3周波数抽出部
20a,20b,20c:プリアンプ
22a,22b,22c:メインアンプ
24a,24b,24c:A/D変換器
26,260:炎判定部
28:発報回路
32a,32b,32c:積分器
34:定数設定器
36,44:比較器
38,45:基準電圧源
40:切替器
42,420:比率演算器
440:比較判定部
10: Flame detectors 11a, 11b, 11c: First to third detectors 12a, 12b, 12c: Sensor modules 14a, 14b, 14c: First to third optical filters 16a, 16b, 16c: First to third Light receiving elements 18a, 18b, 18c: first to third frequency extraction units 20a, 20b, 20c: preamplifiers 22a, 22b, 22c: main amplifiers 24a, 24b, 24c: A / D converters 26, 260: flame determination unit 28 : Alarm circuit 32a, 32b, 32c: integrator 34: constant setter 36, 44: comparator 38, 45: reference voltage source 40: switch 42, 420: ratio calculator 440: comparison determination unit

Claims (10)

有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1検知部と、
所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2検知部と、
前記第1検知部及び第2検知部からの前記第1受光信号と第2受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定する炎判定部と、
前記炎判定部で炎の存在を判定した場合に火災信号を出力する発報回路と、
を備え、前記炎判定部は、
前記第2受光信号e2が所定の受光閾値eth未満の場合は、前記第1受光信号e1と前記第2受光信号e2との比率K=e1/e2を求め、
前記第2受光信号e2が前記受光閾値eth以上の場合は、前記第1受光信号e1と所定の定数cの比率K=e1/cを求め、
前記比率Kが所定の判定閾値Kth以上の場合に炎の存在を判定することを特徴とする炎感知器。
Narrowband wavelength light centered around 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal, and a signal component of a predetermined frequency is converted from the electrical signal. A first detector for selectively extracting and outputting a first light receiving signal;
A second detector that selectively transmits near-infrared light in a predetermined wavelength band, converts the light into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal;
A flame determination unit for determining the presence of a flame and a radiation source of arc welding light based on the first light reception signal and the second light reception signal from the first detection unit and the second detection unit;
An alarm circuit that outputs a fire signal when the flame determination unit determines the presence of flame,
The flame determination unit includes
When the second light reception signal e2 is less than a predetermined light reception threshold eth, a ratio K = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained.
If the second light receiving signal e2 is greater than or equal to the light receiving threshold eth obtains the ratio K = e1 / c of the first light receiving signal e1 and a predetermined constant c,
The flame detector, wherein the presence of flame is determined when the ratio K is equal to or greater than a predetermined determination threshold value Kth .
請求項記載の炎感知器に於いて、
前記第1検知部は、
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過させる第1光学フィルタと、
前記第1光学フィルタを透過した光を受光し電気信号に変換して出力する第1受光素子と、
前記第1受光素子の出力から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1周波数抽出部と、
を備え、
前記第2検知部は、
所定の波長帯域の近赤外線光を透過させる第2光学フィルタと、
前記第2光学フィルタを透過した光を受光し電気信号に変換して出力する第2受光素子と、
前記第2の受光素子の出力から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2周波数抽出部と、
を備えたことを特徴とする炎感知器。
The flame detector according to claim 1 ,
The first detector is
A first optical filter that selectively transmits light having a narrow band wavelength centered around 4.5 μm, which is emitted by CO 2 resonance generated during flammable combustion;
A first light receiving element that receives the light transmitted through the first optical filter, converts the light into an electrical signal, and outputs the electrical signal;
A first frequency extraction unit that selectively extracts a signal component of a predetermined frequency from the output of the first light receiving element and outputs a first light receiving signal;
With
The second detector is
A second optical filter that transmits near-infrared light in a predetermined wavelength band;
A second light receiving element that receives light transmitted through the second optical filter, converts the light into an electrical signal, and outputs the electrical signal;
A second frequency extracting section for selectively extracting a signal component of a predetermined frequency from the output of the second light receiving element and outputting a second light receiving signal;
A flame detector characterized by comprising:
請求項記載の炎感知器に於いて、前記第2光学フィルタは、0.7μm乃至1.0μm付近の波長帯域の近赤外線光を透過させることを特徴とする炎感知器。
3. The flame sensor according to claim 2 , wherein the second optical filter transmits near-infrared light having a wavelength band of about 0.7 μm to 1.0 μm.
請求項記載の炎感知器に於いて、前記第2光学フィルタと第2受光素子は、近赤外帯域の光を透過させる透過窓を備え、近赤外帯域の所定波長にピーク波長を持つフォトトランジスタまたはフォトダイオードであることを特徴とする炎感知器。
3. The flame detector according to claim 2 , wherein the second optical filter and the second light receiving element include a transmission window that transmits light in a near infrared band, and has a peak wavelength at a predetermined wavelength in the near infrared band. A flame detector, which is a phototransistor or a photodiode.
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力する第1検知部と、
所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力する第2検知部と、
有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする波長帯域に隣接した所定波長を中心波長とする狭帯域波長の光のみを選択透過させて電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出する第3検知部と、
前記第1検知部、第2検知部及び第3検知部からの前記第1受光信号、第2受光信号及び第3受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定する炎判定部と、
前記炎判定部で炎の存在を判定した場合に火災信号を出力する発報回路と、
備え、前記炎判定部は、
前記第2受光信号e2が所定の受光閾値eth未満の場合は、前記第1受光信号e1と前記第2受光信号e2との第1比率K1=e1/e2を求めると共に前記第1受光信号e1と前記第3受光信号e3との第2比率K2=e1/e3を求め、
前記第2受光信号e2が前記受光閾値eth以上の場合は、前記第1受光信号e1と所定の定数cとの第1比率K1=e1/cを求めると共に前記第1受光信号e1と前記第3受光信号e3との第2比率K2=e1/e3を求め、
前記第1比率K1が所定の第1判定閾値Kth1以上で且つ前記第2比率K2が所定の第2判定閾値Kth2以上の場合に炎の存在を判定することを特徴とする炎感知器。
Narrowband wavelength light centered around 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal, and a signal component of a predetermined frequency is converted from the electrical signal. A first detector for selectively extracting and outputting a first light receiving signal;
A second detector that selectively transmits near-infrared light in a predetermined wavelength band, converts the light into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal;
Only light of a narrow band wavelength centered on a predetermined wavelength adjacent to a wavelength band centered on 4.5 μm emitted by CO 2 resonance generated during flammable combustion is selectively transmitted and converted into an electrical signal. A third detector for selectively extracting a signal component of a predetermined frequency from the electrical signal;
Based on the first light receiving signal, the second light receiving signal, and the third light receiving signal from the first detection unit, the second detection unit, and the third detection unit, the presence of the flame and the radiation source of the arc welding light are discriminated and determined. A flame determination unit;
An alarm circuit that outputs a fire signal when the flame determination unit determines the presence of flame,
The flame determination unit includes
When the second light reception signal e2 is less than a predetermined light reception threshold eth, a first ratio K1 = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained and the first light reception signal e1 is obtained. A second ratio K2 = e1 / e3 with the third light receiving signal e3 is obtained,
When the second light reception signal e2 is equal to or greater than the light reception threshold eth, a first ratio K1 = e1 / c between the first light reception signal e1 and a predetermined constant c is obtained and the first light reception signal e1 and the third light reception signal e1 are calculated. A second ratio K2 = e1 / e3 with the light reception signal e3 is obtained,
The flame detector, wherein the presence of flame is determined when the first ratio K1 is equal to or greater than a predetermined first determination threshold value Kth1 and the second ratio K2 is equal to or greater than a predetermined second determination threshold value Kth2.
請求項記載の炎感知器に於いて、前記第3検知部は、
4.5μm付近を中心波長とする波長帯域に隣接した所定波長を中心波長とする狭帯域波長の光を選択透過させる第3光学フィルタと、
前記第3光学フィルタを透過した光を受光し電気信号に変換して出力する第3受光素子と、
前記第3受光素子の出力から所定の周波数の信号成分を選択抽出して第3受光信号を出力する第3周波数抽出部と、
を備えることを特徴とする炎感知器。
The flame detector according to claim 5 , wherein the third detector is
A third optical filter that selectively transmits light having a narrowband wavelength centered on a predetermined wavelength adjacent to a wavelength band centered around 4.5 μm;
A third light receiving element that receives the light transmitted through the third optical filter, converts the light into an electrical signal, and outputs the electrical signal;
A third frequency extracting section for selectively extracting a signal component of a predetermined frequency from the output of the third light receiving element and outputting a third light receiving signal;
A flame detector comprising:
請求項記載の炎感知器に於いて、前記第3光学フィルタは、前記第1光学フィルタの4.5μm付近を中心波長とする透過狭波長帯域に隣接した5.1μm付近または3.8μm付近を中心波長とする狭帯域波長の光のみを選択透過させることを特徴とする炎感知器。
7. The flame sensor according to claim 6 , wherein the third optical filter is adjacent to a transmission narrow wavelength band having a central wavelength around 4.5 μm of the first optical filter, near 5.1 μm or near 3.8 μm. A flame detector characterized by selectively transmitting only light having a narrow band wavelength centered at the center wavelength.
請求項記載の炎感知器に於いて、前記炎判定部は、前記第1信号乃至第3受光信号を積分した積分信号に基づいて炎の存在を判定することを特徴とする炎感知器。
6. The flame detector according to claim 5 , wherein the flame determination unit determines the presence of a flame based on an integrated signal obtained by integrating the first signal to the third light reception signal.
第1検知部により、有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第1受光信号を出力し、
第2検知部により、所定の波長帯域の近赤外線光を選択透過して電気信号に変換し、当該電気信号から所定の周波数の信号成分を選択抽出して第2受光信号を出力し、
炎判定部により、前記第1検知部及び第2検知部からの前記第1受光信号と第2受光信号に基づいて炎の存在とアーク溶接光の放射線源とを識別判定し、前記炎判定部は、
前記第2受光信号e2が所定の受光閾値eth未満の場合は、前記第1受光信号e1と前記第2受光信号e2との比率K=e1/e2を求め、
前記第2受光信号e2が前記受光閾値eth以上の場合は、前記第1受光信号e1と所定の定数cの比率K=e1/cを求め、
前記比率Kが所定の判定閾値Kth以上の場合に炎の存在を判定することを特徴とする炎判定方法。
The first detector selectively transmits light having a narrow band wavelength centered around 4.5 μm, which is radiated by CO 2 resonance generated during flammable combustion, and converts it into an electrical signal. The first light receiving signal is output by selectively extracting the signal component of the frequency of
The second detector selectively transmits near-infrared light in a predetermined wavelength band and converts it into an electrical signal, selectively extracts a signal component of a predetermined frequency from the electrical signal, and outputs a second received light signal.
The flame determination unit discriminates and determines the presence of a flame and the radiation source of the arc welding light based on the first light reception signal and the second light reception signal from the first detection unit and the second detection unit, and the flame determination unit Is
When the second light reception signal e2 is less than a predetermined light reception threshold eth, a ratio K = e1 / e2 between the first light reception signal e1 and the second light reception signal e2 is obtained.
If the second light receiving signal e2 is greater than or equal to the light receiving threshold eth obtains the ratio K = e1 / c of the first light receiving signal e1 and a predetermined constant c,
A flame determination method characterized by determining the presence of a flame when the ratio K is equal to or greater than a predetermined determination threshold value Kth .
請求項記載の炎判定方法に於いて、
前記第1検知部は、
第1光学フィルタにより、有炎燃焼時に発生するCO2共鳴により放射される、4.5μm付近を中心波長とする狭帯域波長の光を選択透過し、
第1受光素子により、前記第1光学フィルタを透過した光を受光し電気信号に変換して出力し、
第1周波数抽出部により、前記第1受光素子の出力から所定の周波数の信号成分を選択抽出して第1受光信号を出力し、
前記第2検知部は、
第2光学フィルタにより、所定の波長帯域の近赤外線光を透過し、
第2受光素子により、前記第2光学フィルタを透過した光を受光し電気信号に変換して出力し、
第2周波数抽出部により、前記第2の受光素子の出力から所定の周波数の信号成分を選択抽出して第2受光信号を出力することを特徴とする炎判定方法。
In the flame judgment method according to claim 9 ,
The first detector is
The first optical filter selectively transmits light having a narrow band wavelength centered around 4.5 μm, which is emitted by CO 2 resonance generated during flammable combustion,
The first light receiving element receives the light transmitted through the first optical filter, converts it into an electrical signal, and outputs it.
A first frequency extraction unit selectively extracts a signal component of a predetermined frequency from the output of the first light receiving element and outputs a first light receiving signal;
The second detector is
The second optical filter transmits near infrared light of a predetermined wavelength band,
The second light receiving element receives the light transmitted through the second optical filter, converts it into an electrical signal, and outputs it.
A flame determination method, wherein a second frequency extraction unit selectively extracts a signal component having a predetermined frequency from the output of the second light receiving element and outputs a second light reception signal.
JP2011214081A 2011-09-29 2011-09-29 Flame detector and flame judgment method Active JP5848082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011214081A JP5848082B2 (en) 2011-09-29 2011-09-29 Flame detector and flame judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011214081A JP5848082B2 (en) 2011-09-29 2011-09-29 Flame detector and flame judgment method

Publications (3)

Publication Number Publication Date
JP2013072834A JP2013072834A (en) 2013-04-22
JP2013072834A5 JP2013072834A5 (en) 2014-10-16
JP5848082B2 true JP5848082B2 (en) 2016-01-27

Family

ID=48477435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011214081A Active JP5848082B2 (en) 2011-09-29 2011-09-29 Flame detector and flame judgment method

Country Status (1)

Country Link
JP (1) JP5848082B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817730B1 (en) * 2017-05-11 2018-01-11 주식회사 아이알티코리아 Fire detection device having a plurality of sensor groups for preventing false alarm
JP7278129B2 (en) * 2019-03-28 2023-05-19 能美防災株式会社 flame detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691196A (en) * 1984-03-23 1987-09-01 Santa Barbara Research Center Dual spectrum frequency responding fire sensor
JPH0679460A (en) * 1992-09-03 1994-03-22 Daikin Ind Ltd Tig welding monitoring device
US5373159A (en) * 1992-09-08 1994-12-13 Spectronix Ltd. Method for detecting a fire condition
US6150659A (en) * 1998-04-10 2000-11-21 General Monitors, Incorporated Digital multi-frequency infrared flame detector
JP5164282B2 (en) * 2010-04-28 2013-03-21 ホーチキ株式会社 Flame detection device and detection sensitivity setting method thereof

Also Published As

Publication number Publication date
JP2013072834A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
CN109155097B (en) Fire detector with photodiode for sensing ambient light to expedite the issuance of potential fire alerts based thereon
US7474227B2 (en) Multiwavelength smoke detector using white light LED
JP7211622B2 (en) Intelligent spark detection device and method using infrared thermal image
KR101549844B1 (en) System for monitoring arc and diagonosing overheat of distribution board by detecting infrared/ultraviolet and method thereof
KR20130143545A (en) Optically redundant fire detector for false alarm rejection
JPWO2018198504A1 (en) Abnormality detector
EP2571001B1 (en) Flame detector using optical sensing
JP2001249047A (en) Flame-detecting apparatus
JP5848082B2 (en) Flame detector and flame judgment method
JP4817285B2 (en) Flame detector
JP2003227750A (en) Flame detector
JP6948703B2 (en) Optical monitoring device
JP5797992B2 (en) Flame detector and flame judgment method
JP3781247B2 (en) Flame detector
US20190360866A1 (en) Stove guard utilizing different wavelengths
US10741036B1 (en) Smoke detector for false alarm reduction
JP6134026B1 (en) Flame detector
JP6682147B2 (en) Flame detector
WO2006049613A1 (en) Multiwavelength smoke detector using white light led
JP7184269B2 (en) Flame detector
JP4026798B2 (en) Flame detector
JP6826719B2 (en) Flame detector
KR100844133B1 (en) Fire monitor circuit
JPH0822584A (en) Fire detecting device
KR101542238B1 (en) High voltage distributing board, low voltage distributing board, distribuging board, motor contorl board having function of arc monitoring by detecting infrared of multi-wave band and monitoring method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151126

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5848082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150